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Abstract: Globally, grassland biomes form one of the largest terrestrial covers and present critical
social–ecological benefits. In Kenya, Arid and Semi-arid Lands (ASAL) occupy 80% of the landscape
and are critical for the livelihoods of millions of pastoralists. However, they have been invaded by
Invasive Plant Species (IPS) thereby compromising their ecosystem functionality. Opuntia stricta,
a well-known IPS, has invaded the ASAL in Kenya and poses a threat to pastoralism, leading to
livestock mortality and land degradation. Thus, identification and detailed estimation of its cover is
essential for drawing an effective management strategy. The study aimed at utilizing the Sentinel-2
multispectral sensor to detect Opuntia stricta in a heterogeneous ASAL in Laikipia County, using
ensemble machine learning classifiers. To illustrate the potential of Sentinel-2, the detection of
Opuntia stricta was based on only the spectral bands as well as in combination with vegetation and
topographic indices using Extreme Gradient Boost (XGBoost) and Random Forest (RF) classifiers to
detect the abundance. Study results showed that the overall accuracies of Sentinel 2 spectral bands
were 80% and 84.4%, while that of combined spectral bands, vegetation, and topographic indices
was 89.2% and 92.4% for XGBoost and RF classifiers, respectively. The inclusion of topographic
indices that enhance characterization of biological processes, and vegetation indices that minimize
the influence of soil and the effects of atmosphere, contributed by improving the accuracy of the
classification. Qualitatively, Opuntia stricta spatially was found along river banks, flood plains, and
near settlements but limited in forested areas. Our results demonstrated the potential of Sentinel-
2 multispectral sensors to effectively detect and map Opuntia stricta in a complex heterogeneous
ASAL, which can support conservation and rangeland management policies that aim to map and list
threatened areas, and conserve the biodiversity and productivity of rangeland ecosystems.

Keywords: invasive plant species; remote sensing; extreme gradient boost; random forest; spectral
indices; topographic indices

1. Introduction

Globally, grassland biomes form one of the largest covers of terrestrial ecosystems
and play a critical role ecologically, socially, and economically. Ecologically, grasslands
provide services for carbon sinks [1,2], biodiversity conservation [3], soil conservation [4,5],
and forage biomass for herbivores [6,7]. Socially, they provide a livelihood to 800 million
people [8,9] and their products contribute significantly to calories and protein consumed
globally [10]. Economically, tourism services are found in these biomes and coupled
with the livestock market, directly and indirectly, earn governments billions of dollars
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in revenue collection and the demand for such services and products is estimated to
increase by 2050 [11]. However, while there are many benefits in the conservation of
these biomes, they are faced with an increasing number of challenges, which include
droughts [12], land use and land cover change [13], land degradation due to overgrazing,
deforestation for fuelwood production [14], and the naturalization of Invasive Plant Species
(IPS) that have continuously threatened the existence of these habitats and the integrity of
these ecosystems [15].

Invasive plant species are a group of plants that naturally thrive in colonized grounds
other than their native grounds [16,17]. In the grasslands of Eastern Africa, IPS have found
their pathways through deliberate efforts aimed at conservation and the need to create
aesthetics in the landscape [18,19]. Unfortunately, the intended benefits of their introduction
have been outweighed by their adverse impacts on the ecosystems [20], which threaten
the livelihood of the pastoralist communities that rely on them [21,22]. Indeed, IPS tend
to reduce land productivity and hinder livestock mobility by occupying areas necessary
for palatable pastures [20]. Furthermore, there have been increases in livestock mortality
through the ingestion of the IPS fruits, leading to a loss of income [23]. In Kenya, Prosopis spp.
and Opuntia stricta have substantially degraded large areas of pastures and impacted the
livelihood of pastoralist communities [24–26]. For example, previous research has identified
Opuntia stricta as abundant in Laikipia [27,28], negatively affecting rangeland condition and
economic losses in excess of US$500 in 48% of household in Laikipia [28]. Due to these
challenges, Opuntia stricta has grabbed the attention of scientists and decision-makers due to
the community outcry of the IPS predicament and need to experiment control measures [29].

Opuntia stricta is classified as a Cactus genera and is one of the most invasive plant
species causing lots of disturbances in Kenya [20,29,30]. It’s a perennial shrub characterized
by its red-purple fruits, green cladodes and can attain a height of up to 3.5 metres [23,31].
Opuntia stricta is a native plant in America (North, South and Central) [32] but has recently
spread in the Kenyan rangelands. It is believed that it entered the country as an ornamental
plant with its origin traced to a small town called Dol dol in Laikipia county [33]. It then
dispersed to other parts of the country and is now believed to have naturalized in arid and
semi-arid lands (ASALs) [19,29]. Its ability to naturalize is attributed to high reproduction
through fast growth and the production of seeds that are tolerant of this harsh environment
in the ASALs.

Opuntia stricta also produce fruits that are palatable to both livestock and wild animals,
hence encouraging the dispersion through animal droppings [33,34]. Consequently, the
significance of Opuntia stricta has been a long-standing rivalry between different schools of
thought [20]. While there are some benefits of this IPS, e.g., forages, conservation of soil,
water, and some cases known to have medicinal value [35–37], Opuntia stricta remains a
threat in pastoral communities due to livestock mortality and grassland biome degradation.

