Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (531)

Search Parameters:
Keywords = ternary solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9540 KB  
Article
Enhancing Strength-Ductility Synergy in Rolled High-Thermal-Conductivity Mg-Mn-Ce Alloys via Accumulated Strain
by Xu Zhang, Taiki Nakata, Enyu Guo, Wenzhuo Xie, Wenke Wang, Chao Xu, Jing Zuo, Zelin Wu, Kaibo Nie, Xiaojun Wang, Shigeharu Kamado and Lin Geng
Materials 2025, 18(20), 4747; https://doi.org/10.3390/ma18204747 - 16 Oct 2025
Viewed by 201
Abstract
Magnesium (Mg) alloys are prized as the lightest structural materials but often suffer from a strength–ductility trade-off that is particularly challenging for applications demanding high thermal conductivity. Aiming to resolve this issue, rolled ternary Mg-0.9Mn-1.9Ce (wt.%) alloy sheets were designed and fabricated, and [...] Read more.
Magnesium (Mg) alloys are prized as the lightest structural materials but often suffer from a strength–ductility trade-off that is particularly challenging for applications demanding high thermal conductivity. Aiming to resolve this issue, rolled ternary Mg-0.9Mn-1.9Ce (wt.%) alloy sheets were designed and fabricated, and the influence of rolling strain on optimizing the property balance was systematically investigated. The cast alloy was homogenized and rolled to two accumulated strains to obtain S10 (90%) and S20 (95%), followed by microstructure characterization and mechanical/thermal evaluation. Compared with S10, S20 developed finer, more equiaxed grains and a weaker basal texture via enhanced dynamic recrystallization; concurrent fragmentation and uniform dispersion of second-phase particles further contributed to strengthening. Consequently, S20 achieved 14.2% and 13.7% increases in yield and tensile strengths, respectively, with a slight improvement in elongation, while retaining high thermal conductivity (134.4 W·m−1·K−1 vs. 138.1 W·m−1·K−1 for S10). The minimal conductivity penalty is attributed to the low solute level in the α-Mg matrix, which limits electron scattering. These results provide experimental and mechanistic guidance for developing rolling Mg alloys that combine high mechanical performance with excellent thermal efficiency. Full article
(This article belongs to the Special Issue Processing of Metals and Alloys)
Show Figures

Figure 1

33 pages, 3983 KB  
Article
Real-Time EEG Decoding of Motor Imagery via Nonlinear Dimensionality Reduction (Manifold Learning) and Shallow Classifiers
by Hezzal Kucukselbes and Ebru Sayilgan
Biosensors 2025, 15(10), 692; https://doi.org/10.3390/bios15100692 - 13 Oct 2025
Viewed by 409
Abstract
This study introduces a real-time processing framework for decoding motor imagery EEG signals by integrating manifold learning techniques with shallow classifiers. EEG recordings were obtained from six healthy participants performing five distinct wrist and hand motor imagery tasks. To address the challenges of [...] Read more.
This study introduces a real-time processing framework for decoding motor imagery EEG signals by integrating manifold learning techniques with shallow classifiers. EEG recordings were obtained from six healthy participants performing five distinct wrist and hand motor imagery tasks. To address the challenges of high dimensionality and inherent nonlinearity in EEG data, five nonlinear dimensionality reduction methods, t-SNE, ISOMAP, LLE, Spectral Embedding, and MDS, were comparatively evaluated. Each method was combined with three shallow classifiers (k-NN, Naive Bayes, and SVM) to investigate performance across binary, ternary, and five-class classification settings. Among all tested configurations, the t-SNE + k-NN pairing achieved the highest accuracies, reaching 99.7% (two-class), 99.3% (three-class), and 89.0% (five-class). ISOMAP and MDS also delivered competitive results, particularly in multi-class scenarios. The presented approach builds upon our previous work involving EEG datasets from individuals with spinal cord injury (SCI), where the same manifold techniques were examined extensively. Comparative findings between healthy and SCI groups reveal consistent advantages of t-SNE and ISOMAP in preserving class separability, despite higher overall accuracies in healthy subjects due to improved signal quality. The proposed pipeline demonstrates low-latency performance, completing signal processing and classification in approximately 150 ms per trial, thereby meeting real-time requirements for responsive BCI applications. These results highlight the potential of nonlinear dimensionality reduction to enhance real-time EEG decoding, offering a low-complexity yet high-accuracy solution applicable to both healthy users and neurologically impaired individuals in neurorehabilitation and assistive technology contexts. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

