Four Decades of Cover Change, Degradative, and Restitution Stages of Mangrove Forest in Douala-Edea National Park, Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Socioeconomic Characteristics
2.3. Forest Cover Extent
- Pa = Probability of agreement and
- Pe = Probability of random agreement
3. Results
3.1. Land Cover Land-Use Categories of Mangroves from 1980–2022 in the DENP
3.2. Change Detection in Land Cover Land Use in the DENP
3.3. Conversion of Mangroves in the DENP from 1980 to 2022
3.4. Trends of Mangroves Predictions Following Different Time Matrices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Mašek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2010, 20, 154–159. [Google Scholar] [CrossRef]
- Osorio-Olvera, L.; Rioja-Nieto, R.; Guerra-Martínez, F. Prediction of mangrove recovery in natural protected areas of the Yucatan Peninsula. Reg. Env. Change 2024, 24, 38. [Google Scholar] [CrossRef]
- Atheull, A.N.; Din, N.; Longonje, S.N.; Koedam, N.; Dahdouh-Guebas, F. Commercial activities and subsistence utilization of mangrove forests around the Wouri estuary and the Douala-Edea reserve (Cameroon). J. Ethnobiol. Ethnomed. 2009, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves, 2nd ed.; The International Society for Mangrove Ecosystems: Okinawa, Japan, 2010; p. 319. [Google Scholar]
- Ajonina, G.N.; Chuyong, G.B. Vulnerability Assessment of Mangrove Forest Stands from Anthropogenic Wood Exploitation Pressures and Sea Level Rise Impacts Following a Re-Census Survey and Analysis of Eight-Year-Old Permanent Sample Plots in the Douala-Edea Estuary, Cameroon; WWF Central Africa Regional Programme Office: Yaounde, Cameroon, 2011. [Google Scholar]
- Cayetano, C.B.; Creencia, L.A.; Sullivan, E.; Clewely, D.; Miller, P.I. Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines: Predicting future trends using a support vector machine algorithm and the Markov chain model. UCL Open Environ. 2023, 5, e057. [Google Scholar] [CrossRef]
- Ellison, J.; Jungblut, V.; Anderson, P.; Slaven, C. Manual for Mangrove Monitoring in the Pacific Islands Region; SPREP: Apia, Samoa, 2012; p. 52. Available online: https://hdl.handle.net/102.100.100/538748 (accessed on 17 March 2025).
- Khan, M.N.I.; Sharma, S.; Berger, U.; Koedam, N.; Dahdouh-Guebas, F.; Hagihara, A. How do tree competition and stand dynamics lead to spatial patterns in monospecific mangroves? Biogeosci. Discuss 2013, 10, 1685–1716. [Google Scholar] [CrossRef]
- Konango-Samè, A.; Essomè-Koum, L.G.; Boubakary; Kottè-Mapoko, E.F.; Nyamsi-Moussian, L.; Ngo-Massou, V.M.; Ngo-Nkot, L.; Din, N. Logging effects on mangroves vegetation diversity in the Sanaga River estuary (Cameroon). J. Biodivers. Environ. Sci. 2024, 24, 62–72. [Google Scholar]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2014, 148, 101–111. [Google Scholar] [CrossRef]
- Sunkur, R.; Kantamaneni, K.; Bokhoree, C.; Rathnayake, U.; Fernando, M. Mangrove mapping and monitoring using remote sensing techniques towards climate change resilience. Sci. Rep. 2024, 14, 6949. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Walfir, P.; Souza-Filho, M. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Decades of Mangrove Forest Change: What Does It Mean for Nature, People, and the Climate? UNEP: Nairobi, Kenya, 2023. [Google Scholar]