Reducing the vulnerability of pastoral livelihood from Opuntia stricta requires sound
control measures. The management of IPS has employed traditional measures such as
manual or mechanical removal of the species and biological controls [38]. For instance,
biological control of Opuntia ficus-indica in South Africa and Madagascar resulted in the
reduction of its densities [39,40]. Additionally, biological control measures have been
widely observed to reduce the cost of management as a result of the minimum person-
nel requirement. In Laikipia, the biocontrol measures have been rolled out on a trial
basis with promising results of reduction in physical plant growth and products [41].
However, the long-term management of this IPS requires good knowledge of its spatial
extent [29]. Currently, this information is gathered through costly and time-consuming
field-based methods [42].

Satellite-based earth observation imagery provides a cost-effective approach to ac-
curately map IPS over large areas to inform management practices. Several studies have
identified ways to accurately map IPS from space using multispectral [43] or hyperspectral
data [44,45]. Mapping of IPS has often relied on the differentiation of spectral reflectances
against the surrounding vegetation [46] and observation of the continuous plants’ traits
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such as leaf phenology. For instance, Matongera et al. [43] focused on the spectral char-
acteristic of World-View 2 and Landsat imagery to detect bracken fern weeds an IPS in
KwaZulu-Natal, South Africa. Earlier efforts to use satellite images have either been limited
by poor spatial and spectral resolution of multispectral data or the cost, high dimensional-
ity, availability, and complex processing especially with hyperspectral data [47]. With the
spatial and spectral challenges continuously being addressed by the launch of new satellite
missions that provide data freely, only computational resources would be needed.

Recent advances in computational power and storage in addition to the use of machine
learning algorithms have provided an efficient way to detect and map the IPS. For example,
Random Forest and Extreme Gradient Boost algorithms provided high accuracy of (92%
and 88%, respectively) in the mapping of the fractional cover of Prosopis juliflora an IPS in the
Afar Region of Ethiopia using multispectral Landsat 8 data [48]. Similarly, using Sentinel-2
vegetation indices and Support Vector Machines, an accuracy of 80% was achieved while
mapping Rubus cuneifolius IPS in the KwaZulu-Natal province of South Africa [49]. The
technical developments of the new generation satellites such as Sentinel-2 with enhanced
spatial, spectral, and temporal resolution provides an opportunity to monitor the spread
and undertake detailed landscape mapping of Opuntia stricta.

Characterization of these ASAL landscapes is vital for the management of invasive
Opuntia stricta species. Additionally, knowledge gaps exist especially in overcoming
limitations of mapping and invasion science to have methodological research for IPS
detection [50]. Therefore, the main aim of this paper was to map Opuntia stricta over
a heterogeneous ASAL landscape in Laikipia county, Kenya, using ensemble machine
learning classifiers (i.e., Extreme Gradient Boost (XGBoost) and Random Forest (RF))
applied to Sentinel-2 data. The classifiers were chosen because of high classification results
and the ability to avoid overfitting. Furthermore, the classifiers will test the ability of
Sentinel-2 bands, as well as vegetation and topographic indices in accurately classifying
Opuntia stricta.

2. Materials and Methods

The study design is shown in (Figure 1) where we take a four-step process approach.
Firstly, we collect all the required data, then we pre-process the data, followed by the
training and evaluation of the model. Finally, we create the cover maps from both classifiers
and an Opuntia stricta mask from the best performing classifier.

2.1. Description of the Study Area

In Kenya, ASALs cover 89% of the land mass, and host 36% of the population. Addi-
tionally, precipitation per annum ranges between 150 mm–550 mm and 550 mm–850 mm in
arid and semi-arid zones, respectively, with temperature and evatranspiration remaining
throughout the year [51]. Laikipia is one of the 29 counties in the ASAL region of Kenya and
covers an area of about 9500 km2 [52]. The county straddles the equator and is surrounded
in the south by Mt Kenya and the Nyandarua ranges while in the north it stretches to more
arid plains. Laikipia receives an annual average precipitation of 450 mm over two main
rainy seasons, though rainfall can be erratic and varies strongly across the county. This
variability of extremely dry or wet events has partly been attributed to the degradation of the
environment [53] and is evident across the four Agro-ecological zones (upper highland-sub
humid, low highlands, upper midlands, and lower midlands). The study area, which falls
among the latter, is notable for ranching, (private and community) beef cattle, and sisal
farming due to its non-arable land [26]. It has an overall population of 518,560 [54] who
mainly rely on subsistence, rainfed agriculture, and raising livestock in a mixed farming
environment. This study will focus on community group ranches in northern Laikipia,
namely, Morupusi, Kurikuri, Mukurian, and Ilpolei (Figure 2) which is where the town
of Dol Dol is located and is known as the origin of the IPS. Additionally, the location is
where we have a nexus of private and communal conservancies which are important to
understand for the spatial distribution of Opuntia stricta and the pressures it faces.
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The pressures on the land are driven by land-use and land-tenure issues, resulting
from the colonial and post-colonial era [55]. Recently, irregular land allocation [56,57],
foreign land acquisition [58], and human–wildlife conflict [55] have led to the privatization
of the land which has led to the introduction of hard borders. While the conservancies
and private ranches focus on tourism and beef production, the community ranches are
used for pastoralism. Pastoralism in the county is practised by the Maasai nomadic
community [59] who still claim Laikipia as their ancestral grounds. Additionally, several
other pastoralist communities use land that has been abandoned by their owners [60]. The
above land adjudication issues have left the pastoralist with limited space and insecurity
of tenure, which has often resulted in conflicts and increased land degradation due to
overgrazing [58,61]. The poor management of the pastures has also contributed to the
spread of the Opuntia stricta, which now covers an estimated area of 11,500 ha in the county
and is seen as a major environmental challenge impacting the conservation and economic
development [62] of the county.

