Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = terrain and crop sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 11970 KB  
Review
Sensor-Centric Intelligent Systems for Soybean Harvest Mechanization in Challenging Agro-Environments of China: A Review
by Xinyang Gu, Zhong Tang and Bangzhui Wang
Sensors 2025, 25(21), 6695; https://doi.org/10.3390/s25216695 - 2 Nov 2025
Cited by 1 | Viewed by 1461
Abstract
Soybean–corn intercropping in the hilly–mountainous regions of Southwest China poses unique challenges to mechanized harvesting because of complex topography and agronomic constraints. Addressing the soybean-harvesting bottleneck in these fields requires advanced sensing and perception rather than purely mechanical redesigns. Prior reviews emphasized flat-terrain [...] Read more.
Soybean–corn intercropping in the hilly–mountainous regions of Southwest China poses unique challenges to mechanized harvesting because of complex topography and agronomic constraints. Addressing the soybean-harvesting bottleneck in these fields requires advanced sensing and perception rather than purely mechanical redesigns. Prior reviews emphasized flat-terrain machinery or single-crop systems, leaving a gap in sensor-centric solutions for intercropping on steep, irregular plots. This review analyzes how sensors enable the next generation of intelligent harvesters by linking field constraints to perception and control. We frame the core failures of conventional machines—instability, inconsistent cutting, and low efficiency—as perception problems driven by low pod height, severe slope effects, and header–row mismatches. From this perspective, we highlight five fronts: (1) terrain-profiling sensors integrated with adaptive headers; (2) IMUs and inclination sensors for chassis stability and traction on slopes; (3) multi-sensor fusion of LiDAR and machine vision with AI for crop identification, navigation, and obstacle avoidance; (4) vision and spectral sensing for selective harvesting and impurity pre-sorting; and (5) acoustic/vibration sensing for low-damage, high-efficiency threshing and cleaning. We conclude that compact, intelligent machinery powered by sensing, data fusion, and real-time control is essential, while acknowledging technological and socio-economic barriers to deployment. This review outlines a sensor-driven roadmap for sustainable, efficient soybean harvesting in challenging terrains. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

33 pages, 18912 KB  
Article
Terrain Matters: A Focus+Context Visualization Approach for Landform-Based Remote Sensing Analysis of Agricultural Performance
by Roghayeh Heidari, Faramarz F. Samavati and Vincent Yeow Chieh Pang
Remote Sens. 2025, 17(20), 3442; https://doi.org/10.3390/rs17203442 - 15 Oct 2025
Viewed by 1163
Abstract
Understanding spatial variability is central to precision agriculture, yet terrain features are often overlooked in remote sensing workflows that inform agronomic decision-making. This work introduces a terrain-aware visual analytics approach that integrates landform classification with crop performance analysis to better support field-level decisions. [...] Read more.
Understanding spatial variability is central to precision agriculture, yet terrain features are often overlooked in remote sensing workflows that inform agronomic decision-making. This work introduces a terrain-aware visual analytics approach that integrates landform classification with crop performance analysis to better support field-level decisions. Terrain features are an important contributor to yield variability, alongside environmental conditions, soil properties, and management practices. However, they are rarely integrated systematically into performance analysis and decision-making workflows—limiting the potential for terrain-aware insights in precision agriculture. Addressing this gap requires approaches that incorporate terrain attributes and landform classifications into agricultural performance analysis and management zone (MZ) delineation—ideally through visual analytics that offer interpretable insights beyond the constraints of purely data-driven methods. We introduce an interactive focus+context visualization tool that integrates multiple data layers—including terrain features, vegetation index–based performance metric, and management zones—into a unified, expressive view. The system leverages freely available remote sensing imagery and terrain data derived from Digital Elevation Models (DEMs) to evaluate crop performance and landform characteristics in support of agronomic analysis. The tool was applied to eleven agricultural fields across the Canadian Prairies under diverse environmental conditions. Fields were segmented into depressions, hilltops, and baseline areas, and crop performance was evaluated across these landform groups using the system’s interactive visualization and analytics. Depressions and hilltops consistently showed lower mean performance and higher variability (measured by coefficient of variation) compared to baseline regions, which covered an average of 82% of each field. We also subdivided baseline areas using slope and the Sediment Transport Index (STI) to investigate soil erosion effects, but field-level patterns were inconsistent and no systematic differences emerged across all sites. Expert evaluation confirmed the tool’s usability and its value for field-level decision support. Overall, the method enhances terrain-aware interpretation of remotely sensed data and contributes meaningfully to refining management zone delineation in precision agriculture. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Remote Sensing for Vegetation Monitoring)
Show Figures