- Spalding, M.; Blasco, F.; Field, C. World Mangrove Atlas, Version 3; Routledge: Okinawa, Japan, 1997. [Google Scholar]
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef]
- Worthington, T.; Spalding, M. Mangrove Restoration Potential: Mangrove Restoration Potential. In A Global Map Highlighting a Critical Opportunity; Cambridge University: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef]
- Nwobi, C.; Williams, M.; Mitchard, E.T. Rapid mangrove forest loss and Nypa palm (Nypa fruticans) expansion in the Niger Delta, 2007–2017. Remote Sens. 2020, 12, 2344. [Google Scholar] [CrossRef]
- Donato, D.; Kauffman, J.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- MINEPDED-RCM. Les Mangroves du Cameroun: État de Lieux et Gestion; MINEPDED-RCM: Yaounde, Cameroun, 2017; p. 191. [Google Scholar]
- Tatuebu, T.C.; Sonwa, D.J.; Awono, A.; Mama, M.N.; Fongnzossie, E.; Ngala, M.R.; Essamba à Rim, L.F.; Ntja, R.D. Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon). Sustainability 2022, 14, 6301. [Google Scholar] [CrossRef]
- Din, N.; Ngo-Massou, V.M.; Essomè-Koum, G.L.; Ndema-Nsombo, E.; Kottè-Mapoko, E.; Nyamsi-Moussian, L. Impact of Urbanization on the Evolution of Mangrove Ecosystems in the Wouri River Estuary (Douala Cameroon), Chapter 3. In Coastal Wetlands: Alteration and Remediation; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Munji, C.A.; Bele, M.Y.; Idinoba, M.E.; Sonwa, D.J. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves. Estuar. Coast. Shelf Sci. 2014, 140, 67–75. [Google Scholar]
- Bissonnette, J.-F.; Dossa, K.F.; Nsangou, C.A.; Satchie, Y.A.; Moussa, H.; Miassi, Y.E.; Gravel, N.; Marie, G.; Onguene, R. What Occurs within the Mangrove Ecosystems of the Douala Region in Cameroon? Exploring the Challenging Governance of Readily Available Woody Resources in the Wouri Estuary. Environments 2024, 11, 121. [Google Scholar] [CrossRef]
- Syafina, H.A.; Hartoko, A.; Max, R.M.; Febrianto, S. Assessing mangrove cover shifts in Segara Anakan, Cilacap through Land Use Land Cover based on multitemporal satellite images. AACL Bioflux 2024, 17, 798–810. [Google Scholar]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.-M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Foahom, B. Biodiversity Planning Support Programme Integrating Biodiversity into the Forestry Sector: Cameroon Case Study. In International Workshop on “Integration of Biodiversity in National Forestry Planning Programme”; CIFOR Headquarters: Bogor, Indonesia, 2001. [Google Scholar]
- Yengoh, G.T.; Hickler, T.; Tchuinte, A. Agro-climatic resources and challenges to food production in Cameroon. Geocarto Int. 2011, 26, 251–273. [Google Scholar] [CrossRef]
- Global Mangrove Watch (GMW). Integrating Mangrove Ecosystems into NDCs with the Global Mangrove Watch. Updated Version. 2024, pp. 1–14. Available online: https://www.mangrovealliance.org/wp-content/uploads/2024/10/Global-Mangrove-Watch-NBSAPs_-Update-2024 (accessed on 17 March 2025).