36 pages, 607 KB  
Article
From Subset-Sum to Decoding: Improved Classical and Quantum Algorithms via Ternary Representation Technique
by Yang Li
Information 2025, 16(10), 887; https://doi.org/10.3390/info16100887 - 12 Oct 2025
Viewed by 242
Abstract
The subset-sum problem, a foundational NP-hard problem in theoretical computer science, serves as a critical building block for cryptographic constructions. This work introduces novel classical and quantum heuristic algorithms for the random subset-sum problem at density d=1, where exactly one [...] Read more.
The subset-sum problem, a foundational NP-hard problem in theoretical computer science, serves as a critical building block for cryptographic constructions. This work introduces novel classical and quantum heuristic algorithms for the random subset-sum problem at density d=1, where exactly one solution is expected. Classically, we propose the first algorithm based on a ternary tree representation structure, inspired by recent advances in lattice-based cryptanalysis. Through numerical optimization, our method achieves a time complexity of 𝒪˜20.2400n and space complexity of 𝒪˜20.2221n, improving upon the previous best classical heuristic result of 𝒪˜20.2830n. In the quantum setting, we develop a corresponding algorithm by integrating the classical ternary representation technique with a quantum walk search framework. The optimized quantum algorithm attains a time and space complexity of 𝒪˜20.1843n, surpassing the prior state-of-the-art quantum heuristic of 𝒪˜20.2182n. Furthermore, we apply our algorithms to information set decoding in code-based cryptography. For half-distance decoding, our classical algorithm improves the time complexity to 𝒪˜20.0453n, surpassing the previous best of 𝒪˜20.0465n. For full-distance decoding, we achieve a quantum complexity of 𝒪˜20.058326n, advancing beyond the prior best quantum result of 𝒪˜20.058696n. These findings demonstrate the broad applicability and efficiency of our ternary representation technique across both classical and quantum computational models. Full article
Show Figures

Graphical abstract

24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 - 6 Oct 2025
Viewed by 544
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

25 pages, 3340 KB  
Article
Daunomycin Nanocarriers with High Therapeutic Payload for the Treatment of Childhood Leukemia
by Rosa M. Giráldez-Pérez, Elia M. Grueso, Antonio J. Montero-Hidalgo, Cristina Muriana-Fernández, Edyta Kuliszewska, Raúl M. Luque and Rafael Prado-Gotor
Pharmaceutics 2025, 17(9), 1236; https://doi.org/10.3390/pharmaceutics17091236 - 22 Sep 2025
Viewed by 411
Abstract
Background/Objectives: Malignant neoplasms in children include leukemias. The main types are B-cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). Treatments are expensive, which is a particular problem in low-income countries. The main objective of this work was to develop specific [...] Read more.
Background/Objectives: Malignant neoplasms in children include leukemias. The main types are B-cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). Treatments are expensive, which is a particular problem in low-income countries. The main objective of this work was to develop specific nanosystems with small amounts of drug, allowing for affordable treatments. To this end, we designed ternary gold nanosystems (Au@16-Ph-16/DNA–Dauno) composed of daunomycin, a DNA biopolymer as a stabilizer, and the cationic surfactant gemini (TG) as a compacting agent for the DNA–daunomycin complex. Methods: Fluorescence, UV–visible, and CD spectroscopy, DLS and zeta potential, cell viability assays, TEM, AFM, and confocal microscopy were used to characterize and optimize nanocomposites. Results: The nanoparticles (Au@TG) obtained were small, stable, and highly charged in solution, allowing for optimal absorption and efficacy, capable of inducing the aggregation of the ternary nanosystem upon entering the cell, further enhancing its anticancer effect. Using nanoparticles, treatments can be redirected to the site of action, increasing the solubility and stability of the drug, minimizing the side effects of traditional treatments, and helping to overcome resistance to chemotherapy Conclusions: A significant decrease in the growth of pediatric B-ALL-derived cell lines (SEM and SUP-B15), constituting a potential and more affordable therapy for this type of pathology. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

