Importin α3 Is Tolerant to Nuclear Localization Signal Chirality
Abstract
1. Introduction
2. Results
2.1. The D-NLS Peptides Were Monomeric and Disordered in Aqueous Solution
2.2. The D-NLS Peptides Bound to Impα3 or ∆Impα3 with a Low Affinity
2.3. The D-NLS Peptides Targeted the Major NLS Binding Site of Importin α3
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Protein Expression and Purification
4.3. Peptide Design
4.4. Titration Fluorescence Experiments with the D-NLSs
4.5. Nuclear Magnetic Resonance (NMR) Spectroscopy
4.5.1. 1D-1H-NMR Spectra
4.5.2. Translational Diffusion NMR (DOSY)
4.5.3. 2D-1H-NMR Spectra
4.6. Isothermal Titration Calorimetry (ITC)
4.7. Biolayer Interferometry (BLI)
4.7.1. Experimental Design
4.7.2. Fitting of the Sensorgrams
4.8. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ARM | Armadillo |
BLI | Biolayer interferometry |
DIPSI | Decoupling in the presence of scalar interactions |
DOSY | Diffusion-ordered spectroscopy |
IBB | Importin β-binding domain |
Impα3 | Human importin α3 isoform (residues 1–521) |
∆Impα3 | IBB-depleted species of Impα3 (residues 64–521 of the intact protein) |
ITC | Isothermal titration calorimetry |
NLS | Nuclear localization signal |
D-NLS | D-enantiomeric form of isolated NLS region |
D-NLS-NUPR1 | D-enantiomeric, isolated NLS region of NUPR1 (residues 54–74 of the intact protein) |
D-NLS-NUPR1phospho | D-enantiomeric, isolated NLS region of NUPR1 with phosphorylated Thr68 |
D-NLS-NUPR1L | D-enantiomeric, isolated NLS region of NUPR1L (residues 51–74 of the intact protein) |
D-NLS-PADI | D-enantiomeric, isolated, non-canonical NLS of PADI4 (residues 498–526 of the intact protein) |
NMR | Nuclear magnetic resonance |
NOESY | Nuclear Overhauser effect spectroscopy |
NPC | Nuclear pore complex |
NUPR1 | Nuclear protein 1 |
NUPR1L | Paralogue of NUPR1 |
PADI | Protein arginine deiminase |
TOCSY | Total correlation spectroscopy |
TSP | 3-(trimethylsilyl) propionic acid-2,2,3,3-2H4-sodium salt |
References
- Stewart, M. Molecular Mechanism of the Nuclear Protein Import Cycle. Nat. Rev. Mol. Cell Biol. 2007, 8, 195–208. [Google Scholar] [CrossRef]
- Bednenko, J.; Cingolani, G.; Gerace, L. Nucleocytoplasmic Transport: Navigating the Channel. Traffic 2003, 4, 127–135. [Google Scholar] [CrossRef]
- Kobe, B. Autoinhibition by an Internal Nuclear Localization Signal Revealed by the Crystal Structure of Mammalian Importin α. Nat. Struct. Biol. 1999, 6, 388–397. [Google Scholar] [CrossRef]
- Smith, K.M.; Tsimbalyuk, S.; Edwards, M.R.; Cross, E.M.; Batra, J.; Soares da Costa, T.P.; Aragão, D.; Basler, C.F.; Forwood, J.K. Structural Basis for Importin Alpha 3 Specificity of W Proteins in Hendra and Nipah Viruses. Nat. Commun. 2018, 9, 3703. [Google Scholar] [CrossRef] [PubMed]
- Neira, J.L.; Rizzuti, B.; Jiménez-Alesanco, A.; Abián, O.; Velázquez-Campoy, A.; Iovanna, J.L. The Paralogue of the Intrinsically Disordered Nuclear Protein 1 Has a Nuclear Localization Sequence That Binds to Human Importin A3. Int. J. Mol. Sci. 2020, 21, 7428. [Google Scholar] [CrossRef]
