Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (719)

Search Parameters:
Keywords = terminal layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1957 KiB  
Article
Importin α3 Is Tolerant to Nuclear Localization Signal Chirality
by Felipe Hornos, Bruno Rizzuti and José L. Neira
Int. J. Mol. Sci. 2025, 26(16), 7818; https://doi.org/10.3390/ijms26167818 - 13 Aug 2025
Viewed by 154
Abstract
Several carrier proteins are involved in nuclear translocation from the cytoplasm to the nucleus in eukaryotic cells. We have previously demonstrated the binding of several intact folded and disordered proteins to the human isoform importin α3 (Impα3); furthermore, disordered peptides, corresponding to their [...] Read more.
Several carrier proteins are involved in nuclear translocation from the cytoplasm to the nucleus in eukaryotic cells. We have previously demonstrated the binding of several intact folded and disordered proteins to the human isoform importin α3 (Impα3); furthermore, disordered peptides, corresponding to their nuclear localization signals (NLSs), also interact with Impα3. These proteins and their isolated NLSs also bind to the truncated importin species ∆Impα3, which does not contain the N-terminal disordered importin binding domain (IBB). In this work, we added a further ‘layer’ of conformational disorder to our studies, testing whether the isolated D-enantiomers of NLSs of selected proteins, either folded or unfolded, were capable of binding to both Impα3 and ∆Impα3. The D-enantiomers, like their L-form counterparts, were monomeric and disordered in isolation, as shown by nuclear magnetic resonance (NMR). We measured the ability of such D-enantiomeric NLSs to interact with both importin species by using fluorescence, biolayer interferometry (BLI), isothermal titration calorimetry (ITC), and molecular simulations. In all cases, the binding affinities were within the same range as those measured for their L-isomer counterparts for either Impα3 or ∆Impα3, and the binding locations corresponded to the major NLS binding site of the protein. Thus, the stereoisomeric nature is not important in defining the binding of proteins to the main component of classical cellular translocation machinery, although the primary structure of the hot-spot site for NLS binding of importin is well defined. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

27 pages, 3200 KiB  
Article
IoT-Enhanced Multi-Base Station Networks for Real-Time UAV Surveillance and Tracking
by Zhihua Chen, Tao Zhang and Tao Hong
Drones 2025, 9(8), 558; https://doi.org/10.3390/drones9080558 - 8 Aug 2025
Viewed by 231
Abstract
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a [...] Read more.
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a four-layer design—terminal, edge, IoT platform, and cloud—stations exchange raw echoes and low-level features in real time, while adaptive beam registration and cross-correlation timing mitigate spatial and temporal misalignments. A hybrid processing pipeline first produces coarse data-level estimates and then applies symbol-level refinements, sustaining rapid response without sacrificing precision. Simulation evaluations using multi-band ISAC waveforms confirm high detection reliability, sub-frame latency, and energy-aware operation in dense urban clutter, adverse weather, and multi-target scenarios. Preliminary hardware tests validate the feasibility of the proposed signal processing approach. Simulation analysis demonstrates detection accuracy of 85–90% under optimal conditions with processing latency of 15–25 ms and potential energy efficiency improvement of 10–20% through cooperative operation, pending real-world validation. By extending coverage, suppressing blind zones, and supporting dynamic surveillance of fast-moving UAVs, the proposed system provides a scalable path toward smart city air safety networks, cooperative autonomous navigation aids, and other remote-sensing applications that require agile, coordinated situational awareness. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