22 pages, 6374 KB  
Article
Characterization of the Binding Modes of Cu2+ Ions with Tyrosine and Ado, AMP, ADP, and ATP: A Comprehensive Potentiometric, Spectroscopic, and Computational Approach
by Patrycja Sadowska, Romualda Bregier-Jarzębowska, Wojciech Jankowski, Mateusz R. Gołdyn and Renata Jastrząb
Int. J. Mol. Sci. 2025, 26(18), 8865; https://doi.org/10.3390/ijms26188865 - 11 Sep 2025
Viewed by 424
Abstract
We report the mode of interaction of copper(II) ions with tyrosine (Tyr, L) in binary and ternary systems with Ado, AMP, ADP, and ATP (L’) as second ligands in an aqueous solution. The composition and overall stability constants of the complexes formed were [...] Read more.
We report the mode of interaction of copper(II) ions with tyrosine (Tyr, L) in binary and ternary systems with Ado, AMP, ADP, and ATP (L’) as second ligands in an aqueous solution. The composition and overall stability constants of the complexes formed were determined using the potentiometric method. The coordination sites were identified through spectroscopic (VIS, EPR, IR) methods, as well as DFT and computational–molecular modeling. In the binary Cu(II)/Tyr system, the main reaction centers of the ligand molecule involved in the interactions with copper(II) ions are nitrogen (-NH2 group), as well as oxygen atoms (-COO group), as confirmed, for example, by comparing the mode of coordination in the CuH2(Tyr)2 species and the [CuH2(Tyr)2(H2O)] × 1.5H2O solid complex obtained. In the ternary Cu(II)/L/L’ systems, MLHxL’ and mixed MLL’ protonated complexes are formed. Only in the ATP system were no MLL’(OH)x hydroxocomplexes found. An increase in the number of phosphate groups in ADP and ATP molecules has no effect on their participation in the coordination in ternary species, and these ligands interact just like in binary species (i.e., in ADP, both α- and β-phosphate groups, and in ATP, only the γ-phosphate group). It was observed that the introduction of a second ligand into the Cu(II)/Tyr system did not change, over the entire pH range studied, the tyrosine coordination mode. Full article
(This article belongs to the Special Issue Thermodynamic and Spectral Studies of Complexes)
Show Figures

Figure 1

38 pages, 13226 KB  
Article
Structural Speciation of Hybrid Ti(IV)-Chrysin Systems—Biological Profiling and Antibacterial, Anti-Inflammatory, and Tissue-Specific Anticancer Activity
by Sevasti Matsia, Georgios Lazopoulos, Antonios Hatzidimitriou and Athanasios Salifoglou
Molecules 2025, 30(18), 3667; https://doi.org/10.3390/molecules30183667 - 9 Sep 2025
Viewed by 709
Abstract
Metal–organic compounds, and especially those containing well-known antioxidant natural flavonoids (Chrysin, Chr) and metal ions (Ti(IV)), attract keen interest for their potential biological activity nutritionally and pharmacologically. To that end, chemical reactivity profiling in binary/ternary systems was investigated synthetically, revealing unique structural correlations [...] Read more.
Metal–organic compounds, and especially those containing well-known antioxidant natural flavonoids (Chrysin, Chr) and metal ions (Ti(IV)), attract keen interest for their potential biological activity nutritionally and pharmacologically. To that end, chemical reactivity profiling in binary/ternary systems was investigated synthetically, revealing unique structural correlations between mononuclear (Ti(IV)-Chr) and tetranuclear assemblies (Ti(IV)-Chr-phen). Chemical profiling involved physicochemical characterization through elemental analysis, FT-IR, UV–Visible, 1D-2D NMR, ESI-MS spectrometry, solid-state luminescence, and X-ray crystallography, with theoretical work on intra(inter)molecular interactions of 3D assemblies pursued through Hirshfeld analysis and BVS calculations. An in-depth study of their chemical reactivity shed light onto specific structural properties in the solid-state and in solution, while concurrently exemplifying quenching behavior due to their distinct flavonoid pattern. In the framework of biological activity, the materials were investigated for their antibacterial properties toward Gram(−)-E. coli and Gram(+)-S. aureus, exhibiting an enhanced effect compared to the free ligand and metal ion. Further investigation of BSA denaturation revealed strong anti-inflammatory properties compared to Chr and Diclofenac, an anti-inflammatory agent. Finally, in vitro studies using physiological and cancer cell lines, including breast (MCF10A, MCF7) and lung tissues (MRC-5, A549), formulated a structure–tissue relation reactivity profile, thus justifying their potential as future metallodrugs. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Graphical abstract