- Neira, J.L.; Rizzuti, B.; Jiménez-Alesanco, A.; Palomino-Schätzlein, M.; Abián, O.; Velázquez-Campoy, A.; Iovanna, J.L. A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin. Biomolecules 2020, 10, 1313. [Google Scholar] [CrossRef] [PubMed]
- Neira, J.L.; Rizzuti, B.; Abián, O.; Araujo-Abad, S.; Velázquez-Campoy, A.; de Juan Romero, C. Human Enzyme PADI4 Binds to the Nuclear Carrier Importin A3. Cells 2022, 11, 2166. [Google Scholar] [CrossRef]
- Lan, W.; Santofimia-Castaño, P.; Swayden, M.; Xia, Y.; Zhou, Z.; Audebert, S.; Camoin, L.; Huang, C.; Peng, L.; Jiménez-Alesanco, A.; et al. ZZW-115-Dependent Inhibition of NUPR1 Nuclear Translocation Sensitizes Cancer Cells to Genotoxic Agents. JCI Insight 2020, 5, e138117. [Google Scholar] [CrossRef] [PubMed]
- Nachmias, B.; Schimmer, A.D. Targeting Nuclear Import and Export in Hematological Malignancies. Leukemia 2020, 34, 2875–2886. [Google Scholar] [CrossRef]
- Stelma, T.; Chi, A.; Van Der Watt, P.J.; Verrico, A.; Lavia, P.; Leaner, V.D. Targeting Nuclear Transporters in Cancer: Diagnostic, Prognostic and Therapeutic Potential. IUBMB Life 2016, 68, 268–280. [Google Scholar] [CrossRef]
- Yi, X.; Hussain, I.; Zhang, P.; Xiao, C. Nuclear-Targeting Peptides for Cancer Therapy. ChemBioChem 2024, 25, e202400596. [Google Scholar] [CrossRef] [PubMed]
- Resa-Infante, P.; Paterson, D.; Bonet, J.; Otte, A.; Oliva, B.; Fodor, E.; Gabriel, G. Targeting Importin-A7 as a Therapeutic Approach against Pandemic Influenza Viruses. J. Virol. 2015, 89, 9010–9020. [Google Scholar] [CrossRef] [PubMed]
- Gravina, G.L.; Senapedis, W.; McCauley, D.; Baloglu, E.; Shacham, S.; Festuccia, C. Nucleo-Cytoplasmic Transport as a Therapeutic Target of Cancer. J. Hematol. Oncol. 2014, 7, 85. [Google Scholar] [CrossRef]
- Mahipal, A.; Malafa, M. Importins and Exportins as Therapeutic Targets in Cancer. Pharmacol. Ther. 2016, 164, 135–143. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, S.; Martínez-Gómez, A.I.; Rodríguez-Vico, F.; Clemente-Jiménez, J.M.; Las Heras-Vázquez, F.J. Natural Occurrence and Industrial Applications of D-Amino Acids: An Overview. Chem. Biodivers. 2010, 7, 1531–1548. [Google Scholar] [CrossRef]
- Chong, P.; Sia, C.; Tripet, B.; James, O.; Klein, M. Comparative Immunological Properties of Enantiomeric Peptides. Lett. Pept. Sci. 1996, 3, 99–106. [Google Scholar] [CrossRef]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The Future of Peptide-Based Drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Mikitsh, J.L.; Chacko, A.M. Pathways for Small Molecule Delivery to the Central Nervous System across the Blood-Brain Barrier. Perspect. Medicin Chem. 2014, 6, 11–24. [Google Scholar] [CrossRef]
- Goodwin, D.; Simerska, P.; Toth, I. Peptides As Therapeutics with Enhanced Bioactivity. Curr. Med. Chem. 2012, 19, 4451–4461. [Google Scholar] [CrossRef]