19 pages, 25227 KiB  
Article
Sedimentary Model of Sublacustrine Fans in the Shahejie Formation, Nanpu Sag
by Zhen Wang, Zhihui Ma, Lingjian Meng, Rongchao Yang, Hongqi Yuan, Xuntao Yu, Chunbo He and Haiguang Wu
Appl. Sci. 2025, 15(15), 8674; https://doi.org/10.3390/app15158674 - 5 Aug 2025
Viewed by 190
Abstract
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, [...] Read more.
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, and 3D seismic data to systematically analyze sedimentary characteristics of sandbodies from the first member of the Shahejie Formation (Es1) sublacustrine fans, clarifying their planar and cross-sectional distributions. Further research indicates that Gaoliu Fault activity during Es1 deposition played a significant role in fan development through two mechanisms: (1) vertical displacement between hanging wall and footwall reshaped local paleogeomorphology; (2) tectonic stresses generated by fault movement affected slope stability, triggering gravitational mass transport processes that remobilized fan delta sediments into the central depression zone as sublacustrine fans through slumping and collapse mechanisms. Core observations reveal soft-sediment deformation features, including slump structures, flame structures, and shale rip-up clasts. Seismic profiles show lens-shaped geometries with thick centers thinning laterally, exhibiting lateral pinch-out terminations. Inverse fault-step architectures formed by underlying faults control sandbody distribution patterns, restricting primary deposition locations for sublacustrine fan development. The study demonstrates that sublacustrine fans in the study area are formed by gravity flow processes. A new model was established, illustrating the combined control of the Gaoliu Fault and reverse stepover faults on fan development. These findings provide valuable insights for gravity flow exploration and reservoir prediction in the Nanpu Sag, offering important implications for hydrocarbon exploration in similar lacustrine rift basins. Full article
Show Figures

Figure 1

23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 365
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

17 pages, 460 KiB  
Article
Efficient Multi-Layer Credential Revocation Scheme for 6G Using Dynamic RSA Accumulators and Blockchain
by Guangchao Wang, Yanlong Zou, Jizhe Zhou, Houxiao Cui and Ying Ju
Electronics 2025, 14(15), 3066; https://doi.org/10.3390/electronics14153066 - 31 Jul 2025
Viewed by 278
Abstract
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. [...] Read more.
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. Therefore, identity revocation technology in the authentication is an important way to secure CAVs and other 6G scenario applications. This paper proposes an efficient credential revocation scheme with a four-layer architecture. First, a rapid pre-filtration layer is constructed based on the cuckoo filter, responsible for the initial screening of credentials. Secondly, a directed routing layer and the precision judgement layer are designed based on the consistency hash and the dynamic RSA accumulator. By proposing the dynamic expansion of the RSA accumulator and load-balancing algorithm, a smaller and more stable revocation delay can be achieved when many users and terminal devices access 6G. Finally, a trusted storage layer is built based on the blockchain, and the key revocation parameters are uploaded to the blockchain to achieve a tamper-proof revocation mechanism and trusted data traceability. Based on this architecture, this paper also proposes a detailed identity credential revocation and verification process. Compared to existing solutions, this paper’s solution has a combined average improvement of 59.14% in the performance of the latency of the cancellation of the inspection, and the system has excellent load balancing, with a standard deviation of only 11.62, and the maximum deviation is controlled within the range of ±4%. Full article
(This article belongs to the Special Issue Connected and Autonomous Vehicles in Mixed Traffic Systems)
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
ANN-Enhanced Modulated Model Predictive Control for AC-DC Converters in Grid-Connected Battery Systems
by Andrea Volpini, Samuela Rokocakau, Giulia Tresca, Filippo Gemma and Pericle Zanchetta
Energies 2025, 18(15), 3996; https://doi.org/10.3390/en18153996 - 27 Jul 2025
Viewed by 333
Abstract
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their [...] Read more.
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their long cycle life, scalability, and deep discharge capability. However, achieving optimal control and system-level integration of VRFBs requires accurate, real-time modeling and parameter estimation, challenging tasks given the multi-physics nature and time-varying dynamics of such systems. This paper presents a lightweight physics-informed neural network (PINN) framework tailored for VRFBs, which directly embeds the discrete-time state-space dynamics into the network architecture. The model simultaneously predicts terminal voltage and estimates five discrete-time physical parameters associated with RC dynamics and internal resistance, while avoiding hidden layers to enhance interpretability and computational efficiency. The resulting PINN model is integrated into a modulated model predictive control (MMPC) scheme for a dual-stage DC-AC converter interfacing the VRFB with low-voltage AC grids. Simulation and hardware-in-the-loop results demonstrate that adaptive tuning of the PINN-estimated parameters enables precise tracking of battery parameter variations, thereby improving the robustness and performance of the MMPC controller under varying operating conditions. Full article
Show Figures