Figure 1

19 pages, 4172 KB  
Article
Deep Learning Application of Fruit Planting Classification Based on Multi-Source Remote Sensing Images
by Jiamei Miao, Jian Gao, Lei Wang, Lei Luo and Zhi Pu
Appl. Sci. 2025, 15(20), 10995; https://doi.org/10.3390/app152010995 - 13 Oct 2025
Viewed by 630
Abstract
With global climate change, urbanization, and agricultural resource limitations, precision agriculture and crop monitoring are crucial worldwide. Integrating multi-source remote sensing data with deep learning enables accurate crop mapping, but selecting optimal network architectures remains challenging. To improve remote sensing-based fruit planting classification [...] Read more.
With global climate change, urbanization, and agricultural resource limitations, precision agriculture and crop monitoring are crucial worldwide. Integrating multi-source remote sensing data with deep learning enables accurate crop mapping, but selecting optimal network architectures remains challenging. To improve remote sensing-based fruit planting classification and support orchard management and rural revitalization, this study explored feature selection and network optimization. We proposed an improved CF-EfficientNet model (incorporating FGMF and CGAR modules) for fruit planting classification. Multi-source remote sensing data (Sentinel-1, Sentinel-2, and SRTM) were used to extract spectral, vegetation, polarization, terrain, and texture features, thereby constructing a high-dimensional feature space. Feature selection identified 13 highly discriminative bands, forming an optimal dataset, namely the preferred bands (PBs). At the same time, two classification datasets—multi-spectral bands (MS) and preferred bands (PBs)—were constructed, and five typical deep learning models were introduced to compare performance: (1) EfficientNetB0, (2) AlexNet, (3) VGG16, (4) ResNet18, (5) RepVGG. The experimental results showed that the EfficientNetB0 model based on the preferred band performed best in terms of overall accuracy (87.1%) and Kappa coefficient (0.677). Furthermore, a Fine-Grained Multi-scale Fusion (FGMF) and a Condition-Guided Attention Refinement (CGAR) were incorporated into EfficientNetB0, and the traditional SGD optimizer was replaced with Adam to construct the CF-EfficientNet architecture. The results indicated that the improved CF-EfficientNet model achieved high performance in crop classification, with an overall accuracy of 92.6% and a Kappa coefficient of 0.830. These represent improvements of 5.5 percentage points and 0.153, compared with the baseline model, demonstrating superiority in both classification accuracy and stability. Full article
Show Figures