- Wüthrich, K. NMR of Proteins and Nucleic Acids; Academic Press: New York, NY, USA, 1986. [Google Scholar]
- Kjaergaard, M.; Poulsen, F.M. Sequence Correction of Random Coil Chemical Shifts: Correlation between Neighbor Correction Factors and Changes in the Ramachandran Distribution. J. Biomol. NMR 2011, 50, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, M.; Brander, S.; Poulsen, F.M. Random Coil Chemical Shift for Intrinsically Disordered Proteins: Effects of Temperature and PH. J. Biomol. NMR 2011, 49, 139–149. [Google Scholar] [CrossRef]
- Wilkins, D.K.; Grimshaw, S.B.; Receveur, V.; Dobson, C.M.; Jones, J.A.; Smith, L.J. Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques. Biochemistry 1999, 38, 16424–16431. [Google Scholar] [CrossRef]
- Danielsson, J.; Jarvet, J.; Damberg, P.; Gräslund, A. Translational Diffusion Measured by PFG-NMR on Full Length and Fragments of the Alzheimer Aβ(1–40) Peptide. Determination of Hydrodynamic Radii of Random Coil Peptides of Varying Length. Magn. Reson. Chem. 2002, 40, S89–S97. [Google Scholar] [CrossRef]
- Newcombe, E.A.; Due, A.D.; Sottini, A.; Elkjær, S.; Theisen, F.F.; Fernandes, C.B.; Staby, L.; Delaforge, E.; Bartling, C.R.O.; Brakti, I.; et al. Stereochemistry in the Disorder–Order Continuum of Protein Interactions. Nature 2024, 636, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Birdsall, B.; King, R.W.; Wheeler, M.R.; Lewis, C.A.; Goode, S.R.; Dunlap, R.B.; Roberts, G.C.K. Correction for Light Absorption in Fluorescence Studies of Protein-Ligand Interactions. Anal. Biochem. 1983, 132, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Royer, C.A.; Scarlata, S.F. Fluorescence Approaches to Quantifying Biomolecular Interactions. Methods Enzymol. 2008, 450, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Beckett, D. Measurement and Analysis of Equilibrium Binding Titrations: A Beginner’s Guide. Methods Enzymol. 2011, 488, 1–16. [Google Scholar] [CrossRef]
- Rizzuti, B. Molecular Simulations of Proteins: From Simplified Physical Interactions to Complex Biological Phenomena. Biochim. Biophys. Acta Proteins Proteom. 2022, 1870, 140757. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Rizzuti, B.; Iovanna, J.L.; Neira, J.L. Deciphering the Binding of the Nuclear Localization Sequence of Myc Protein to the Nuclear Carrier Importin A3. Int. J. Mol. Sci. 2022, 23, 15333. [Google Scholar] [CrossRef]
- Neira, J.L.; Jiménez-Alesanco, A.; Rizzuti, B.; Velazquez-Campoy, A. The Nuclear Localization Sequence of the Epigenetic Factor RYBP Binds to Human Importin A3. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140670. [Google Scholar] [CrossRef]