2.2. Field Data

Training and testing data to classify Opuntia stricta in Laikipia were collected using
fieldwork and satellite data. On the ground, two fieldwork campaigns were undertaken to
collect training and validation data for several land cover classes. In October 2019, GPS
points were collected for Opuntia stricta, grasslands, shrublands, and bare ground (Table 1)
while during earlier fieldwork, in 2017 and 2018, members from the Regional Center for
Mapping of Resources for Development (RCMRD) trained field staff in the region to collect
Opuntia stricta locations and provide visual estimations of densities by roughly making a
count of its bushes and describing the surrounding vegetation type such as grass, shrubs,
and trees. For this study, points denoted as moderate to dense with a high percentage
canopy cover in the open field were considered. Additional data for the forest, water
land cover classes, and clouds and shadows were collected using on-screen digitization of
Sentinel-2 data in a false-composite combination as they were visually easy to differentiate
as compared to the rest of the classes. These campaigns resulted in 628 points collected for
the training and validation of the classification (Figure 2).

Table 1. Landcover classes and sample pixel number collected for the classification.

Classes Class ID Description Samples
Training Validation

Bare ground 0 Dry exposed soils 134 18
Clouds 1 White material 2 2
Forests 2 High-density woody vegetation 41 20
Grasses 3 Open and high-density low vegetation 75 38

Opuntia stricta 4 Target cactus vegetation 144 63
Shadows 5 Black material 1 1
Shrubs 6 Low lying vegetation 77 20
Water 7 Open water 6 3

2.3. Satellite Image Analysis and Classification

In this section, we discuss the various steps we undertook in image acquisitions,
spectral characterization, and analysis, deriving the vegetation and topographic indices,
and finally the image classification and accuracy assessment.

2.3.1. Satellite Image Acquisition and Pre-Processing

We used satellite imagery from the Copernicus Sentinel-2 mission, which observes
the Earth at 10 m, 20 m, and 60 m spatial resolution and are available every 5–12 days
free of cost [63]. Since cloud cover is almost persistent in this region, we selected an
image from 16th September 2019 with a cloud cover of less than 10%. The image was
available at level 1C hence required additional processing to convert and retrieve the
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surface reflectance. Atmospheric and geometric corrections for Sentinel-2 images were
performed with Sen2Corv2.8 [64]. Next, we resampled the 20 m resolution bands to
get uniform 10 m resolution pixels using the nearest neighbour approach. Here, we
used a total of ten spectral bands ranging from the visible to the shortwave infrared
wavelengths (Table 2). Furthermore, the extraction of the study area mask was performed
for all spectral reflectance bands and data stored for further processing and analysis.
All these pre-processing operations were performed within the SNAPv7.0 software [65].
Finally, we included a 30 m resolution Digital Elevation Model (DEM) from the Shuttle
Radar Topographic Mission (SRTM) available from the United States Geological Survey
(USGS, 2020).

Table 2. Sentinel-2 spectral bands.

Band Spectral Region Spatial Resolution (m) Central Wavelength (nm)

2 Blue 10 492.4
3 Green 10 559.8
4 Red 10 664.6
5 Red edge 20 704.1
6 Red edge 20 740.5
7 Red edge 20 782.8
8 Near- infrared 10 832.8

8A Near -infrared 20 864.7
11 Shortwave Infrared 20 1613.7
12 Shortwave Infrared 20 2202.4

2.3.2. Spectral Separability

Spectral separability between Opuntia stricta and the control classes was assessed
using the Jeffries–Matusita (JM) and the Transformed Divergence (TD) methods [66–68].
This was a crucial step in testing how valuable the bands and training pixels are before
undertaking further classification analysis. The rationale of the method was due to its
ability to evaluate the probability of band pairs to separate between two classes [69].
Shapiro–Wilk normality test was carried out at 95% confidence level to determine if the
classes were normally distributed across the spectral bands. Additionally, JM and TD
calculate separability by taking an evaluation of the class spectral distances between the
mean vectors of the available pairs computed. Here (in)significant distances mean the
spectral classes are (less) more separable. These approaches have been widely used for
the evaluation of training data sets in land cover classifications [43,70,71]. The JM distance
(Equation (1)), and the TD distance (Equation (2)) apply two features, respectively, with an
output range of separability values between 0 and 2:

Jxy = 2
(

1− e−B
)1

8
(x− y)t

(
Σx + Σy

2

)−1

(x− y) +
1
2

ln


∣∣∣Σx+Σy

2

∣∣∣
|Σx|

1
2
∣∣Σy
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2

 (1)

where x and y correspond to first and second spectral signature and Σx and Σy are the
covariance matrix of sample x ∧ y, respectively;
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[

1− exp
(
−D

8

)]
1
2

tr
[
(C1 − C2)

(
C−1

1 − C−1
2

)]
+

1
2

tr
[(

C−1
1 − C−1

2

)
(µ1 − µ2)(µ1 − µ2)

T
]

(2)

where TD is the Transformed Divergence between two classes, C1 is the covariate matrix of
class 1, µ1 is the mean vector of class 1, tr is the matrix trace function, and T is the matrix
transposition function. These spectral characterization analyses were performed using
ENVI image analysis software v5.4 [72].
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2.3.3. Extracting Predictor Variables for Classification

Supervised classification requires predictor variables as input data. We used the
Sentinel-2 spectral bands (Table 2), vegetation, and topographic indices from the satellite
images to improve the model’s predictive ability to detect Opuntia stricta. Vegetation indices
that are suitable to dryland conditions [73,74], reliable for mapping vegetation [75,76], and
those that eliminate atmospheric and soil effects [77,78] were included in our analysis
(see Supplementary Table S1). To this end, we computed the Ratio Vegetation Index
(RVI) [79], Perpendicular Vegetation Index (PVI) [80], Normalized Difference Vegetation
Index (NDVI) [81], Infrared Percentage Vegetation Index (IPVI) [82], Atmospherically
Resistant Vegetation Index (ARVI) [83], and Modified Secondary Soil adjusted Vegetation
Index (MSAVI) [84]. All the computations for the vegetation indices were performed
within SNAP.

Additionally, DEM and topographic variables such as slope, aspect [85], and Terrain
Wetness Index (TWI) [86], which are known to aid improved decision making for classifica-
tion tasks, were also included [87–89]. Furthermore, these topographic variables do affect
temperature, precipitation, radiation regimes, and moisture demands attributes that indirectly
affect vegetation dynamics and microclimates [90]. QGISv3.10 was used to derive the three
topographic variables [91]. The formulas used to derive the vegetation and topographic
indices are presented in the supplementary materials (Tables S1 and S2, respectively).

2.3.4. Classification Algorithms and Accuracy Assessment

Our study employs two ensemble machine learning algorithms, XGBoost and RF,
to classify Opuntia stricta from satellite imagery. XGBoost has been used extensively
for classification tasks due to its ability to develop and weigh multiple decision trees
to enhance the overall classification performance [92]. The high prediction skill and
accuracies associated with XGBoost can be attributed to its loss function algorithm and
how it optimizes weak learners to improve model performance [48,92,93]. The iterative and
additive nature of the learning process combined with the use of a strong regularization
framework makes the models robust against overfitting [94,95]. The mathematical details
of this algorithm are found in Chens’ works [92].

The RF algorithm by Breiman [96] classifies by bootstrapping data and creating large
numbers of decision trees per bootstrap sample. Each decision tree facilitates decision
making by making use of the Classification and Regression Trees (CART) algorithm to
split nodes through the reduction in Gini Impurity. Gini impurity measures the probability
of a new random variable to be incorrectly classified if it was randomly labelled by the
distribution of the training sample. Classification of the data is achieved via bootstrap
aggregation. Additionally, we chose this approach based on the results of several recent
studies that have demonstrated high accuracy achievements especially for land cover
classification assignments [76,93,97,98]. In-depth details of RF are provided by [96] and
Strobl works [99].

To build our understanding of the value of adding the additional variables, we first
created models with just the spectral bands ((model 1.a for XGBoost and model 1.b for
RF) as well as models where we added vegetation and topographic indices to the Sentinel
spectral bands (model 2.a for and model 2.b for XGBoost and RF, respectively). Additionally,
we analyzed the performance of the models to evaluate the value of adding in these layers.

To ensure we achieved high classification accuracies and avoid model overfitting, we
optimized the models by undertaking hyperparameter tuning. The review of literature
has shown that numerous approaches exist for hyperparameter tuning [100,101] and do
contribute to overall accuracy. For example, Abdi [93] observed an increase in an overall
accuracy of 15% in land cover classification while using optimized machine learning. In
this study, we used the random search method owing to its ability to perform a com-
prehensive search and also to ensure that the parameter value search is comparable to
other studies [101]. We chose five parameters (Table 3), three for XGBoost and two for RF.
The search for the optimum parameters was computed using k-fold cross-validation. In
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this exercise, hyperparameter tuning was done by using sci-kit-learn’s [102] grid search
function implemented in the Python programming language.

Table 3. Classification hyper-parameters used for XGB and RF algorithm.