Figure 1

26 pages, 12478 KB  
Article
Improved Inversion and Digital Mapping of Soil Organic Carbon Content by Combining Crop-Lush Period Vegetation Indices with Ensemble Learning: A Case Study for Liaoning, Northeast China
by Quanping Zhang, Guochen Li, Huimin Dai, Jian Wang, Zhi Quan, Nana Fang, Ang Wang, Wenxin Huo and Yunting Fang
Land 2025, 14(10), 2022; https://doi.org/10.3390/land14102022 - 9 Oct 2025
Viewed by 680
Abstract
Soil organic carbon (SOC) is a crucial indicator of soil quality and carbon cycling. While remote sensing and machine learning enable regional scale SOC prediction, most studies rely on vegetation indices (VIs) derived from bare-soil periods, potentially neglecting vegetation–soil interactions during crop growth. [...] Read more.
Soil organic carbon (SOC) is a crucial indicator of soil quality and carbon cycling. While remote sensing and machine learning enable regional scale SOC prediction, most studies rely on vegetation indices (VIs) derived from bare-soil periods, potentially neglecting vegetation–soil interactions during crop growth. Given the bidirectional relationship between SOC and crop growth, we hypothesized that using crop-lush period VIs (VIs_lush) instead of bare-soil period VIs (VIs_bare) would increase the inversion accuracy. To test this hypothesis, we chose the cropland area in Liaoning Province as the study area and developed three modeling strategies (MS-1: VIs_lush + other features; MS-2: VIs_bare + other features; and MS-3: without VIs) using Landsat 8 imagery, topographic and precipitation data, and ensemble learning models (XGBoost, RF, and AdaBoost), with SHapley Additive exPlanations (SHAP) analysis for variable interpretation. We found that (1) all models achieved their highest performance under MS-1, with XGBoost outperforming the others across all modeling strategies; (2) for XGBoost, MS-1 yielded the highest inversion accuracy (R2 = 0.84, RMSE = 2.22 g·kg−1, RPD = 2.49, and RPIQ = 3.25); compared with MS-2, MS-1 reduced the RMSE by 0.31 g·kg−1, increased R2 from 0.77 to 0.84, and reduced the RPD by 0.31 and the RPIQ by 0.40, and compared with MS-3, MS-1 reduced the RMSE by 0.41 g·kg−1, increased R2 from 0.79 to 0.84, and reduced the RPD by 0.39 and the RPIQ by 0.51; (3) based on the SHAP analysis of the three modeling strategies, it is considered that precipitation, terrain and terrain analysis results are important indicators for SOC content inversion, and it is confirmed that VIs_lush contributed more than VIs_bare, supporting the rationale of using lush-period imagery; and (4) Liaoning Province exhibited distinct SOC spatial patterns (mean: 13.08 g·kg−1), with values ranging from 2.19 g·kg−1 (sandy central–western area) to 33.86 g·kg−1 (eastern mountains/coast). This study demonstrates that integrating growth stage-specific VIs with ensemble learning can significantly enhance regional-scale SOC prediction. Full article
(This article belongs to the Special Issue Digital Soil Mapping and Precision Agriculture)
Show Figures

Figure 1

27 pages, 6007 KB  
Article
Research on Rice Field Identification Methods in Mountainous Regions
by Yuyao Wang, Jiehai Cheng, Zhanliang Yuan and Wenqian Zang
Remote Sens. 2025, 17(19), 3356; https://doi.org/10.3390/rs17193356 - 2 Oct 2025
Viewed by 820
Abstract
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant [...] Read more.
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant challenges in mountainous regions due to the severe cloud contamination, insufficient utilization of multi-dimensional features, and limited classification accuracy. This study presented a novel rice field identification method based on the Graph Convolutional Networks (GCN) that effectively integrated multi-source remote sensing data tailored for the complex mountainous terrain. A coarse-to-fine cloud removal strategy was developed by fusing the synthetic aperture radar (SAR) imagery with temporally adjacent optical remote sensing imagery, achieving high cloud removal accuracy, thereby providing reliable and clear optical data for the subsequent rice mapping. A comprehensive multi-feature library comprising spectral, texture, polarization, and terrain attributes was constructed and optimized via a stepwise selection process. Furthermore, the 19 key features were established to enhance the classification performance. The proposed method achieved an overall accuracy of 98.3% for the rice field identification in Huoshan County of the Dabie Mountains, and a 96.8% consistency compared to statistical yearbook data. The ablation experiments demonstrated that incorporating terrain features substantially improved the rice field identification accuracy under the complex topographic conditions. The comparative evaluations against support vector machine (SVM), random forest (RF), and U-Net models confirmed the superiority of the proposed method in terms of accuracy, local performance, terrain adaptability, training sample requirement, and computational cost, and demonstrated its effectiveness and applicability for the high-precision rice field distribution mapping in mountainous environments. Full article
Show Figures