19 pages, 3859 KB  
Article
PP-Based Blends with PVP-I Additive: Mechanical, Thermal, and Barrier Properties for Packaging of Iodophor Pharmaceutical Formulations
by Melania Leanza, Domenico Carmelo Carbone, Giovanna Poggi, Marco Rapisarda, Marilena Baiamonte, Emanuela Teresa Agata Spina, David Chelazzi, Piero Baglioni, Francesco Paolo La Mantia and Paola Rizzarelli
Polymers 2025, 17(18), 2442; https://doi.org/10.3390/polym17182442 - 9 Sep 2025
Viewed by 746
Abstract
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the [...] Read more.
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the prolonged storage of I2-based formulations is demanding in plastic packaging because of transmission through the material. Therefore, we explored the possibility of moderating the loss of I2 from an iodophor formulation by introducing small amounts of molecular iodine into the polymer material commonly used in eyedropper caps, i.e., PP. Thus, PP was blended via an extrusion process with a polymeric complex containing iodine (such as PVP-I) or with a second polymeric component able to complex the I2 released from an iodophor solution. The aim of this work was to introduce I2 into PP-based polymer matrices without using organic solvents and indirectly, i.e., through the addition of components that could generate molecular iodine or complex it in the solid phase, as I2 is heat-sensitive. To increase the miscibility between PP and PVP-I, poly(N-vinylpyrrolidone) (PVP) or a vinyl pyrrolidone vinyl acetate copolymer 55/45 (Sokalan) were added as compatibilizers. The PP-based binary and ternary blends, in granular or sheet form, were characterized thermally (Differential Scanning Calorimetry, DSC, and Thermogravimetric analysis, TGA), mechanically (tensile tests), morphologically (scanning electron microscopy (SEM)), and chemically (attenuated total reflectance Fourier transform infrared (ATR-FTIR)). Additionally, the variation in wettability induced by the introduction of the hydrophilic minority components was determined by static contact angle measurements (static contact angle (SCA)), and tests were carried out to determine the barrier properties against oxygen (oxygen transmission rate (OTR)) and molecular iodine. The I2 leaching of the different blends was compared with that of PP by monitoring the I2 retention in a buffered PVP-I solution via UV-vis spectroscopy. Overall, the experimental data showed the capability of the minority components in the blends to increase thermal stability as well as act as a barrier to oxygen. Additionally, the PP blend with PVP-I induced a reduction in molecular iodine leaching in comparison with PP. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

12 pages, 1812 KB  
Article
Solubility and Thermodynamics of Lithium Carbonate in Its Precipitation Mother Liquors
by Haiwen Ge, Huaiyou Wang and Min Wang
Molecules 2025, 30(17), 3617; https://doi.org/10.3390/molecules30173617 - 4 Sep 2025
Viewed by 1300
Abstract
This study systematically investigated the dissolution equilibrium of lithium carbonate (Li2CO3) in mixed Na2CO3-NaCl aqueous solutions through isothermal dissolution experiments spanning 283.15–353.15 K. Precise solubility determinations were conducted using a gravimetric analysis under controlled thermodynamic [...] Read more.
This study systematically investigated the dissolution equilibrium of lithium carbonate (Li2CO3) in mixed Na2CO3-NaCl aqueous solutions through isothermal dissolution experiments spanning 283.15–353.15 K. Precise solubility determinations were conducted using a gravimetric analysis under controlled thermodynamic conditions. The obtained solubility data were successfully correlated with the Extended Debye–Hückel (E-DH) model, yielding residual standard deviations below 0.09, which validates the model’s applicability in this ternary system. Both experimental observations and theoretical predictions confirmed that increasing the salt molality enhances the synergistic suppression of the Li2CO3 solubility through combined common-ion and salt effects. The thermodynamic analysis revealed the dissolution process to be exothermic (ΔHd < 0), and entropy change dominates (ξS ≈ 78%), with negative entropy changes (ΔSd < 0) indicating predominant hydration ordering effects. These mechanistic insights establish critical thermodynamic benchmarks for optimizing lithium carbonate precipitation processes in brine lithium extraction operations. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