Model Hyper-Parameter Value Definition

XGB
max_depth = 3,

learning_rate = 0.1,
n_estimators = 100

maximum depth of a tree to which changes
makes the model complex

learning rate step size shrinkage used in the
updates hence preventing the overfitting

maximum number of iterations to the training

RF
max_depth = 5,

n_estimators = 500
maximum number of levels for each decision tree

tree numbers in the forest

Finally, we evaluated the ability of the two ensemble machine learning algorithms to
discriminate Opuntia stricta from other control classes. The accuracy of our classification
models was assessed by utilizing the absence and presence model which looks at an error
matrix that cross tabulates the absence and predicted patterns versus the observed [103,104].
We generated confusion matrices to compare the true and assigned classes by obtaining the
Overall Accuracy (OA), as well as the User Accuracy (UA), Producer Accuracy(PA) [105]
and the Kappa coefficient. UA essentially inform us how often a classes on the map
will actually be present on the ground, whereas PA gives the probability of a classified
class in map being classified as such on the ground. Additionally, due to conceptual
issues regarding the Kappa coefficient [106], we computed two additional measures of
disagreement between maps, Quantity Disagreement (QD) and Allocation Disagreement
(AD) [107]. QD is a measure of the difference in the proportions between the true and
predicted classes, while AD measures the difference in the spatial allocations of the actual
and predicted land cover classes.

3. Results
3.1. Analysis of Spectral Separability of Opuntia Stricta and Other Control Classes

The spectral profiles for the various classes are presented in Figure 3. Water, bare
ground, and forests show potentially distinct spectral characteristics across the spectral
wavelength. However, Opuntia stricta and shrubs classes are visually close and they give
a broadly similar shape across the spectral wavelength and a new observation is made
between grasses and bare grounds.
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Results of the Shapiro-Wilk normality test are reported in the supplementary material
(Table S3) and the values for JM and TD are found below and above the diagonal, respec-
tively (Table 4). It can be noted that all classes have values greater than 1.27 and 1.59 for
JM and TD, respectively, which indicates a good potential for accurate classification. The
highest separation was achieved between bare grounds and forests as well as between
grasses and forests (1.99 and 2.00 for JM and TD, respectively). Similarly, we also found
the weakest separation to be between Opuntia stricta and shrubs, as well as between bare
grounds and grasses, with values of JM equal to 1.27 and 1.49 while TD values were 1.59
and 1.68, respectively. Finally, our normality test indicates that many of the time, the
p-value was not less than the significant level of 0.05 which indicate that the land cover
classes confirm and follow a normal distribution across the Sentinel-2 spectral bands. The
exceptions are bare ground, Opuntia stricta and shrubs across NIR, RedEdge1 and Red with
p < 0.05.

Table 4. Separable degree of Jeffries–Matusita (JM: bottom left diagonal) and transformed divergence
(TD: upper right diagonal) between Opuntia stricta and other control classes based on Sentinel-2
imagery band.

Opuntia
stricta Shrubs Grasses Bare

Grounds Forests Water

Opuntia stricta - 1.59 1.83 1.99 1.99 2.00
Shrubs 1.27 - 1.89 1.99 1.99 2.00
Grasses 1.66 1.83 - 1.68 2.00 2.00

Bare grounds 1.92 1.95 1.49 - 2.00 2.00
Forests 1.92 1.94 1.99 1.99 - 2.00
Water 2.00 2.00 2.00 2.00 2.00 -

3.2. Image Classification

The outputs of both classification algorithms (i.e., model 1.a and model 1.b are XGBoost
and RF, respectively) with only the Sentinel reflectance bands as input whereas model 2.a
and model 2.b are XGBoost and RF, respectively, with vegetation and topographic indices
added to the Sentinel-2 reflectance bands and are presented in (Figures 4 and 5). Here,
we show that grass and shrubs are the dominant covers, while Opuntia stricta, forest, bare
ground, and water are less abundant. Grass cover in Figure 4 panels A and B is found
mainly to the south, central, and minimal towards the north. Shrubs are found towards
the north, central with small patches towards the south of the study area. Additionally,
we see a lot of variability in Opuntia stricta presence, an indication of co-occurrence of
classes. Figure 4 panel A shows the presence of Opuntia stricta towards the north with
the south having remnants in patches while Figure 4 panel B shows a co-occurrence of
Opuntia stricta with other classes such as grasses and shrubs. Similarly, model 2 results
presented in Figure 5 panels A and B portray the spatial spread of Opuntia stricta towards
the central area of the map and along the river channels. Shrubs are found more towards
the central and north, while the grass is found towards the central and south of the map.
The forest cover looks spatially unchanged which may be a result of the good separation
between itself and other land cover classes, shown in the JM and TD analysis. An overlay
of the land tenure boundaries qualitatively shows that Opuntia stricta is present in all the
localities with community ranches widely affected. An assessment of the accuracy presents
a measure of the models and the variables A and B performance.
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Figure 5. Maps showing the classification results of model 2.a and model 2.b are XGBoost and RF, respectively, with
vegetation and topographic indices added to the Sentinel-2 reflectance bands, panel (A,B), respectively. The boundaries
present the different land tenures present within the study area.
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The overall classification performance of the algorithms based on the predictor vari-
ables is given in Tables 5–8. Our results show varied OA levels for both classification
algorithms with RF outcompeting XGBoost. Interestingly, model 2 did improve the OA,
kappa and reduced the QD and AD for both models. RF achieved an OA of 84.4% and
92.4% for models 1.b and 2.b, respectively, compared to XGBoost 80% and 89.2% for models
1.a and 2.a, indicating an OA increase of 8% and 9% for RF and XGBoost, respectively.
These results are reflected as well by the kappa with an improvement of 0.1 and 0.09 for
XGBoost and RF, respectively.