- Feka, N.Z.; Chuyong, G.B.; Ajonina, G.N. Sustainable utilization of mangroves using improved fish smoking systems: A management perspective from the Douala-Edea wildlife reserve, Cameroon. Trop. Conserv. Sci. 2009, 2, 450–468. [Google Scholar] [CrossRef]
- Moudingo, J.E.; Ajonina, G.N.; Diyouke, E.M. Mangrove Social and Ecological Resilience Geared in the Cameroon Estuary. Pyrex J. Ecol. Nat. Environ. 2015, 1, 037–044. [Google Scholar]
- Ticheler, H. Fish Biodiversity in West African Wetlands; Wetlands International: Wageningen, The Netherlands, 2000; 78p. [Google Scholar]
- CWCS. Activity Report 2000/Rapport d’activites 2000. In Cameroon Wildlife Conservation Society; CWCS: Mouanko, Cameroon, 2001; p. 43. [Google Scholar]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 2016; p. 406. [Google Scholar]
- Numbere, A.O. Impact of Invasive Nypa Palm (Nypa fruticans) on Mangroves in Coastal Areas of the Niger Delta Region, Nigeria; Springer International Publishing AG: Cham, Switzerland, 2019; Chapter 13; pp. 425–453. [Google Scholar]
- Ajonina, G.N.; Usongo, L. Preliminary Quantitative impact assessment of wood extraction on the mangroves of Douala-Edea Forest Reserve Cameroon. Trop. Biodivers. 2001, 7, 137–149. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Trotter, C.M. Characterizing the topographic effect at red wavelengths using juvenile conifer canopies. Int. J. Remote Sens. 1998, 19, 2215–2221. [Google Scholar] [CrossRef]
- Campbell, J.B.; Randolph, H.W. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011; pp. 335–516. [Google Scholar]
- Ahmad, F.; Goparaju, L.; Qayum, A. LULC analysis of urban spaces using Markov chain predictive model at Ranchi in India. Spat. Inf. Res. 2017, 25, 351–359. [Google Scholar] [CrossRef]
- Disperati, L.; Pasquale, S.G. Assessment of land-use and land-cover changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, central Vietnam. Appl. Geogr. 2015, 58, 48–64. [Google Scholar] [CrossRef]
- Mishra, P.K.; Rai, A.; Rai, S.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt. J. Remote Sens. Space Sci. 2019, 23, 133–143. [Google Scholar] [CrossRef]
- Kashaigili, J.J.; Boniface, P.M.; Matthew, M.; Fredrick, L.M. Dynamics of Usangu plains wetlands: Use of remote sensing and GIS as management decision tools. Phys. Chem. Earth 2006, 31, 967–975. [Google Scholar] [CrossRef]
- Zanvo, M.G.S.; Barima, Y.S.S.; Salako, K.V.; Koua, K.A.N.; Kolawole, M.A.; Assogbadjo, A.E.; Glèlè, K.R. Mapping spatio-temporal changes in mangroves cover and projection in 2050 of their future state in Benin. Bois Forêts Trop. 2021, 350, 29–42. [Google Scholar] [CrossRef]
- Barenblitt, A.; Fatoyinbo, L.; Thomas, N.; Stovall, A.; Sousa, C.; Nwobi, C.; Duncanson, L. Invasion in the Niger Delta: Remote sensing of mangrove conversion to invasive Nypa frutican from 2015 to 2020. Remote Sens. Ecol. Conserv. 2023, 10, 5–23. [Google Scholar] [CrossRef]