19 pages, 3958 KB  
Article
Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries
by Zujin Bai, Pei Zhang, Furu Kang, Zeyang Song and Yang Xiao
Polymers 2025, 17(17), 2374; https://doi.org/10.3390/polym17172374 - 31 Aug 2025
Viewed by 1024
Abstract
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses [...] Read more.
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses both rapid fire suppression and efficient cooling capabilities, thereby effectively mitigating the occurrence and propagation of fires in LIBs. This study pioneers the development of an adaptive thermosensitive microcapsule (TM) fire extinguishing agent synthesized via in situ polymerization. The TM encapsulates a ternary composite core—perfluorohexanone (C6F12O), heptafluorocyclopentane (C5H3F7), and 2-bromo-3,3,3-trifluoropropene (2-BTP)—within a melamine–urea–formaldehyde (MUF) resin shell. The TM was prepared via in situ polymerization, combined with FE-SEM, FTIR, TG–DSC, and laser particle size analysis to verify that the TM had a uniform particle size and complete coating structure. The results demonstrate that the TM can effectively suppress the thermal runaway (TR) of LIBs through the synergistic effects of physical cooling, chemical suppression, and gas isolation. Specifically, the peak TR temperature of a single-cell LIB is reduced by 14.0 °C, and the heating rate is decreased by 0.17 °C/s. Additionally, TM successfully blocked the propagation of TR thereby preventing its spread in the dual-LIB module test. Limitations of single-component agents are overcome by this innovative system by leveraging the ternary core’s complementary functionalities, enabling autonomous TR suppression without external systems. Furthermore, the TM design integrates precise thermal responsiveness, environmental friendliness, and cost-effectiveness, offering a transformative safety solution for next-generation LIBs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

28 pages, 15091 KB  
Article
GPSFlow/Hydrate: A New Numerical Simulator for Modeling Subsurface Multicomponent and Multiphase Flow Behavior of Hydrate-Bearing Geologic Systems
by Bingbo Xu and Keni Zhang
J. Mar. Sci. Eng. 2025, 13(9), 1622; https://doi.org/10.3390/jmse13091622 - 25 Aug 2025
Viewed by 600
Abstract
Numerical simulation has played a crucial role in modeling the behavior of natural gas hydrate (NGH). However, the existing numerical simulators worldwide have exhibited limitations in functionality, convergence, and computational efficiency. In this study, we present a novel numerical simulator, GPSFlow/Hydrate, for modeling [...] Read more.
Numerical simulation has played a crucial role in modeling the behavior of natural gas hydrate (NGH). However, the existing numerical simulators worldwide have exhibited limitations in functionality, convergence, and computational efficiency. In this study, we present a novel numerical simulator, GPSFlow/Hydrate, for modeling the behavior of hydrate-bearing geologic systems and for addressing the limitations in the existing simulators. It is capable of simulating multiphase and multicomponent flow in hydrate-bearing subsurface reservoirs under ambient conditions. The simulator incorporates multiple mass components, various phases, as well as heat transfer, and sand is treated as an independent non-Newtonian flow and modeled as a Bingham fluid. The CH4 or binary/ternary gas hydrate dissociation or formation, phase changes, and corresponding thermal effects are fully accounted for, as well as various hydrate formation and dissociation mechanisms, such as depressurization, thermal stimulation, and sand flow behavior. In terms of computation, the simulator utilizes a domain decomposition technology to achieve hybrid parallel computing through the use of distributed memory and shared memory. The verification of the GPSFlow/Hydrate simulator are evaluated through two 1D simulation cases, a sand flow simulation case, and five 3D gas production cases. A comparison of the 1D cases with various numerical simulators demonstrated the reliability of GPSFlow/Hydrate, while its application in modeling the sand flow further highlighted its capability to address the challenges of gas hydrate exploitation and its potential for broader practical use. Several successful 3D gas hydrate reservoir simulation cases, based on parameters from the Shenhu region of the South China Sea, revealed the correlation of initial hydrate saturation and reservoir condition with hydrate decomposition and gas production performance. Furthermore, multithread parallel computing achieved a 2–4-fold increase in efficiency over single-thread approaches, ensuring accurate solutions for complex physical processes and large-scale grids. Overall, the development of GPSFlow/Hydrate constitutes a significant scientific contribution to understanding gas hydrate formation and decomposition mechanisms, as well as to advancing multicomponent flow migration modeling and gas hydrate resource development. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 - 25 Aug 2025
Viewed by 538
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