Table 5. Confusion matrix for model 1.a user’s and producer accuracy. The overall weighted accuracy is 0.80 ± 0.038.

Land Cover Bare
Ground Cloud Forest Grass Opuntia Shadows Shrubs Water User

Accuracy

Classification
Data

Bare 24 0 0 3 0 0 0 0 88.89%
Cloud 0 45 0 0 0 0 0 0 100.00%
Forest 0 0 23 0 1 0 2 0 88.46%
Grass 1 0 0 33 9 0 6 0 67.35%

Opuntia 0 0 0 2 35 0 3 0 87.50%
Shadows 0 0 0 0 0 29 0 0 100.00%
Shrubs 1 0 2 0 28 0 31 4 46.97%
Water 0 0 0 0 0 0 0 32 100.00%

Weights 27 45 26 49 40 29 66 32
Producer
Accuracy 92.31% 100.00% 92.00% 86.84% 47.95% 100.00% 73.81% 88.89%

Overall Accuracy 0.802
Allocation Disaggrement 0.079
Quantity Disaggrement 0.117

Kappa 0.77

Table 6. Confusion matrix for model 2.a user’s and producer accuracy. The overall weighted accuracy is 0.89 ± 0.031.

Reference Data

Land Cover Bare
Ground Cloud Forest Grass Opuntia Shadows Shrubs Water User

Accuracy

Classification
Data

Bare 23 0 0 2 0 0 0 0 92.00%
Cloud 0 45 0 0 0 0 0 0 100.00%
Forest 0 0 20 0 1 0 0 0 95.24%
Grass 3 0 0 34 11 0 6 0 62.96%

Opuntia 0 0 1 2 57 0 0 0 95.00%
Shadows 0 0 0 0 0 29 0 0 100.00%
Shrubs 0 0 4 0 4 0 36 0 81.82%
Water 0 0 0 0 0 0 0 36 100.00%

Weights 25 45 21 54 60 29 44 36
Producer
Accuracy 88.46% 100.00% 80.00% 89.47% 78.08% 100.00% 85.71% 100.00%

Overall Accuracy 0.891
Allocation Disaggrement 0.050
Quantity Disaggrement 0.057

+Kappa 0.87
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Table 7. Confusion matrix for model 1.b user’s and producer accuracy. The overall weighted accuracy is 0.84 ± 0.036.

Reference Data

Land Covers Bare
ground Cloud Forest Grass Opuntia Shadows Shrubs Water User

Accuracy

Classification
Data

Bareground 26 0 0 5 0 0 0 0 83.87%
Cloud 0 45 0 0 0 0 0 0 100.00%
Forest 0 0 21 0 0 0 3 0 87.50%
Grass 0 0 0 30 6 0 6 0 71.43%

Opuntia 0 0 0 1 48 0 3 0 92.31%
Shadows 0 0 0 0 0 29 0 0 100.00%
Shrubs 0 0 4 2 19 0 30 0 54.55%
Water 0 0 0 0 0 0 0 36 100.00%

Weights 31 45 24 42 52 29 55 36
Producer
Accuracy 100.00% 100.00% 84.00% 78.95% 65.75% 100.00% 71.43% 100.00%

Overall Accuracy 0.843
Allocation Disaggrement 0.085
Quantity Disaggrement 0.070

Kappa 0.82

Table 8. Confusion matrix for model 2.b user’s and producer accuracy. The overall weighted accuracy is 0.92 ± 0.027.

Reference Data

Land Cover Bare
ground Cloud Forest Grass Opuntia Shadows Shrubs Water User

Accuracy

Classification
Data

Bare 25 0 0 4 0 0 0 0 86.21%
Cloud 0 45 0 0 0 0 0 0 100.00%
Forest 0 0 23 0 0 0 1 0 95.83%
Grass 1 0 0 34 9 0 3 0 72.34%

Opuntia 0 0 1 0 60 0 0 0 98.36%
Shadows 0 0 0 0 0 29 0 0 100.00%
Shrubs 0 0 1 0 4 0 38 0 88.37%
Water 0 0 0 0 0 0 0 36 100.00%

Weights 29 45 24 47 61 29 43 36
Producer
Accuracy 96.15% 100.00% 92.00% 89.47% 82.19% 100.00% 90.48% 100.00%

Overall Accuracy 0.923
Allocation Disaggrement 0.035
Quantity Disaggrement 0.041

Kappa 0.91

Tables 6 and 8 also gives insight into the contribution of the predictor variables to
the classification accuracies. Model 2.b showed improvement in PA and UA scores for
the target Opuntia stricta of 34.24% and 6.05%, respectively, compared to model 1.b. For
the other classes, such as forest, grass, shrubs, and bare ground, the PA increased by
approximately, 8%, 11%, 17%, and 2.3% while the UA increased by 8%, 1%, and 41%,
respectively. Model 2.a presented mixed results with gains and losses in both PA and UA.
Despite the mixed results in PA and UA for model 1, model 2 improved the classification
results with both models.