- Cameroon Mangrove Conservation Network (CMN). Informing and educating the Cameroonian public on mangrove conservation issues. Matanda News 2007, 1, 1. [Google Scholar]
- Awono, A.; Ntamag-Ndjebet, C.N.; Schure, J.; Ihalainen, M.; Zobo, J.; Tieminie, R.; Mama, M.N.; Mengue, P.; Ngo Nken, I.; Tankeu, E.; et al. Improved Practices for Forest Management and Fish Smoking in Cameroon’s Mangroves; Brief #9; Sustainable Woodfuel Brief Series; Governing Multifunctional Landscapes Project. Bogor; CIFOR-ICRAF: Nairobi, Kenya, 2023. [Google Scholar]
- Leal, M.; Spalding, M.D. (Eds.) The State of the World’s Mangroves 2024; Global Mangrove Alliance; Yoke: Frome, UK, 2024; p. 135. [Google Scholar] [CrossRef]
- Al-huqail, A.A.; Islam, Z.; Al-Harbi, H.F. Mangroves trend and their impact on surface temperature in Al-Wajh Lagoon: A study aligned with Saudi Arabia’s vision 2030. Front. Environ. Sci. 2024, 12, 1439425. [Google Scholar] [CrossRef]
- Saoum, M.R.; Sarkar, S.K. Monitoring mangrove forest change and its impacts on the environment. Ecol. Indic. 2024, 159, 111666. [Google Scholar] [CrossRef]
- Uche, I. Mangroves of the Niger Delta. In Mangrove Biology, Ecosystem, and Conservation; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Findi, E.N.; Wantim, M.N. Using Remote Sensing and GIS to Evaluate Mangrove Forest Dynamics in Douala-Edea Reserve, Cameroon. J. Mater. Environ. Sci. 2022, 13, 222–235. [Google Scholar]
- Sardar, P.; Samadder, S.R. Understanding the dynamics of landscape of greater Sundarban area using multi-layer perceptron Markov chain and landscape statistics approach. Ecol. Indic. 2021, 121, 106914. [Google Scholar] [CrossRef]
- De Jong, S.M.; Shen, Y.; De Vries, J.; Bijnaar, G.; Van, M.B.; Augustinus, P.; Verweij, P. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. Int. J. Appl Earth Obs. Geoinfor. 2021, 97, 102293. [Google Scholar] [CrossRef]
- Chen, C.F.; Nguyen-Thanh, S.; Chang, N.B.; Chen, R.C.; Chang, L.Y.; Valdez, M.; Centeno, G.; Thompson, C.A.; Aceituno, J.L. Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model. Remote Sens. 2013, 5, 6408–6426. [Google Scholar] [CrossRef]
Image Date | Image Type | Resolution | Image Name |
---|---|---|---|
1980 | Landsat 1 | 30 m | LM01_L1TP_200058_19800201_20200909_02_T2 |
1990 | Landsat 5 | 30 m | LM05_L1TP_186057_19901221_20200830_02_T2 |
2000 | Landsat 7 | 30 m | LE07_186058_20000426_20299917_02_T1 |
2010 | Landsat 7 | 30 m | LE07_L1TP_186058_20100426_20200917_02_T1 |
2022 | Landsat 8 | 30 m | LC08_L1TP_186057_20221221_20211229_01_T1 |
Classes | 1980 | 1990 | 2000 | 2010 | 2022 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | |
Bare ground | 1562.93 | 0.54 | 3702.7 | 1.36 | 2645.91 | 0.95 | 6016.12 | 2.21 | 3934.7 | 1.41 |
Nypa palmed | 3014.1 | 1.04 | 4877.02 | 1.79 | 5123.64 | 1.84 | 5119.4 | 1.88 | 5435.5 | 1.95 |
Settlement | 3633.93 | 1.25 | 5874.57 | 2.15 | 14,018.47 | 5.05 | 4146.1 | 1.53 | 3270.25 | 1.17 |
Coastal sedimentation | 1032.66 | 0.36 | 7501.81 | 2.75 | 483.59 | 0.17 | 499.38 | 0.18 | 542.36 | 0.19 |
River sedimentation | 5427.1 | 1.87 | 8519.16 | 3.12 | 1437.72 | 0.52 | 2814.95 | 1.04 | 18,837.27 | 6.76 |
Regeneration | 1417.87 | 0.49 | 6397.35 | 2.34 | 1600.27 | 0.58 | 12,631.84 | 4.65 | 20,432.84 | 7.33 |
Mature mangrove | 80,628.78 | 27.83 | 56,005.26 | 20.52 | 52,809.52 | 19.01 | 41,598.83 | 15.31 | 28,555.16 | 10.24 |
Dense forest | 79,731.84 | 27.52 | 75,927 | 27.81 | 96,432.38 | 34.71 | 92,590.18 | 34.07 | 91,186.22 | 32.71 |
Waterbody | 113,298.2 | 39.10 | 104,190.9 | 38.17 | 103,263.7 | 37.17 | 106,354.7 | 39.13 | 106,614.8 | 38.24 |
Total | 289,747.4 | 100 | 272,995.7 | 100 | 277,815.2 | 100 | 271,771.5 | 100 | 278,809.1 | 100 |
1980–1990 Matrix | |||||||||
Class | Bare Ground | Nypa Palmed | Settlement | Coastal Sedimentation | River Sedimentation | Regeneration | Mature Mangrove | Dense Forest | Waterbody |
Bare ground | 10.53 | 8.64 | 7.17 | 12.8 | 12.25 | 25.71 | 4.81 | 10.01 | 0.53 |
Nypa palmed | 2.43 | 2.85 | 1.58 | 1.6 | 1.64 | 1.15 | 2.37 | 3.06 | 0.08 |
Settlement | 3.93 | 4.14 | 4.64 | 6.28 | 6.97 | 1.99 | 3.70 | 1.89 | 2.92 |
Coastal sedimentation | 1.61 | 1.39 | 2.80 | 1.23 | 1.73 | 1.67 | 0.61 | 0.68 | 0.97 |
River sedimentation | 0.45 | 0.83 | 1.18 | 0.42 | 0.26 | 5.06 | 0.55 | 1.42 | 0.15 |
Regeneration | 0.65 | 0.54 | 0.46 | 0.67 | 0.62 | 0.00 | 0.55 | 0.63 | 0.01 |
Mature mangrove | 9.74 | 15.67 | 15.32 | 5.48 | 5.5 | 5.58 | 31.09 | 13.66 | 5.83 |
Dense forest | 31.85 | 40.32 | 33.21 | 27.77 | 27.9 | 31.92 | 43.42 | 53.51 | 5.44 |
Waterbody | 37.99 | 24.46 | 33.35 | 42.06 | 42.87 | 26.73 | 11.97 | 14.10 | 84.06 |
Eigenvalues | 86.147 | 18.968 | 6.28788 | 5.275392 | 3.270026 | −0.12715 | −2.983 | −6.455 | −67.34 |
Overall Accuracy = 99.28%; kappa Coefficient = 0.99 | |||||||||
1990–2000 Matrix | |||||||||
Class | Bare Ground | Nypa Palmed | Settlement | Coastal Sedimentation | River Sedimentation | Regeneration | Mature Mangrove | Dense Forest | Waterbody |
Bare ground | 8.87 | 5.68 | 6.18 | 3.41 | 0.91 | 11.12 | 2.50 | 1.28 | 0.28 |
Nypa palmed | 2.73 | 12.22 | 4.38 | 8.09 | 3.63 | 3.44 | 14.87 | 1.64 | 0.78 |
Settlement | 4.16 | 5.61 | 5.57 | 12.02 | 13.17 | 6.03 | 8.51 | 1.78 | 1.86 |
Coastal sedimentation | 1.71 | 2.37 | 0.92 | 0.26 | 0.05 | 1.42 | 1.11 | 0.29 | 0.19 |
River sedimentation | 5.01 | 4.82 | 2.37 | 2.05 | 0.96 | 4.14 | 1.74 | 0.61 | 0.22 |
Regeneration | 19.91 | 1.06 | 4.48 | 1.36 | 1.81 | 5.64 | 0.80 | 1.11 | 0.03 |
Mature mangrove forest | 5.71 | 14.01 | 9.61 | 9.45 | 12.75 | 5.01 | 22.66 | 37.18 | 1.2 |
Dense forest | 47.42 | 31.07 | 54.05 | 49.83 | 64.59 | 61.63 | 23.77 | 54.69 | 1.29 |
Waterbody | 4.48 | 23.17 | 12.43 | 13.53 | 2.13 | 1.56 | 24.04 | 1.41 | 94.14 |
Eigenvalue | 48.074 | 9.7198 | 8.267054 | 2.913851 | −1.5569 | −3.61043 | −5.06613 | −8.704 | −10.04 |
Overall Accuracy = 99.88%; kappa Coefficient = 0.99 | |||||||||
2000–2010 Confusion Matrix | |||||||||
Class | Bare Ground | Nypa Palmed | Settlement | Coastal Sedimentation | River Sedimentation | Regeneration | Mature Mangrove | Dense Forest | Waterbody |
Bare ground | 10.66 | 1.90 | 11.07 | 7.52 | 14.39 | 21.96 | 1.06 | 2.02 | 0.02 |
Nypa palmed | 1.44 | 28.96 | 1.16 | 1.77 | 1.49 | 2.36 | 29.37 | 9.75 | 3.48 |
Settlement | 1.18 | 0.66 | 2.58 | 0.92 | 1.67 | 1.77 | 0.41 | 0.26 | 0.02 |
Coastal sedimentation | 0.13 | 0.37 | 0.22 | 0.74 | 0.49 | 0.05 | 0.15 | 0.06 | 0.01 |
River sedimentation | 0.12 | 0.25 | 0.05 | 0.39 | 0.25 | 0.02 | 0.06 | 0.03 | 0.01 |
Regeneration | 1.04 | 0.05 | 2.17 | 1.11 | 3.95 | 2.38 | 0.03 | 0.10 | 0.00 |
Mature mangrove | 2.88 | 21.33 | 3.04 | 3.92 | 3.66 | 2.02 | 18.98 | 6.78 | 2.99 |
Dense forest | 68.91 | 16.38 | 76.64 | 27.74 | 65.30 | 67.75 | 28.36 | 76.68 | 0.36 |
Waterbody | 13.64 | 30.1 | 3.09 | 55.89 | 8.81 | 1.70 | 21.58 | 4.32 | 93.11 |
Eigenvalue | 51.123 | 7.9746 | 6.003135 | 1.545931 | 0.989714 | −2.18137 | −4.24709 | −7.855 | −14.35 |
Overall Accuracy = 99.54%; kappa Coefficient = 0.99 | |||||||||
2010–2022 Confusion Matrix | |||||||||
Class | Bare Ground | Nypa Palmed | Settlement | Coastal Sedimentation | River Sedimentation | Regeneration | Mature Mangrove | Dense Forest | Waterbody |
Bare ground | 1.01 | 2.16 | 1.49 | 0.43 | 1.08 | 2.74 | 2.80 | 3.03 | 1.06 |
Nypa palmed | 4.35 | 4.17 | 4.99 | 0.00 | 5.75 | 4.65 | 3.20 | 1.99 | 1.26 |
Settlement | 1.32 | 1.84 | 0.85 | 1.73 | 0.54 | 2.29 | 2.92 | 2.98 | 0.47 |
Coastal sedimentation | 0.47 | 0.22 | 0.11 | 0.00 | 0.05 | 0.33 | 0.32 | 0.31 | 0.74 |
River sedimentation | 4.02 | 1.11 | 0.42 | 3.03 | 0.18 | 2.21 | 2.64 | 2.35 | 0.58 |
Regeneration | 1.93 | 7.45 | 6.63 | 2.60 | 6.34 | 12.40 | 7.33 | 9.86 | 2.54 |
Mature mangrove | 7.08 | 6.98 | 7.87 | 0.00 | 8.75 | 6.98 | 6.25 | 4.28 | 2.28 |
Dense forest | 19.85 | 38.19 | 40.41 | 15.58 | 33.63 | 50.27 | 31.81 | 44.16 | 5.69 |
Waterbody | 59.97 | 37.89 | 37.23 | 76.62 | 43.69 | 18.12 | 42.74 | 31.04 | 85.38 |
Eigenvalue | 50.194 | 12.182 | 5.623 | 3.435 | 0.999 | −1.662 | −4.439 | −8.826 | −10.51 |
Overall Accuracy = 99.75%; kappa Coefficient = 0.99 | |||||||||
1980–2022 Confusion Matrix | |||||||||
Class | Bare Ground | Nypa Palmed | Settlement | Coastal Sedimentation | River Sedimentation | Regeneration | Mature Mangrove | Dense Forest | Waterbody |
Bare ground | 8.47 | 4.51 | 4.23 | 0.00 | 5.59 | 4.89 | 4.91 | 4.01 | 1.61 |
Nypa palmed | 1.35 | 2.09 | 1.36 | 0.00 | 1.40 | 1.53 | 2.13 | 1.98 | 0.33 |