Figure 1

31 pages, 1983 KB  
Review
Integrating Remote Sensing and Autonomous Robotics in Precision Agriculture: Current Applications and Workflow Challenges
by Magdalena Łągiewska and Ewa Panek-Chwastyk
Agronomy 2025, 15(10), 2314; https://doi.org/10.3390/agronomy15102314 - 30 Sep 2025
Cited by 2 | Viewed by 3490
Abstract
Remote sensing technologies are increasingly integrated with autonomous robotic platforms to enhance data-driven decision-making in precision agriculture. Rather than replacing conventional platforms such as satellites or UAVs, autonomous ground robots complement them by enabling high-resolution, site-specific observations in real time, especially at the [...] Read more.
Remote sensing technologies are increasingly integrated with autonomous robotic platforms to enhance data-driven decision-making in precision agriculture. Rather than replacing conventional platforms such as satellites or UAVs, autonomous ground robots complement them by enabling high-resolution, site-specific observations in real time, especially at the plant level. This review analyzes how remote sensing sensors—including multispectral, hyperspectral, LiDAR, and thermal—are deployed via robotic systems for specific agricultural tasks such as canopy mapping, weed identification, soil moisture monitoring, and precision spraying. Key benefits include higher spatial and temporal resolution, improved monitoring of under-canopy conditions, and enhanced task automation. However, the practical deployment of such systems is constrained by terrain complexity, power demands, and sensor calibration. The integration of artificial intelligence and IoT connectivity emerges as a critical enabler for responsive, scalable solutions. By focusing on how autonomous robots function as mobile sensor platforms, this article contributes to the understanding of their role within modern precision agriculture workflows. The findings support future development pathways aimed at increasing operational efficiency and sustainability across diverse crop systems. Full article
Show Figures

Figure 1

26 pages, 9229 KB  
Article
Study on Prediction of Potato Above-Ground Biomass and Yield Based on UAV Visible Light Image
by Yiwen Chen, Yaohua Hu, Mengfei Liu, Xiaoyi Shi, Anxiang Huang, Xing Tong, Liangliang Yang and Linrun Cheng
Remote Sens. 2025, 17(18), 3246; https://doi.org/10.3390/rs17183246 - 19 Sep 2025
Viewed by 942
Abstract
Potato above-ground biomass (AGB) and tuber yield estimation remain challenging due to the subjectivity of farmer-based assessments, the high data requirements of spectral analysis methods, and the sensitivity of traditional Structure from Motion (SfM) techniques to soil elevation variability. To address these challenges, [...] Read more.
Potato above-ground biomass (AGB) and tuber yield estimation remain challenging due to the subjectivity of farmer-based assessments, the high data requirements of spectral analysis methods, and the sensitivity of traditional Structure from Motion (SfM) techniques to soil elevation variability. To address these challenges, this study proposes a novel UAV-based visible-light remote sensing framework to estimate the AGB and predict the tuber yield of potato crops. First, a new vegetation index, the Green-Red Combination Vegetation Index (GRCVI), was developed to improve the separability between vegetation and non-vegetation pixels. Second, an improved single-period SfM method was designed to mitigate errors in canopy height estimation caused by terrain variations. Fractional vegetation coverage (FVC) and plant height (PH) derived from UAV imagery were then integrated into a feedforward neural network (FNN) to predict AGB. Finally, potato tuber yield was predicted using polynomial regression based on AGB. Results showed that GRCVI combined with the numerical intersection method and SVM classification achieved FVC extraction accuracy exceeding 95%. The improved SfM method yielded canopy height estimates with R2 values ranging from 0.8470 to 0.8554 and RMSE values below 2.3 cm. The AGB estimation model achieved an R2 of 0.8341 and an RMSE of 19.9 g, while the yield prediction model obtained an R2 of 0.7919 and an RMSE of 47.0 g. This study demonstrates the potential of UAV-based visible-light imagery for cost-effective, non-destructive, and scalable monitoring of potato growth and yield, providing methodological support for precision agriculture and high-throughput phenotyping. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