The classification accuracy results of Opuntia stricta improved when using model 2 for
both classifiers. Our results (Tables 6 and 8) show that Opuntia stricta was better classified
from the users’ perspective as compared to the producers’ viewpoint by reaching 98%
and 95% for model 2.b and model 2.a, respectively. Additionally, Figure 6 presents the
disagreement levels between the two classifiers for models 1 and 2. Firstly, models 1.a
and 1.b had the largest overestimation on average by 11.7% and 7% for model 1 and 2,
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respectively, which is consistent with our previous result on OA though in reverse since
these metrics estimates disagreements between the reference and classified values. Our
results show that the use of model 2 substantially reduces the overestimation by 6% and
2.9%, respectively. Model 1.a had the largest QD of all the models. Secondly, our results
show that the use of model 2 had the lowest AD with the total disagreement of 7.6%
and 10.7% for XGBoost and RF, respectively. Overall, using model 2.b yields the best
performance as compared to the rest of the models based on total disagreement though
significantly low changes in errors for the same.
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Figure 6. Shows the average allocation and quantity disagreements for each model based on the two
algorithms. The summation of allocation and quantity disagreements is equal to total disagreement
of the models.

Finally, feature importance results are presented in the Supplementary Materials
(Figure S1) and varied depending on the model. On one hand, model 2.a feature importance
ranked the raw DEM, SWIR1, and slope as the top most important predictor variables
with PVI, NDVI, and RVI as the least important for the model. On the other hand, the
topographic indices (TWI, Aspect and slope) were the most important predictor variables
with red and green bands being the least important for model 2.b. Overall, our results
show that topographic indices as compared to other indices largely contributed to the
performance of the classifiers for the two models.

4. Discussion

Dynamic changes in land cover and poor rangeland management present an oppor-
tunity for IPS to spread and have a negative impact on range ecology [108], especially on
pastoral lands in the Kenya ASALs. In this study, we have applied two ensemble classifiers
to detect and map Opuntia stricta, an IPS present in a heterogeneous arid and semi-arid
county in Kenya. Our results show that the use of Sentinel 2 spectral bands, vegetation,
and topographic indices can characterize heterogeneous ASALs. Here, we first discuss
the suitability of the Sentinel-2 spectral bands to map Opuntia stricta. Then, we discuss
the spatial occurrence of the target class and the control classes while identifying some
conceivable ecological implications. Finally, we discuss the accuracy and suitability of the
Sentinel-2 data in an upscaled context.

4.1. Model Evaluation and Spatial Coverage

In the spectral separability (Figure 3) analysis we provided a qualitative assessment of
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the suitability of Sentinel-2 spectral bands to perform classification in these arid environ-
ments with abundant Opuntia stricta and Figure 6 indicates the spatial occurrence of Opuntia
stricta. The separability between classes (Table 4) ranged from 1.29–2.0, with the lowest
separability between Opuntia stricta and shrubs and grasses vs bare ground. Separating
species and plant functional types indicates a much finer margin of spectral separation than
for broader land cover types such as vegetation vs ground. This indicates that providing
separability of similar plant functional types calls for the acceptance of a lower threshold as
with the case of Bogan et al. [109]. Chemura and Mutanga [70], and Matongera et al. [43]
have also shown that a 1.0 threshold is feasible for the separability analysis.

Spatial coverage of Opuntia stricta (Figures 5–7) underscores the ability of Sentinel-2
spectral bands to capture known spatial locations of the IPS, namely in small patches along
rivers and settlements as stated in [23,33]. In both these studies, Opuntia stricta is reported
to have invaded areas near and along rivers, dwellings, and hills which is attributed to
the species’ seed dispersal mechanism by water, livestock, and wildlife animals [24,30].
Additionally, high land degradation within the community land has contributed to the
high invasiveness of Opuntia stricta within community conservancies as compared to the
private ones which are consistent with previous findings in Laikipia and Samburu [27].

The evaluations of the two classification algorithms in mapping Opuntia stricta and
the control classes were assessed through absence and presence models and disagreement
measures. Our results show that the OA ranged between 80–92% (Tables 5–8) for both
classifiers and considering model 1 and 2. Our ability to successfully map Opuntia stricta
had high overall accuracy for both classifiers which mirrors similar results recorded in
previous studies where Mudereri et al. [78] achieved an OA of 87% while mapping an inva-
sive Striga weed and those of, Matongera et al. [43] who achieved OA of 80% for detecting
invasive Bracken fern weed. Both studies are based on comparable sensors (i.e., Sentinel-2
and Landsat-8 images, respectively) though in different ecosystems. Similarly, a recent
study has shown that our results are comparable to results obtained through the species
distribution model in which Ouko et al. [27] achieved an equally high OA of 97% while
modelling invasive Acacia reficiens and Opuntia stricta in comparable ecosystems in Laikipia
and Samburu counties.