Settlement | 4.46 | 3.33 | 2.98 | 0.00 | 3.93 | 2.65 | 3.40 | 2.82 | 2.70 |
Coastal sedimentation | 1.55 | 0.88 | 0.69 | 0.00 | 0.89 | 0.30 | 0.61 | 0.38 | 1.52 |
River sedimentation | 0.62 | 0.60 | 0.51 | 0.00 | 0.98 | 0.48 | 0.33 | 0.57 | 0.36 |
Regeneration | 0.32 | 0.47 | 0.31 | 0.00 | 0.26 | 0.27 | 0.50 | 0.37 | 0.11 |
Mature mangrove | 10.64 | 14.51 | 19.84 | 9.38 | 16.01 | 21.59 | 12.51 | 22.70 | 1.75 |
Dense forest | 23.71 | 31.53 | 36.27 | 0.00 | 33.77 | 37.88 | 30.60 | 25.37 | 4.06 |
Waterbody | 48.53 | 41.36 | 33.32 | 90.63 | 36.66 | 29.60 | 44.41 | 40.92 | 87.51 |
Eigenvalue | 47.225 | 7.554 | 4.181 | 1.372 | −0.142 | −2.107 | −3.655 | −7.189 | −10.239 |
Overall Accuracy = 95.45%; kappa Coefficient = 0.95 |
Classes | 1980–1990 | 1990–2000 | 2000–2010 | 2010–2022 | 1980–2022 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | |
Bare ground | 2139.77 | 0.82 | −1056.79 | −0.40 | 3370.21 | 1.26 | −2081.42 | −0.80 | 2371.77 | 0.87 |
Nypa palmed | 1862.92 | 0.75 | 246.62 | 0.06 | −4.24 | 0.04 | 316.1 | 0.07 | 2421.4 | 0.91 |
Settlement | 2240.64 | 0.90 | 8143.9 | 2.89 | −9872.37 | −3.52 | −875.85 | −0.35 | −363.68 | −0.08 |
Coastal sedimentation | 6469.15 | 2.39 | −7018.22 | −2.57 | 15.79 | 0.01 | 42.98 | 0.01 | −490.3 | −0.16 |
River sedimentation | 3092.06 | 1.25 | −7081.44 | −2.60 | 1377.23 | 0.52 | 16,022.32 | 5.72 | 13,410.17 | 4.88 |
Regeneration | 4979.48 | 1.85 | −4797.08 | −1.77 | 11,031.57 | 4.07 | 7801 | 2.68 | 19,014.97 | 6.84 |
Mature mangrove | −24,623.5 | −7.31 | −3195.74 | −1.51 | −11,210.7 | −3.70 | −13,043.7 | −5.06 | −52,073.6 | −17.59 |
Dense forest | −3804.84 | 0.29 | 20,505.38 | 6.90 | −3842.2 | −0.64 | −1403.96 | −1.36 | 11,454.38 | 5.19 |
Waterbody | −9107.37 | −0.94 | −927.17 | −1.00 | 3091.04 | 1.96 | 260.09 | −0.89 | −6683.41 | −0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumbang, C.; Ajonina, G.N.; Chuyong, G.B. Four Decades of Cover Change, Degradative, and Restitution Stages of Mangrove Forest in Douala-Edea National Park, Cameroon. Forests 2025, 16, 555. https://doi.org/10.3390/f16040555
Mumbang C, Ajonina GN, Chuyong GB. Four Decades of Cover Change, Degradative, and Restitution Stages of Mangrove Forest in Douala-Edea National Park, Cameroon. Forests. 2025; 16(4):555. https://doi.org/10.3390/f16040555
Chicago/Turabian StyleMumbang, Coleen, Gordon N. Ajonina, and George B. Chuyong. 2025. "Four Decades of Cover Change, Degradative, and Restitution Stages of Mangrove Forest in Douala-Edea National Park, Cameroon" Forests 16, no. 4: 555. https://doi.org/10.3390/f16040555
APA StyleMumbang, C., Ajonina, G. N., & Chuyong, G. B. (2025). Four Decades of Cover Change, Degradative, and Restitution Stages of Mangrove Forest in Douala-Edea National Park, Cameroon. Forests, 16(4), 555. https://doi.org/10.3390/f16040555