25 pages, 5776 KB  
Article
Early Detection of Herbicide-Induced Tree Stress Using UAV-Based Multispectral and Hyperspectral Imagery
by Russell Main, Mark Jayson B. Felix, Michael S. Watt and Robin J. L. Hartley
Forests 2025, 16(8), 1240; https://doi.org/10.3390/f16081240 - 28 Jul 2025
Cited by 1 | Viewed by 1373
Abstract
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost [...] Read more.
There is growing interest in the use of herbicide for the silvicultural practice of tree thinning (i.e., chemical thinning or e-thinning) in New Zealand. Potential benefits of this approach include improved stability of the standing crop in high winds, and safer and lower-cost operations, particularly in steep or remote terrain. As uptake grows, tools for monitoring treatment effectiveness, particularly during the early stages of stress, will become increasingly important. This study evaluated the use of UAV-based multispectral and hyperspectral imagery to detect early herbicide-induced stress in a nine-year-old radiata pine (Pinus radiata D. Don) plantation, based on temporal changes in crown spectral signatures following treatment with metsulfuron-methyl. A staggered-treatment design was used, in which herbicide was applied to a subset of trees in six blocks over several weeks. This staggered design allowed a single UAV acquisition to capture imagery of trees at varying stages of herbicide response, with treated trees ranging from 13 to 47 days after treatment (DAT). Visual canopy assessments were carried out to validate the onset of visible symptoms. Spectral changes either preceded or coincided with the development of significant visible canopy symptoms, which started at 25 DAT. Classification models developed using narrow band hyperspectral indices (NBHI) allowed robust discrimination of treated and non-treated trees as early as 13 DAT (F1 score = 0.73), with stronger results observed at 18 DAT (F1 score = 0.78). Models that used multispectral indices were able to classify treatments with a similar accuracy from 18 DAT (F1 score = 0.78). Across both sensors, pigment-sensitive indices, particularly variants of the Photochemical Reflectance Index, consistently featured among the top predictors at all time points. These findings address a key knowledge gap by demonstrating practical, remote sensing-based solutions for monitoring and characterising herbicide-induced stress in field-grown radiata pine. The 13-to-18 DAT early detection window provides an operational baseline and a target for future research seeking to refine UAV-based detection of chemical thinning. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

17 pages, 4216 KB  
Article
Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data
by Yingpin Yang, Zhifeng Wu, Dakang Wang, Cong Wang, Xiankun Yang, Yibo Wang, Jinnian Wang, Qiting Huang, Lu Hou, Zongbin Wang and Xu Chang
Agriculture 2025, 15(15), 1578; https://doi.org/10.3390/agriculture15151578 - 23 Jul 2025
Viewed by 929
Abstract
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, [...] Read more.
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, tillering, elongation, and maturity stages—remain underexplored. This study addresses the challenge of accurately monitoring the sugarcane phenology in complex terrains by proposing an optimized strategy integrating spatiotemporal fusion data. Ground-based validation showed that the change detection method based on the Double-Logistic curve significantly outperformed the threshold-based approach, with the highest accuracy for the elongation and maturity stages achieved at the maximum slope points of the ascending and descending phases, respectively. For the germination and tillering stages with low canopy cover, a novel time-windowed change detection method was introduced, using the first local maximum of the third derivative curve (denoted as Point A) to establish a temporal buffer. The optimal retrieval models were identified as 25 days before and 20 days after Point A for germination and tillering, respectively. Among the six commonly used vegetation indices, the NDVI (normalized difference vegetation index) performed the best across all the phenological stages. Spatiotemporal fusion using the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) significantly improved the monitoring accuracy in heterogeneous agricultural landscapes, reducing the RMSE (root-mean-squared error) by 21–46%, with retrieval errors decreasing from 18.25 to 12.97 days for germination, from 8.19 to 4.41 days for tillering, from 19.17 to 10.78 days for elongation, and from 19.02 to 15.04 days for maturity, highlighting its superior accuracy. The findings provide a reliable technical solution for precision sugarcane management in heterogeneous landscapes. Full article
Show Figures