Figure 1

18 pages, 5521 KiB  
Article
Design and TCAD Simulation of GaN P-i-N Diode with Multi-Drift-Layer and Field-Plate Termination Structures
by Zhibo Yang, Guanyu Wang, Yifei Wang, Pandi Mao and Bo Ye
Micromachines 2025, 16(8), 839; https://doi.org/10.3390/mi16080839 - 22 Jul 2025
Viewed by 383
Abstract
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work [...] Read more.
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work systematically evaluates multiple edge termination techniques, including deep-etched mesa, beveled mesa, and field-plate configurations with both vertical and inclined mesa structures. We present an optimized multi-drift-layer GaN P-i-N diode incorporating field-plate termination and analyze its electrical performance in detail. This study covers forward conduction characteristics including on-state voltage, on-resistance, and their temperature dependence, reverse breakdown behavior examining voltage capability and electric field distribution under different temperatures, and switching performance addressing both forward recovery phenomena, i.e., voltage overshoot and carrier injection dynamics, and reverse recovery characteristics including peak current and recovery time. The comprehensive analysis offers practical design guidelines for developing high-performance GaN power devices. Full article
Show Figures

Figure 1

23 pages, 22555 KiB  
Article
Citrate Transporter Expression and Localization: The Slc13a5Flag Mouse Model
by Jan C.-C. Hu, Tian Liang, Hong Zhang, Yuanyuan Hu, Yasuo Yamakoshi, Ryuji Yamamoto, Chuhua Zhang, Hui Li, Charles E. Smith and James P. Simmer
Int. J. Mol. Sci. 2025, 26(14), 6707; https://doi.org/10.3390/ijms26146707 - 12 Jul 2025
Viewed by 416
Abstract
The sodium–citrate cotransporter (NaCT) plays a crucial role in citrate transport during amelogenesis. Mutations in the SLC13A5 gene, which encodes the NaCT, cause early infantile epileptic encephalopathy 25 and amelogenesis imperfecta. We analyzed developing pig molars and determined that the citrate concentrations in [...] Read more.
The sodium–citrate cotransporter (NaCT) plays a crucial role in citrate transport during amelogenesis. Mutations in the SLC13A5 gene, which encodes the NaCT, cause early infantile epileptic encephalopathy 25 and amelogenesis imperfecta. We analyzed developing pig molars and determined that the citrate concentrations in secretory- and maturation-stage enamel are both 5.3 µmol/g, with about 95% of the citrate being bound to mineral. To better understand how citrate might enter developing enamel, we developed Slc13a5Flag reporter mice that express NaCT with a C-terminal Flag-tag (DYKDDDDK) that can be specifically and accurately recognized by commercially available anti-Flag antibodies. The 24-base Flag coding sequence was located immediately upstream of the natural translation termination codon (TAG) and was validated by Sanger sequencing. The general development, physical activities, and reproductive outcomes of this mouse strain were comparable to those of the C57BL/6 mice. No differences were detected between the Slc13a5Flag and wild-type mice. Tooth development was extensively characterized using dissection microscopy, bSEM, light microscopy, in situ hybridization, and immunohistochemistry. Tooth formation was not altered in any detectable way by the introduction of the Flag. The Slc13a5Flag citrate transporter was observed on all outer membranes of secretory ameloblasts (distal, lateral, and proximal), with the strongest signal on the Tomes process, and was detectable in all but the distal membrane of maturation-stage ameloblasts. The papillary layer also showed positive immunostaining for Flag. The outer membrane of odontoblasts stained stronger than ameloblasts, except for the odontoblastic processes, which did not immunostain. As NaCT is thought to only facilitate citrate entry into the cell, we performed in situ hybridization that showed Ank is not expressed by secretory- or maturation-stage ameloblasts, ruling out that ANK can transport citrate into enamel. In conclusion, we developed Slc13a5Flag reporter mice that provide specific and sensitive localization of a fully functional NaCT-Flag protein. The localization of the Slc13a5Flag citrate transporter throughout the ameloblast membrane suggests that either citrate enters enamel by a paracellular route or NaCT can transport citrate bidirectionally (into or out of ameloblasts) depending upon local conditions. Full article
(This article belongs to the Special Issue Molecular Metabolism of Ameloblasts in Tooth Development)
Show Figures