- Schmidt, N.; Kumar, A.; Korf, L.; Dinh-Fricke, A.V.; Abendroth, F.; Koide, A.; Linne, U.; Rakwalska-Bange, M.; Koide, S.; Essen, L.-O.; et al. Development of Mirror-Image Monobodies Targeting the Oncogenic BCR::ABL1 Kinase. Nat. Commun. 2024, 15, 10724. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Perlas, C.; Varese, M.; Guardiola, S.; Sánchez-Navarro, M.; García, J.; Teixidó, M.; Giralt, E. Protein Chemical Synthesis Combined with Mirror-Image Phage Display Yields d-Peptide EGF Ligands That Block the EGF–EGFR Interaction. ChemBioChem 2019, 20, 2079–2084. [Google Scholar] [CrossRef] [PubMed]
- Thiele, S.; Stanelle-Bertram, S.; Beck, S.; Kouassi, N.M.; Zickler, M.; Müller, M.; Tuku, B.; Resa-Infante, P.; van Riel, D.; Alawi, M.; et al. Cellular Importin-A3 Expression Dynamics in the Lung Regulate Antiviral Response Pathways against Influenza A Virus Infection. Cell Rep. 2020, 31, 107549. [Google Scholar] [CrossRef]
- Mori, M.; Liu, D.; Kumar, S.; Huang, Z. NMR Structures of Anti-HIV D-Peptides Derived from the N-Terminus of Viral Chemokine VMIP-II. Biochem. Biophys. Res. Commun. 2005, 335, 651–658. [Google Scholar] [CrossRef]
- Álvarez, L.; Chemes, L.B. Sensitivity to Chirality Correlates in a Continuum with Protein Disorder. Trends Biochem. Sci. 2025, 50, 553–555. [Google Scholar] [CrossRef]
- Saphire, A.C.S.; Bark, S.J.; Gerace, L. All Four Homochiral Enantiomers of a Nuclear Localization Sequence Derived from C-Myc Serve as Functional Import Signals. J. Biol. Chem. 1998, 273, 29764–29769. [Google Scholar] [CrossRef]
- Jemth, P. Protein Binding and Folding through an Evolutionary Lens. Curr. Opin. Struct. Biol. 2025, 90, 102980. [Google Scholar] [CrossRef]
- Gill, S.C.; von Hippel, P.H. Calculation of Protein Extinction Coefficients from Amino Acid Sequence Data. Anal. Biochem. 1989, 182, 319–326. [Google Scholar] [CrossRef]
- Kosugi, S.; Hasebe, M.; Tomita, M.; Yanagawa, H. Systematic Identification of Cell Cycle-Dependent Yeast Nucleocytoplasmic Shuttling Proteins by Prediction of Composite Motifs. Proc. Natl. Acad. Sci. USA 2009, 106, 10171–10176. [Google Scholar] [CrossRef]
- Kosugi, S.; Hasebe, M.; Matsumura, N.; Takashima, H.; Miyamoto-Sato, E.; Tomita, M.; Yanagawa, H. Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importinα. J. Biol. Chem. 2009, 284, 478–485. [Google Scholar] [CrossRef]
- Neira, J.L.; Araujo-Abad, S.; Cámara-Artigas, A.; Rizzuti, B.; Abian, O.; Giudici, A.M.; Velazquez-Campoy, A.; de Juan Romero, C. Biochemical and Biophysical Characterization of PADI4 Supports Its Involvement in Cancer. Arch. Biochem. Biophys. 2022, 717, 109125. [Google Scholar] [CrossRef]
- Schmid, F.X. Optical Spectroscopy to Characterize Protein Conformation and Conformational Changes. In Protein Structure: A Practical Approach; Creighton, T.E., Ed.; Oxford University Press: Oxford, UK, 1997; pp. 261–297. [Google Scholar]
- Neira, J.L.; Hornos, F.; Bacarizo, J.; Cámara-Artigás, A.; Gómez, J. The Monomeric Species of the Regulatory Domain of Tyrosine Hydroxylase Has a Low Conformational Stability. Biochemistry 2016, 55, 3418–3431. [Google Scholar] [CrossRef]