Figure 1

5 pages, 145 KB  
Editorial
Advances in Developments and Trends of UAV Technology in the Context of Precision Agriculture
by Mingxia Li and Jiyu Li
Agriculture 2025, 15(11), 1146; https://doi.org/10.3390/agriculture15111146 - 27 May 2025
Cited by 1 | Viewed by 1576
Abstract
Agriculture, as a core pathway for advancing modern agricultural development, emphasizes data-driven perception and intelligent decision-making. Unmanned aerial vehicles (UAVs), with advantages such as high-resolution imaging, flexible deployment, and adaptability to diverse terrains, have become an essential tool in this domain. This Editorial [...] Read more.
Agriculture, as a core pathway for advancing modern agricultural development, emphasizes data-driven perception and intelligent decision-making. Unmanned aerial vehicles (UAVs), with advantages such as high-resolution imaging, flexible deployment, and adaptability to diverse terrains, have become an essential tool in this domain. This Editorial synthesizes the key findings from nine representative studies featured in this Special Issue, focusing on recent advancements in UAV-based remote sensing, flight control, and precision spraying. The results indicate that the integration of multispectral imagery with deep learning models significantly enhances crop identification and parameter inversion accuracy. Flight control performance has been greatly improved through innovations such as free-tail configuration optimization and fuzzy sliding mode composite control, ensuring stable operations in complex environments. In the realm of precision spraying, progress in wind vortex regulation and airflow modeling has led to improved droplet deposition consistency and target accuracy. Overall, UAV technologies demonstrate strong potential for cross-disciplinary integration and scalable application, offering robust support for the intelligent transformation of agricultural production. Full article
(This article belongs to the Special Issue Application of UAVs in Precision Agriculture—2nd Edition)
19 pages, 16379 KB  
Article
Using Satellites to Monitor Soil Texture in Typical Black Soil Areas and Assess Its Impact on Crop Growth
by Liren Gao, Yuhong Zhang, Deqiang Zang, Qian Yang, Huanjun Liu and Chong Luo
Agriculture 2025, 15(9), 912; https://doi.org/10.3390/agriculture15090912 - 22 Apr 2025
Cited by 3 | Viewed by 1530
Abstract
Soil texture is an important physical property of soil. Understanding the spatial distribution of cultivated soil texture in black soil areas is crucial for precise agricultural management and cultivated land protection in these zones. This study utilizes the random forest algorithm, Landsat-8 satellite [...] Read more.
Soil texture is an important physical property of soil. Understanding the spatial distribution of cultivated soil texture in black soil areas is crucial for precise agricultural management and cultivated land protection in these zones. This study utilizes the random forest algorithm, Landsat-8 satellite remote sensing data, and climate- and terrain-related environmental covariates to map the spatial distribution of soil texture and analyze its impact on crop growth. The results show that (1) the order of prediction accuracy differs for different soil texture types; April is determined to have the highest prediction accuracy for silt and sand, while May exhibits the greatest accuracy for clay. (2) Adding environmental variables can significantly improve the accuracy of soil texture predictions; the root mean square error (RMSE) has decreased to varying degrees (silt: 0.84; clay: 0.04; sand: 0.85). (3) Soybean growth has the strongest response to soil texture; clay grain is the key factor affecting crop growth in drought scenarios, and sand grain is the dominant factor influencing flooding. This study improves the accuracy of the remote sensing mapping of soil texture through the combination of remote sensing images and environmental variables and quantitatively evaluates the impact of soil texture on crop growth. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 12004 KB  
Article
Rapeseed Area Extraction Based on Time-Series Dual-Polarization Radar Vegetation Indices
by Yiqing Zhu, Hong Cao, Shangrong Wu, Yongli Guo and Qian Song
Remote Sens. 2025, 17(8), 1479; https://doi.org/10.3390/rs17081479 - 21 Apr 2025
Viewed by 1112
Abstract
Accurate, real-time, and dynamic monitoring of crop planting distributions in hilly areas with complex terrain and frequent meteorological changes is highly important for agricultural production. Dual-polarization SAR has high application value in the fields of feature classification and crop distribution extraction because of [...] Read more.
Accurate, real-time, and dynamic monitoring of crop planting distributions in hilly areas with complex terrain and frequent meteorological changes is highly important for agricultural production. Dual-polarization SAR has high application value in the fields of feature classification and crop distribution extraction because of its all-day all-weather operation, large mapping bandwidth, and easy data acquisition. To explore the feasibility and applicability of dual-polarization synthetic-aperture radar (SAR) data in crop monitoring, this study draws on two basic methods of dual-polarization decomposition (eigenvalue decomposition and three-component polarization decomposition) to construct time series of crop dual-polarization radar vegetation indices (RVIs), and it performs a full coverage analysis of crop distribution extraction in dryland mountainous areas of southeastern China. On the basis of the Sentinel-1 dual-polarization RVIs, the time-series classification and rapeseed distribution extraction impacts were compared using southern Hunan Province’s principal rapeseed (Brassica napus L.) production area as the study area. From the comparison results, RVI3c performed better in terms of single-point recognition capability and area extraction accuracy than the other indices did, as verified by sampling points and samples, and the OA and F-1 score of rapeseed extraction based on RVI3c were 74.13% and 81.02%, respectively. Therefore, three-component polarization decomposition is more suitable than other methods for crop information extraction and remote sensing classification applications involving dual-polarized SAR data. Full article
(This article belongs to the Special Issue Radar Remote Sensing for Monitoring Agricultural Management)
Show Figures