Figure 1

17 pages, 4846 KiB  
Article
The Air Stability of Sodium Layered Oxide NaTMO2 (100) Surface Investigated via DFT Calculations
by Hui Li, Qing Xue, Shengyi Li, Xuechun Wang, Yijie Hou, Chang Sun, Cun Wang, Guozheng Sheng, Peng Sheng, Huitao Bai, Li Xu and Yumin Qian
Nanomaterials 2025, 15(14), 1067; https://doi.org/10.3390/nano15141067 - 10 Jul 2025
Viewed by 402
Abstract
Air stability caused by the H2O/CO2 reaction at the layered oxide NaTMO2 surface is one of the main obstacles to commercializing sodium-ion batteries (SIBS). The H2O and CO2 adsorption properties on the (100) surface of sodium [...] Read more.
Air stability caused by the H2O/CO2 reaction at the layered oxide NaTMO2 surface is one of the main obstacles to commercializing sodium-ion batteries (SIBS). The H2O and CO2 adsorption properties on the (100) surface of sodium layered transition metal oxide NaTMO2 (TM = Co, Ni, Mo, Nd) are calculated using the DFT method to study the surface air stability. This study showed that the material bulk phase (symmetry), surface site, element type, and surface termination are all (though not the only) important factors that affect the adsorption strength. Contrary to previous studies, the P phase is not always more air-stable than the O phase; our calculations showed that the NaNiO2 O phase is more stable than the P phase. The calculated band center and occupation showed a direct relationship with the adsorption energy. The Na site adsorption for CO2 and H2O showed the same V-shape trend. However, the TM adsorption for CO2 and H2O showed a different trend. With an increased t2g band center, CO2 adsorption strength increases. There is no clear trend for H2O adsorption. Our calculations showed that the electronic structure of the surface atomic of adsorption site plays a decisive role in CO2 and H2O adsorption strength. This study demonstrated an effective method for obtaining a stability parameter regarding the electronic structure, which can be used to screen the air-stable layered oxide sodium cathode in the future. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Storage)
Show Figures

Figure 1

25 pages, 3278 KiB  
Article
Study on the Performance of Composite-Modified Epoxy Resin Potting Adhesive for Repairing Oblique Cracks
by Zimin Chen, Zhengyi Li, Zhihong Ran, Yan Zhang, Fan Lin and Yu Zhou
Materials 2025, 18(13), 3197; https://doi.org/10.3390/ma18133197 - 7 Jul 2025
Viewed by 406
Abstract
Reinforced concrete structures are prone to the development of microcracks during service. In this study, a composite-modified epoxy potting adhesive was formulated using nano-TiO2, carboxyl-terminated butadiene nitrile liquid rubber (CTBN), and the reactive diluent D-669. The mechanical properties and effectiveness of [...] Read more.
Reinforced concrete structures are prone to the development of microcracks during service. In this study, a composite-modified epoxy potting adhesive was formulated using nano-TiO2, carboxyl-terminated butadiene nitrile liquid rubber (CTBN), and the reactive diluent D-669. The mechanical properties and effectiveness of this composite adhesive in repairing oblique cracks were systematically evaluated and compared with those of single-component-modified epoxy adhesives. Key material parameters influencing the performance of oblique crack repair were identified, and the underlying repair mechanisms were analyzed. Based on these findings, a theoretical formula for calculating the shear-bearing capacity of beams with repaired web reinforcement was proposed. Experimental results demonstrated that compared to single-component-modified epoxy resin, the optimally formulated composite adhesive improved the tensile strength, elongation at break, and bond strength by 4.07–21.16 MPa, 13.28–20.4%, and 1.05–3.79 MPa, respectively, while reducing the viscosity by 48–872 mPa·s. The viscosity of the adhesive was found to play a critical role in determining the repair effectiveness, with toughness enhancing the crack resistance and bond strength contributing to the structural stiffness recovery. The adhesive effectively penetrated the steel–concrete interface, forming a continuous bonding layer that improved energy dissipation and significantly enhanced the load-bearing capacity of the repaired beams. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia
by P. Pungboon Pansila, Seckson Sukhasena, Saksit Sukprasong, Worasitti Sriboon, Wipawee Temnuch, Tongsai Jamnongkan and Tanabat Promjun
Appl. Sci. 2025, 15(13), 7487; https://doi.org/10.3390/app15137487 - 3 Jul 2025
Viewed by 585
Abstract
The initial surface reaction of gallium nitride (GaN) grown by atomic layer deposition (GaN-ALD) was investigated using density functional theory (DFT) calculations. Trimethylgallium (TMG) and ammonia (NH3) were used as gallium (Ga) and nitrogen (N) precursors, respectively. DFT calculations at the [...] Read more.
The initial surface reaction of gallium nitride (GaN) grown by atomic layer deposition (GaN-ALD) was investigated using density functional theory (DFT) calculations. Trimethylgallium (TMG) and ammonia (NH3) were used as gallium (Ga) and nitrogen (N) precursors, respectively. DFT calculations at the B3LYP/6-311+G(2d,p) and 6-31G(d) levels were performed to compute relative energies and optimize chemical structures, respectively. TMG adsorption on Si15H18–(NH2)2 and Si15H20=(NH)2 clusters was modeled, where –NH2 and =NH surface species served as adsorption sites. The reaction mechanisms in the adsorption and nitridation steps were investigated. The results showed that TMG can adsorb on both surface adsorption sites. In the initial adsorption stage, TMG adsorbs onto =NH- and –NH2-terminated Si(100) surfaces with activation energies of 1.11 and 2.00 eV, respectively, indicating that the =NH site is more reactive. During subsequent NH3 adsorption, NH3 adsorbs onto the residual TMG on the =NH- and –NH2-terminated surfaces with activation energies of approximately 2.00 ± 0.02 eV. The reaction pathways indicate that NH3 adsorbs via similar mechanisms on both surfaces, resulting in comparable nitridation kinetics. Furthermore, this study suggests that highly reactive NH2 species generated in the gas phase from ionized NH3 may help reduce the process temperature in the GaN-ALD process. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