Our analysis of disagreement measures revealed that total disagreement was high
(Figure 6) when looking at model 1 as compared to model 2. This result is not surprising as
both the QD and AD denoted substantial differences in category totals which we attribute
to low weights (Tables 5 and 6) and the spatial allocation. However, model 2 lessens these
levels of disagreements (Figure 6, Tables 7 and 8), which matches the improvements seen
in overall accuracy.

Incorporating vegetation and topographic indices improved the classification accu-
racies, signaling better separation of the forest, grasses, Opuntia stricta, and shrubs and
minimizing disagreements. Since the increase in OA happened in both models (XGBoost
and RF) signify the general importance of the indices in the classification. This result con-
firms previous studies that have shown that the addition of indices to the spectral bands
results in classification improvements [89]. For example, Matongera et al. [43] achieved
a 19.94% improvement in classification accuracy after the addition of vegetation indices;
Mudereri et al. [78] had a 1% improvement in detection of Striga weed; while Hurskainen
et al. [88] achieved an increase of 16.5 percentage points after the addition of auxiliary
features which included vegetation and topographic indices in a heterogeneous savanna
landscape landcover classification. Reasons for this improvement may be attributed to
indices’ ability to reduce the influence of soil and atmospheric reflectance in arid and semi-
vegetated environments. Similarly, ensemble machine learning algorithms have the ability
to inherently combine and learn from multiple variables (i.e., vegetation and topographic
indices) as compared to classical classifiers. However, our results contradict the findings of
Shoko and Mutanga [110] who achieved the highest OA by using Sentinel-2 spectral bands
which they attributed to the optimum positioning of the spectral bands.
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4.2. Policy Implication, Limitation and Future Research

Our study can support policy decisions related to the control and management of Opuntia
stricta in the ASALs. Our results have shown that riverine plains are heavily invaded thus
restricting access to the ‘last resort’ forages and water, often relied upon by pastoralists
during drought conditions. Additionally, the growth of Opuntia stricta in these areas results
in more seed dispersal by water [23,33,62]. The continued land degradation [19,33] and
the introduction of hard borders and fences [55,58] have led to competition for forage
and water which can lead to conflicts [61]. This study informs pastoral management on
(a) the restrictions of movement of their livestock in search for palatable pastures and
(b) the possibility of encountering large abundances of Opuntia stricta in a specific region.
Specifically, our study informs and contributes to policy [111] through the mapping and
listing of threatened areas, research and development of invasive species as stipulated in the
Kenya National Wildlife Strategy 2030 [112], addition of information to the already existing
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rangeland monitoring web-based system to aid in the interpretation of the greenness
metrics [113] and guides the application of control measures such as bio-control [114].

Our study identified limitations that are relevant for improved detection of Opuntia
stricta. Firstly, our analysis was based on a relatively small sample that limits the detection
to a localized small region. Changes in soil composition, management practices, and
climate may alter the growth development of the IPS. Secondly, we found the target
cover also grows under large canopies of riverine woody cover, hence these might not be
captured by our method. Lastly, it is our understanding that a single pixel could represent
a mixture of multiple end members hence we might not have captured all the variability
that might exist in a single pixel. It is our considered view that future research addresses
these identified limitations.

Future research could incorporate temporal aspects of plant phenology into the classi-
fication. This may be important as (a) flowering of plants may change spectral signatures
seasonally, (b) the seasonal rain and dry periods will change the vegetation indices of grass
and shrubby plants, and (c) livestock may graze or overgraze a location changing the vege-
tation mass and resulting spectral signatures. Furthermore, the application of an integrated
(i.e., decision tree and mixed pixel decomposition) classification method using 3D terrain
to improve the training data separability would be an interesting future contribution to
the IPS detection. Finally, image processing techniques such as SAR polarimetry [115]
enhance the mapping of Opuntia stricta especially in tropical regions that face cloud cover
challenges limiting optical satellite use.

5. Conclusions

Our study sought to examine the ability of Sentinel-2 spectral and spatial properties
to detect Opuntia stricta based on ensemble machine learning classifiers. This was the first
time that Opuntia stricta mapping has been conducted based on satellite observations hence
providing novel insights into its classification especially in heterogeneous ASALs. We
also showed that spectral and topographic indices can meaningfully improve detection
of Opuntia stricta and overall characterize complex heterogeneous ASALs with very good
overall accuracies and Kappa, i.e., 89%, 92% and 0.87, 0.91 for XGBoost and RF classifiers,
respectively. Comparison of accuracies of the ensemble machine learning classifiers signi-
fies their ability to detect Opuntia stricta and other control classes. We demonstrated that
incorporating spectra with topographical indices improved the overall accuracy. Finally,
our work contributes to conservation and rangeland management policies that aim to map
and list threatened areas, and conserve the biodiversity and productivity of rangeland
ecosystem system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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