Figure 1

18 pages, 9070 KB  
Article
Cropping and Transformation Features of Non-Grain Cropland in Mainland China and Policy Implications
by Yizhu Liu, Ge Shen and Tingting He
Land 2025, 14(3), 561; https://doi.org/10.3390/land14030561 - 7 Mar 2025
Cited by 3 | Viewed by 1353
Abstract
The decrease in grain plantation areas poses a growing concern for global food security. China, with its large population, increasingly diversified food demands, and relatively small cultivated lands, has suffered deeply from this phenomenon (non-grain production, NGP) in recent years. Since 2020, the [...] Read more.
The decrease in grain plantation areas poses a growing concern for global food security. China, with its large population, increasingly diversified food demands, and relatively small cultivated lands, has suffered deeply from this phenomenon (non-grain production, NGP) in recent years. Since 2020, the central government of China has claimed to deal with this problem by attracting agriculturalists and organizations involved in grain plantation. In this context, understanding the global NGP of the national situation is vital for policy making. Remote sensing is regarded as the most effective and accurate method for this purpose, but existing studies have mainly focused on algorithms operating at the local scale or exploring grain-producing capability from the perspective of agricultural space. As such, the characterization of NGP on a national scale remains deficient. In this study, we tried to bridge the gap through spatio-analysis with a newly published nationwide crop pattern and land use geo-datasets; the quantitative, spatial, and structural features, as well as the utilization of NGP cropland in the year 2019, were observed. The results showed that about 60% of the cropland was used for non-grain plantation. About 15% of the NGP parcels were cultivated with grains at least three times in the past 4 years, and of these 60% and 40% were parcels with double- or single-season plantation, respectively, which could result in a 16–22% increase in the grain-sown area compared with 2019. Forest and grassland were the dominant non-cropping categories which NGP cropland transferred into, indicating more time and economic cost for regaining grains. NGP parcels also presented spatio-heterogeneity regarding cropping intensity and transformation. Parcels with double-season plantation mostly emerged in northern, central, and southern provinces, while those with single-season plantation were always located in northeastern and western provinces. The parcels that were transferred into forest or grassland mainly appeared in southern and Inner Mongolia, respectively, while the parcels in northern and central areas mostly continued cropping. According to these results, we propose remediation policies focusing on raising the cropping intensity of cultivated land in central and northern provinces due to their advantages of water, heat, terrain, and land use change features. Future work is warranted based on this study’s deficiencies and uncertainties. As a forerunner, this study provides a holistic observation of the NGP phenomenon in mainland China on a national scale, and the findings can inform improvements in land use policies concerning grain production and food security in China. Full article
Show Figures