27 pages, 3175 KiB  
Article
Modified Dual Hierarchical Terminal Sliding Mode Control Design for Two-Wheeled Self-Balancing Robot
by Huaqiang Zhang, Norzalilah Mohamad Nor and Siti Nur Hanisah Umar
Electronics 2025, 14(13), 2692; https://doi.org/10.3390/electronics14132692 - 3 Jul 2025
Viewed by 233
Abstract
A modified dual hierarchical terminal sliding mode control (MDHTSMC) strategy is developed in this study for the control of a two-wheeled self-balancing robot (TWSBR). The control framework incorporates individually designed sliding surfaces within a structured dual-layer hierarchy, enabling explicit prediction of convergence time. [...] Read more.
A modified dual hierarchical terminal sliding mode control (MDHTSMC) strategy is developed in this study for the control of a two-wheeled self-balancing robot (TWSBR). The control framework incorporates individually designed sliding surfaces within a structured dual-layer hierarchy, enabling explicit prediction of convergence time. To overcome the system’s underactuation characteristics, a hierarchical structure is embedded into the dual terminal sliding mode control law. Additionally, the proposed approach mitigates the chattering effect and enhances the system’s self-balancing capabilities. Numerical simulations were conducted to verify the controller’s effectiveness and to confirm the theoretical results. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Research on Safety Isolation Schemes for Lithium-Ion Battery Containers in Mixed-Storage Yards of Class 9 Dangerous Goods Containers
by Yuan Gao, Jian Deng and Chunlei Zeng
Fire 2025, 8(7), 249; https://doi.org/10.3390/fire8070249 - 27 Jun 2025
Viewed by 353
Abstract
In recent years, the storage of lithium-ion battery (LIB) containers in general cargo container yards has become an urgent operational requirement for port container terminals. To effectively control the impact range of thermal runaway (TR) incidents in LIB containers and reduce potential economic [...] Read more.
In recent years, the storage of lithium-ion battery (LIB) containers in general cargo container yards has become an urgent operational requirement for port container terminals. To effectively control the impact range of thermal runaway (TR) incidents in LIB containers and reduce potential economic losses, it is imperative to establish appropriate isolation protocols. This study develops a mathematical–physical model of heat transfer following LIB container TR, incorporating (1) the national regulation limiting stacking height to three layers, (2) the exothermic characteristics of LIB TR, and (3) the fundamental heat transfer theory. Through detailed numerical simulations based on actual engineering scenarios, our analysis demonstrates that when (1) The TR temperature of conventional LIBs remains below 700 °C, (2) the thermal conductivity of goods in adjacent ordinary cargo containers does not exceed 10 W/(m·K). An effective isolation configuration can be achieved by (1) arranging no fewer than four ordinary cargo containers longitudinally and (2) placing no fewer than two ordinary cargo containers transversally. The methodology and conclusions presented in this study provide practical guidance for industrial applications and demonstrate significant engineering value. Full article
Show Figures