- Cavanagh, J.; Fairbrother, W.J.; Palmer, A.G.; Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Piotto, M.; Saudek, V.; Sklenář, V. Gradient-Tailored Excitation for Single-Quantum NMR Spectroscopy of Aqueous Solutions. J. Biomol. NMR 1992, 2, 661–665. [Google Scholar] [CrossRef]
- Marion, D.; Wüthrich, K. Application of Phase Sensitive Two-Dimensional Correlated Spectroscopy (COSY) for Measurements of 1H-1H Spin-Spin Coupling Constants in Proteins. Biochem. Biophys. Res. Commun. 1983, 113, 967–974. [Google Scholar] [CrossRef]
- Bax, A.; Davis, D.G. MLEV-17-Based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. J. Magn. Reson. (1969) 1985, 65, 355–360. [Google Scholar] [CrossRef]
- Kumar, A.; Ernst, R.R.; Wüthrich, K. A Two-Dimensional Nuclear Overhauser Enhancement (2D NOE) Experiment for the Elucidation of Complete Proton-Proton Cross-Relaxation Networks in Biological Macromolecules. Biochem. Biophys. Res. Commun. 1980, 95, 1–6. [Google Scholar] [CrossRef]
- Cavanagh, J.; Rance, M. Suppression of Cross-Relaxation Effects in TOCSY Spectra via a Modified DIPSI-2 Mixing Sequence. J. Magn. Reson. (1969) 1992, 96, 670–678. [Google Scholar] [CrossRef]
- Frenzel, D.; Willbold, D. Kinetic Titration Series with Biolayer Interferometry. PLoS ONE 2014, 9, e106882. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P.R.; Maule, C.H.; Leatherbarrow, R.J.; Winzor, D.J. Second-Order Kinetic Analysis of IAsys Biosensor Data: Its Use and Applicability. Anal. Biochem. 1998, 263, 1–12. [Google Scholar] [CrossRef]
- Hall, D.R.; Gorgani, N.N.; Altin, J.G.; Winzor, D.J. Theoretical and Experimental Considerations of the Pseudo-First-Order Approximation in Conventional Kinetic Analysis of IAsys Biosensor Data. Anal. Biochem. 1997, 253, 145–155. [Google Scholar] [CrossRef] [PubMed]
- O’Shannessy, D.J.; Winzor, D.J. Interpretation of Deviations from Pseudo-First-Order Kinetic Behavior in the Characterization of Ligand Binding by Biosensor Technology. Anal. Biochem. 1996, 236, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Pantoja-Uceda, D.; Neira, J.L.; Saelices, L.; Robles-Rengel, R.; Florencio, F.J.; Muro-Pastor, M.I.; Santoro, J. Dissecting the Binding between Glutamine Synthetase and Its Two Natively Unfolded Protein Inhibitors. Biochemistry 2016, 55, 3370–3382. [Google Scholar] [CrossRef]
- Koyama, M.; Matsuura, Y. Crystal Structure of Importin-A3 Bound to the Nuclear Localization Signal of Ran-Binding Protein 3. Biochem. Biophys. Res. Commun. 2017, 491, 609–613. [Google Scholar] [CrossRef]
- Díaz-García, C.; Hornos, F.; Giudici, A.M.; Cámara-Artigas, A.; Luque-Ortega, J.R.; Arbe, A.; Rizzuti, B.; Alfonso, C.; Forwood, J.K.; Iovanna, J.L.; et al. Human Importin A3 and Its N-Terminal Truncated Form, without the Importin-β-Binding Domain, Are Oligomeric Species with a Low Conformational Stability in Solution. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129609. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Rizzuti, B.; Ceballos-Laita, L.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Vega, S.; Grande, F.; Conforti, F.; Abian, O.; Velazquez-Campoy, A. Sub-Micromolar Inhibition of SARS-CoV-2 3clpro by Natural Compounds. Pharmaceuticals 2021, 14, 892. [Google Scholar] [CrossRef]
D-NLS Peptide b | MW (Da) | D (cm2 s−1) × 106 (Rh, Å) c | D (cm2 s−1) × 106 (Rh, Å) (L-NLS) d | Rh, Å e |
---|---|---|---|---|
YT54NRPSPGGHERKLVTKLQNSE74 (D-NLS-NUPR1) | 2511.78 | 1.78 ± 0.08 (9 ± 1) | 1.85 ± 0.04 (11 ± 1) | 13 ± 3 |
YT54NRPSPGGHERKLVpTKLQNSE74 (D-NLS-NUPR1phospho) | 2541.78 | 2.2 ± 0.2 (10 ± 1) | 1.89 ± 0.08 (11 ± 1) | 13 ± 3 |
R51TRREQALRTNWPAPGGHERKVAQ74 (D-NLS-NUPR1L) | 2815.15 | 2.0 ± 0.3 (10 ± 1) | 1.74 ± 0.05 (12 ± 2) | 14 ± 2 |
K499LFQEQQNEGHGEALLFEGIKKKKQQKI526 (D-NLS-PADI) | 3297.80 | 1.0 ± 0.1 (13 ± 1) | 0.96 ± 0.03 (15.1 ± 0.8) | 15 ± 2 |
D-NLS Peptide | kon (μM−1 s−1) | koff (s−1) | Kd (μM) (=koff/kon) b | Kd (μM) (ITC/Fluorescence) | Kd (μM) (ITC/Fluorescence) (L-NLS Peptide) c |
---|---|---|---|---|---|
D-NLS-NUPR1 | 0.05 ± 0.01 | - d | - d | - e/- e | 1.7 |
D-NLS-NUPR1phospho | 0.010 ± 0.003 | 0.13 ± 0.02 | 13 ± 4 | - e/- e | 27 |
D-NLS-NUPR1L | 0.068 ± 0.007 | 0.069 ± 0.04 | 1.0 ± 0.6 | 2.7 ± 0.6/- e | 12 ± 2/3 ± 1 |
D-NLS-PADI | 0.045 ± 0.02 | 0.6 ± 0.1 | 15 ± 3 | - e/12 ± 5 | 23/4 ± 2 |
D-NLS Peptide | kon (μM−1 s−1) | koff (s−1) | Kd (μM) (=koff/kon) b | Kd (μM) (ITC/Fluorescence) | Kd (μM) (ITC/Fluorescence) (L-NLS Peptide) c |
---|---|---|---|---|---|
D-NLS-NUPR1 | 0.11 ± 0.02 | - d | - d | - e/- e | 0.95 |
D-NLS-NUPR1phospho | 0.006 ± 0.001 | 0.05 ± 0.01 | 8 ± 2 | - e/- e | 29 |
D-NLS-NUPR1L | 0.0512 ± 0.0007 | 0.038 ± 0.05 | 0.7 ± 0.2 | 5 ± 1/- e | 5.5 ± 0.9/5 ± 2 |
D-NLS-PADI | 0.06 ± 0.01 | 0.37 ± 0.05 | 6 ± 1 | - e/16 ± 11 | 4.37/4 ± 1 |
D-NLS Peptide b | Length (Number of Residues) | Rotatable Bonds | Binding Affinity (kcal mol−1) |
---|---|---|---|
YT54NRPSPGGHERKLVTKLQNSE74 (D-NLS-NUPR1) | 22 | 91 | −5.2 |
YT54NRPSPGGHERKLVpTKLQNSE74 (D-NLS-NUPR1phospho) | 22 | 92 | −4.8 |
R51TRREQALRTNWPAPGGHERKVAQ74 (D-NLS-NUPR1L) | 24 | 96 | −5.3 |
Q502EQQNEGHGEALLFEGIKKKKQ523 (D-NLS-PADI) | 22 | 100 | −4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornos, F.; Rizzuti, B.; Neira, J.L. Importin α3 Is Tolerant to Nuclear Localization Signal Chirality. Int. J. Mol. Sci. 2025, 26, 7818. https://doi.org/10.3390/ijms26167818
Hornos F, Rizzuti B, Neira JL. Importin α3 Is Tolerant to Nuclear Localization Signal Chirality. International Journal of Molecular Sciences. 2025; 26(16):7818. https://doi.org/10.3390/ijms26167818
Chicago/Turabian StyleHornos, Felipe, Bruno Rizzuti, and José L. Neira. 2025. "Importin α3 Is Tolerant to Nuclear Localization Signal Chirality" International Journal of Molecular Sciences 26, no. 16: 7818. https://doi.org/10.3390/ijms26167818
APA StyleHornos, F., Rizzuti, B., & Neira, J. L. (2025). Importin α3 Is Tolerant to Nuclear Localization Signal Chirality. International Journal of Molecular Sciences, 26(16), 7818. https://doi.org/10.3390/ijms26167818