18 pages, 1864 KB  
Article
Ternary Nickel-Iron-Phosphorus (NiFeP) Electrocatalysts for Alkaline Water Splitting
by Raminta Šakickaitė, Zita Sukackienė, Virginija Kepenienė, Aldona Balčiūnaitė, Raminta Stagniūnaitė, Gitana Valeckytė and Loreta Tamašauskaitė-Tamašiūnaitė
Electrochem 2025, 6(3), 30; https://doi.org/10.3390/electrochem6030030 - 15 Aug 2025
Viewed by 810
Abstract
In this study, ternary NiFeP coatings were fabricated on a copper substrate using a simple, fast, and cost-effective electroless deposition method. The coatings were named Ni85Fe4P12, Ni80Fe8P12, and Ni75Fe [...] Read more.
In this study, ternary NiFeP coatings were fabricated on a copper substrate using a simple, fast, and cost-effective electroless deposition method. The coatings were named Ni85Fe4P12, Ni80Fe8P12, and Ni75Fe12P12, indicating 4, 8, and 12 at % of Fe, respectively. The surface morphology and composition of the coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The activity of the prepared coatings was evaluated using the water-splitting reaction to determine the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in a 1 M KOH electrolyte solution. Electrochemical measurements were carried out in a temperature range from 25 °C to 55 °C. The HER and OER current density values increased by up to 2.58 and 2.13 times, respectively, with temperature increase compared to the result at 25 °C. All three coatings demonstrated activity in both reactions. Ni85Fe4P12 exhibited the highest catalytic efficiency in the HER, with the overpotential of 340 mV at 10 mAcm−2 and a Tafel slope of 61 mVdec−1. In the OER, the efficiency of the NiFeP catalysts correlated with their Fe content. The overpotential was 412 mV for Ni80Fe8P12 and 432 mV for Ni75Fe12P12 at 10 mAcm−2 with Tafel slopes of 96 and 91 mVdec−1, respectively. This study underscores the critical influence of Fe content on the catalytic efficiency of NiFeP coatings, with reduced Fe content enhancing HER and increased Fe content benefits OER. Full article
Show Figures

Figure 1

39 pages, 854 KB  
Article
A Hybrid MCDM Approach to Optimize Molten Salt Selection for Off-Grid CSP Systems
by Ghazi M. Magableh, Mahmoud Z. Mistarihi and Saba Abu Dalu
Energies 2025, 18(16), 4323; https://doi.org/10.3390/en18164323 - 14 Aug 2025
Viewed by 723
Abstract
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve [...] Read more.
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve dual functions as heat transfer fluids (HTFs) and thermal energy storage (TES) media, making them critical to CSP system performance improvements. The study introduces a hybrid MCDM framework that combines the CRITIC method for objective weighting with the SWARA approach for expert-adjusted weighting and utilizes an enhanced Lexicographic Goal Programming to evaluate molten salt options for off-grid parabolic trough systems. The evaluation process considered melting point alongside thermal stability while also assessing cost-effectiveness, recyclability, and safety requirements. The use of Pareto front analysis helped identify non-dominated salts, which then underwent a tiered optimization process emphasizing safety, performance, and sustainability features. Results confirm that the ternary nitrate composition Ca(NO3)2:NaNO3:KNO3 offers the best overall performance across all tested policy scenarios, driven by its superior thermophysical properties. Solar Salt (NaNO3-KNO3) consistently ranks as a robust second choice, excelling in economic and sustainability metrics. The proposed approach provides a flexible, policy-sensitive framework for material selection tailored to enhance the efficiency and sustainability of off-grid CSP systems and support the renewable energy objectives. Full article
Show Figures

Figure 1

19 pages, 2531 KB  
Review
Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review
by Yi Chen, Li Zhu, Xinyao Yan, Zhangjun Liao, Wen Teng, Yule Wang, Zhiguang Xing, Yun Chen and Lijun Liu
Agronomy 2025, 15(8), 1938; https://doi.org/10.3390/agronomy15081938 - 12 Aug 2025
Viewed by 771
Abstract
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, [...] Read more.
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, reduced effectiveness, and non-target toxicity, rendering them unsustainable for agricultural practices. Nanomaterials (NMs) present a promising alternative due to their small size, tunable release properties, and diverse mechanisms for disease resistance. This review examines how NMs can enhance rice disease management through (1) direct pathogen suppression; (2) the activation of plant defense pathways; (3) the formation of nanoscale barriers on leaves to obstruct pathogens; (4) targeted delivery and controlled release of fungicides; and (5) modulation of the microbiome to bolster resilience. Moreover, we critically analyze the agricultural potential and environmental implications of NMs, develop optimized application strategies, and, for the first time, propose the innovative ‘NMs-Rice-Soil’ Ternary System framework. This groundbreaking approach integrates nanotechnology, plant physiology, and soil ecology. The pioneering framework offers transformative solutions for sustainable crop protection, illustrating how strategically engineered NMs can synergistically enhance rice productivity, grain quality, and global food security through science-based risk management and interdisciplinary innovation. Full article
Show Figures

Figure 1

Back to TopTop