Figure 1

18 pages, 3398 KiB  
Article
Synthesis of Nylon 6,6 with Pyrene Chain-End for Compatibilization with Graphite and Enhancement of Thermal and Mechanical Properties
by Veronica Balzano, Annaluisa Mariconda, Maria Rosaria Acocella, Marialuigia Raimondo, Assunta D’Amato, Pasquale Longo, Liberata Guadagno and Raffaele Longo
Polymers 2025, 17(13), 1735; https://doi.org/10.3390/polym17131735 - 22 Jun 2025
Viewed by 534
Abstract
The possibility of reinforcing polymeric matrices with multifunctional fillers for improving structural and functional properties is widely exploited. The compatibility between the filler and the polymeric matrix is crucial, especially for high filler content. In this paper, polymeric matrices of Nylon 6,6 with [...] Read more.
The possibility of reinforcing polymeric matrices with multifunctional fillers for improving structural and functional properties is widely exploited. The compatibility between the filler and the polymeric matrix is crucial, especially for high filler content. In this paper, polymeric matrices of Nylon 6,6 with pyrene chains were successfully synthesized to improve the compatibility with carbonaceous fillers. The compatibility was proven using graphite as a carbonaceous filler. The different properties, including thermal stability, crystallinity, morphology, and local mechanical properties, have been evaluated for various filler contents, and the results have been compared to those of synthetic Nylon 6,6 without pyrene chain terminals. XRD results highlighted that the compatibilization of the composite matrix may lead to an intercalation of the polymeric chains among the graphite layers. This phenomenon leads to the protection of the polymer from thermal degradation, as highlighted by the thermogravimetric analysis (i.e., for a filler content of 20%, the beginning degradation temperature goes from 357 °C for the non-compatibilized matrix to 401 °C for the compatibilized one and the residual at 750 °C goes from 33% to 67%, respectively. A significant improvement in the interphase properties, as proven via Atomic Force Microscopy in Harmonix mode, leads to a considerable increase in local mechanical modulus values. Specifically, the compatibilization of the matrix hosting the graphite leads to a less pronounced difference in modulus values, with more frequent reinforcements that are quantitatively similar along the sample surface. This results from a significantly improved filler distribution with respect to the composite with the non-compatibilized matrix. The present study shows how the thermoplastic/filler compatibilization can sensitively enhance thermal and mechanical properties of the thermoplastic composite, widening its potential use for various high-performance applications, such as in the transport field, e.g., for automotive components (engine parts, gears, bushings, washers), and electrical and electronics applications (heat sinks, casing for electronic devices, and insulating materials). Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

27 pages, 4717 KiB  
Article
Enhancing Bidirectional Modbus TCP ↔ RTU Gateway Performance: A UDP Mechanism and Markov Chain Approach
by Shuang Zhao, Qinghai Zhang, Qingjian Zhao, Xiaoqian Zhang, Yang Guo, Shilei Lu, Liqiang Song and Zhengxu Zhao
Sensors 2025, 25(13), 3861; https://doi.org/10.3390/s25133861 - 21 Jun 2025
Cited by 1 | Viewed by 1185
Abstract
In the Industrial Internet of Things (IIoT) field, the diversity of devices and protocols leads to interconnection challenges. Conventional Modbus Transmission Control Protocol (TCP) to Remote Terminal Unit (RTU) gateways suffer from high overhead and latency of the TCP protocol stack. To enhance [...] Read more.
In the Industrial Internet of Things (IIoT) field, the diversity of devices and protocols leads to interconnection challenges. Conventional Modbus Transmission Control Protocol (TCP) to Remote Terminal Unit (RTU) gateways suffer from high overhead and latency of the TCP protocol stack. To enhance real-time communication while ensuring reliability, this study applies Markov chain theory to analyze User Datagram Protocol (UDP) transmission characteristics. An Advanced UDP (AUDP) protocol is proposed by integrating a Cyclic Redundancy Check (CRC) check mechanism, retransmission mechanism, Transaction ID matching mechanism, and exponential backoff mechanism at the UDP application layer. Based on AUDP, a Modbus AUDP-RTU gateway is designed with a lightweight architecture to achieve bidirectional conversion between Modbus AUDP and Modbus RTU. Experimental validation and Markov chain-based modeling demonstrate that the proposed gateway significantly reduces communication latency compared to Modbus TCP-RTU and exhibits higher reliability than Modbus UDP-RTU. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

Back to TopTop