Figure 1

24 pages, 22494 KB  
Article
Hidden Archaeological Remains in Heterogeneous Vegetation: A Crop Marks Study in Fortified Settlements of Northwestern Iberian Peninsula
by Simón Peña-Villasenín, Mariluz Gil-Docampo and Juan Ortiz-Sanz
Remote Sens. 2024, 16(21), 3923; https://doi.org/10.3390/rs16213923 - 22 Oct 2024
Cited by 7 | Viewed by 3115
Abstract
This study evaluates the effectiveness of multispectral imaging via Unmanned Aerial Systems (UAS), in combination with advanced digital image processing techniques, for the detection and mapping of archaeological sites within diverse landscapes. The research focuses on six case studies located in the northwest [...] Read more.
This study evaluates the effectiveness of multispectral imaging via Unmanned Aerial Systems (UAS), in combination with advanced digital image processing techniques, for the detection and mapping of archaeological sites within diverse landscapes. The research focuses on six case studies located in the northwest of the Iberian Peninsula, a region marked by complex vegetation patterns and varying topography. The primary objective is to assess the potential of these non-invasive remote sensing techniques in identifying crop marks associated with buried structures from ancient, fortified settlements. By means of Principal Component Analysis (PCA) and vegetation indices, the study aims to pinpoint areas of interest that may indicate the presence of archaeological features, while effectively distinguishing them from modern disturbances or natural terrain variations. The research encountered several challenges, including seasonal variations in crop conditions and recent land-use changes. The methodology successfully identified distinct archaeological features. In some instances, natural vegetation variability, typically seen as an obstacle, enhanced the visibility of crop marks, aiding in the detection of underlying structures. These results offer a cost-effective and scalable option for preliminary archaeological surveys, particularly in refining survey methodologies and guiding future excavation efforts aimed at uncovering and preserving ancient, fortified settlements in the region. Full article
Show Figures

Figure 1

20 pages, 6388 KB  
Article
Extraction of Winter Wheat Planting Plots with Complex Structures from Multispectral Remote Sensing Images Based on the Modified Segformer Model
by Chunshan Wang, Shuo Yang, Penglei Zhu and Lijie Zhang
Agronomy 2024, 14(10), 2433; https://doi.org/10.3390/agronomy14102433 - 20 Oct 2024
Cited by 9 | Viewed by 1800
Abstract
As one of the major global food crops, the monitoring and management of the winter wheat planting area is of great significance for agricultural production and food security worldwide. Today, the development of high-resolution remote sensing imaging technology has provided rich sources of [...] Read more.
As one of the major global food crops, the monitoring and management of the winter wheat planting area is of great significance for agricultural production and food security worldwide. Today, the development of high-resolution remote sensing imaging technology has provided rich sources of data for extracting the visual planting information of winter wheat. However, the existing research mostly focuses on extracting the planting plots that have a simple terrain structure. In the face of diverse terrain features combining mountainous areas, plains, and saline alkali land, as well as small-scale but complex planting structures, the extraction of planting plots through remote sensing imaging is subjected to great challenges in terms of recognition accuracy and model complexity. In this paper, we propose a modified Segformer model for extracting winter wheat planting plots with complex structures in rural areas based on the 0.8 m high-resolution multispectral data obtained from the Gaofen-2 satellite, which significantly improves the extraction accuracy and efficiency under complex conditions. In the encoder and decoder of this method, new modules were developed for the purpose of optimizing the feature extraction and fusion process. Specifically, the improvement measures of the proposed method include: (1) The MixFFN module in the original Segformer model is replaced with the Multi-Scale Feature Fusion Fully-connected Network (MSF-FFN) module, which enhances the model’s representation ability in handling complex terrain features through multi-scale feature extraction and position embedding convolution; furthermore, the DropPath mechanism is introduced to reduce the possibility of overfitting while improving the model’s generalization ability. (2) In the decoder part, after fusing features at four different scales, a CoordAttention module is added, which can precisely locate important regions with enhanced features in the images by utilizing the coordinate attention mechanism, therefore further improving the model’s extraction accuracy. (3) The model’s input data are strengthened by incorporating multispectral indices, which are also conducive to the improvement of the overall extraction accuracy. The experimental results show that the accuracy rate of the modified Segformer model in extracting winter wheat planting plots is significantly increased compared to traditional segmentation models, with the mean Intersection over Union (mIOU) and mean Pixel Accuracy (mPA) reaching 89.88% and 94.67%, respectively (an increase of 1.93 and 1.23 percentage points, respectively, compared to the baseline model). Meanwhile, the parameter count and computational complexity are significantly reduced compared to other similar models. Furthermore, when multispectral indices are input into the model, the mIOU and mPA reach 90.97% and 95.16%, respectively (an increase of 3.02 and 1.72 percentage points, respectively, compared to the baseline model). Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop