Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = tenorite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 10510 KB  
Article
Evolutionary Model of the Sepid-Sarve Manto-Type Copper Mineralization, Doruneh Fault Volcanic-Plutonic Belt (Central Iran Domain, NE Iran): An Integrated Geological, Geochemical, Fluid-Inclusion and Stable O–S Isotope Study
by Morteza Esform, Hasan Zamanian, Urs Klötzli, Alireza Zarasvandi, Alireza Almasi and Mohammad Goudarzi
Minerals 2025, 15(12), 1246; https://doi.org/10.3390/min15121246 - 25 Nov 2025
Viewed by 626
Abstract
The Sepid-Sarve copper deposit is part of an Eocene volcano-sedimentary sequence located in the southern Sabzevar Zone. The copper mineralization occurs at the contact between pyroclastic and lava units with various limestone layers (including marly, Nummulitic, sandy, and clastic limestones). The ore minerals [...] Read more.
The Sepid-Sarve copper deposit is part of an Eocene volcano-sedimentary sequence located in the southern Sabzevar Zone. The copper mineralization occurs at the contact between pyroclastic and lava units with various limestone layers (including marly, Nummulitic, sandy, and clastic limestones). The ore minerals consist of malachite, azurite, chalcocite, digenite, cuprite, tenorite, covellite, and occasionally native copper. The associated hydrothermal fluids show moderate to high salinities, ranging from 3.08 to 13.38 wt.% NaCl equivalent, with homogenization temperatures between 90 and 356 °C, indicating fluid mixing during ore formation. Chalcocite is rarely accompanied by quartz, suggesting low silica content in the ore-forming fluids. The δ34S values of sulfide samples from the Sepid-Sarve deposit range from −23.9 ± 0.3‰ to −2.9 ± 0.2‰, while δ34S values of hydrothermal H2S range from −24.1 ± 0.3‰ to −21.0 ± 0.3‰. The δ18O values of hydrothermal fluids associated with mineralization fall within the range of basaltic rocks, meteoric waters, and sedimentary rocks. Geochemical variations in major and trace elements suggest the involvement of continental crustal contamination in the magmatic evolution. The studied volcanic rocks fall within the calc-alkaline to shoshonitic fields, formed in a continental arc setting, and are derived from an enriched mantle source influenced by subduction-related fluids. These rocks are characterized by HREE depletion, moderate LREE enrichment, and a weak negative Eu anomaly. Based on the results, the Sepid-Sarve deposit is classified as a stratabound (Manto-type) copper sulfide deposit, formed in a volcano-sedimentary setting associated with a subduction-related magmatic arc environment. Full article
Show Figures

Figure 1

26 pages, 8880 KB  
Article
Structure, Ecotoxicity, Redox and Bactericidal Activity of Cu-Containing Nanocrystalline Ferrites
by Todor R. Karadimov, Elena P. Nenova, Elitsa L. Pavlova, Iliana A. Ivanova, Milena T. Georgieva and Peter A. Georgiev
Molecules 2025, 30(22), 4454; https://doi.org/10.3390/molecules30224454 - 19 Nov 2025
Viewed by 530
Abstract
Cu-modified ferrites, prepared by solvothermal syntheses, at up to 200 °C, show the presence of copper metal particles, embedded in ferrite nanocrystalline particle agglomerates. Notably, these metallic copper micron-sized crystallites were dramatically reduced in size, down to a few tens of nanometers, when [...] Read more.
Cu-modified ferrites, prepared by solvothermal syntheses, at up to 200 °C, show the presence of copper metal particles, embedded in ferrite nanocrystalline particle agglomerates. Notably, these metallic copper micron-sized crystallites were dramatically reduced in size, down to a few tens of nanometers, when part of the copper dopant was replaced by zinc. All materials were magnetic due to the presence of the cubic spinel phase, being ferrimagnetic, measured with external fields up to 6000 Oe, showing a narrow hysteresis of 89 Oe for the largest particle size copper ferrite material of 15 nm. Superparamagnetic behavior was observed for the smallest size, e.g., 11 nm, Cu-doped and the zinc-doped, 9–10 nm average particle size ferrites. The redox activity of the materials was studied in free-radical oxidation reactions (pH 7.4, physiological and pH 8.5, optimal) by the chemiluminescent method with (i) Fenton’s reagent (·OH, ·OOH); (ii) H2O2; and (iii) O2·− radicals. All materials presented extremely strong inhibitory activities (converted to prooxidant only at pH 7.4 in system iii, excluding the largest isolated copper-particle-containing material, which remained inhibitory). The materials’ antimicrobial potential was checked on Gram-positive and Gram-negative bacteria, Escherichia coli ATCC 25922, and Staphylococcus aureus ATCC 25923 via two classical methods, namely the spot and well diffusion tests in agar medium. The above tests included a nanocrystalline CuO, tenorite, as a reference material too. The Daphnia magna ecotoxicity test showed that all of the investigated materials are rather toxic, and since daphnia is a key component in freshwater ecosystems, the toxicity even at low concentrations may have significant consequences for the ecological balance. This requires careful monitoring and assessment of the possible use or disposal of these nanomaterials in the environment. Full article
Show Figures

Figure 1

20 pages, 2673 KB  
Article
Shear-Thickening Superplastic Transitions in High-Entropy Oxides
by Salma El-Azab, Sichao Chen, Julie M. Schoenung and Alexander D. Dupuy
Ceramics 2025, 8(4), 136; https://doi.org/10.3390/ceramics8040136 - 10 Nov 2025
Viewed by 515
Abstract
Despite significant interest in their functional properties, the mechanical behavior of high-entropy oxides (HEOs) is not well studied, particularly at elevated temperatures. Bulk (Co,Cu,Mg,Ni,Zn)O (transition metal (TM)-HEO) samples were deformed under compression at applied stresses and temperatures ranging from 5 to 31 MPa [...] Read more.
Despite significant interest in their functional properties, the mechanical behavior of high-entropy oxides (HEOs) is not well studied, particularly at elevated temperatures. Bulk (Co,Cu,Mg,Ni,Zn)O (transition metal (TM)-HEO) samples were deformed under compression at applied stresses and temperatures ranging from 5 to 31 MPa and 600 to 850 °C, respectively. All of the deformation conditions result in creep stress exponents of n < 3, indicating that TM-HEO exhibits superplastic deformation. A transition from structural to solution-precipitation-based superplasticity is observed during deformation above 650 °C. Additionally, TM-HEO exhibits shear-thickening behavior when deformed at stresses above 9 MPa. The formation and behavior of a Cu-rich tenorite secondary phase during deformation is identified as a key factor underpinning the deformation mechanisms. The microstructure and phase state of TM-HEO before deformation also influenced the behavior, with finer grain sizes and increasing concentrations of Cu-rich tenorite, resulting in the increased prevalence of solution-precipitation deformation. While complex, the results of this study indicate that TM-HEO deforms through known superplastic deformation mechanisms. Superplasticity is a highly efficient manufacturing method and could prove to be a valuable strategy for forming HEO ceramics into complex geometries. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

8 pages, 2029 KB  
Article
Mott Law exp(T0/T)1/4 and Scaling Properties of the Oxygen-Deficient Tenorite CuO0.75
by Danijel Djurek, Mladen Prester, Djuro Drobac, Vilko Mandić and Damir Pajić
Condens. Matter 2025, 10(2), 33; https://doi.org/10.3390/condmat10020033 - 11 Jun 2025
Viewed by 1062
Abstract
The novel sub-stoichiometric copper oxide CuO0.75 was prepared via the slow oxidation of Cu2O. This compound retains the original crystallographic structure of tenorite CuO, despite the considerable presence of disordered oxygen vacancies. CuO0.75 resembles the mixed valence oxide Cu [...] Read more.
The novel sub-stoichiometric copper oxide CuO0.75 was prepared via the slow oxidation of Cu2O. This compound retains the original crystallographic structure of tenorite CuO, despite the considerable presence of disordered oxygen vacancies. CuO0.75 resembles the mixed valence oxide Cu2+/Cu1+, while the unit cell contains one oxygen vacancy. Performance-wise, the electric resistivity and magnetic susceptibility data follow the Anderson–Mott localization theories. The exponential localization decay length was found to be α−1 = 2.1 nm, in line with modern scaling research. Via cooling, magnetic double-exchange interaction, mediated by oxygen, results in Zener conductivity at T~122 K, which is followed by antiferromagnetic transition at T~51 K. The obtained results indicate that the CuO0.75 compound can be perceived as a showcase material for the demonstration of a new class of high-performance magnetic materials. Full article
(This article belongs to the Section Physics of Materials)
Show Figures

Figure 1

20 pages, 3620 KB  
Article
Potential Therapeutic Effect of ZnO/CuO Nanocomposite as an Acaricidal, Immunostimulant, and Antioxidant in Rabbits
by Shimaa R. Masoud, Said I. Fathalla, Sherif M. Shawky, Hanem El-Gendy, Mahboba A. Z. Alakhras, Rashed A. Alhotan, Anam Ayyoub, Shaimaa Selim, Khaled Defallah Al-Otaibi and Ahmed M. A. El-Seidy
Vet. Sci. 2025, 12(4), 333; https://doi.org/10.3390/vetsci12040333 - 4 Apr 2025
Cited by 2 | Viewed by 1337
Abstract
The present study aimed to identify a safe and novel approach using zinc oxide/copper oxide nanocomposites (AZ) to enhance growth parameters, immunity, and fight Sarcoptic mange in vitro and in vivo in rabbits. In vitro: the acaricidal activity of AZ was assessed at [...] Read more.
The present study aimed to identify a safe and novel approach using zinc oxide/copper oxide nanocomposites (AZ) to enhance growth parameters, immunity, and fight Sarcoptic mange in vitro and in vivo in rabbits. In vitro: the acaricidal activity of AZ was assessed at concentrations of AZ-25: 2.5% w/w AZ/molasses, AZ-125: 12.5% w/w AZ/molasses, and controls (normal saline, molasses, and Ivermectin) every hour for seven hours under a stereoscopic microscope. In vivo: involved 40 rabbits (10 replicates/group). G1 served as the control negative group (normal un-infected rabbits), G2 served as the control negative group (infected rabbits), the animals in the G3 group were given a combination of AZ (40 mg/kg body weight (BW)) and molasses (5 mg/mL), and G4 served as the control to the vehicle; receiving molasses 8 mL/kg BW twice weekly for 6 weeks. Blood, serum, and tissue samples were collected at the middle and the end of the trial. AZ was made using the sonication sol–gel method. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed to confirm the crystal structure, purity, particle size, and oxidation states. AZ showed immunostimulant, acaricidal, and antioxidant effects with normal tissue histological structure and low tissue residual levels. Additionally, there were improvements in blood interferon-gamma, immunoglobulin (Ig) M, IgG, phagocytic activity, phagocytic index, globulin, and total protein in the AZ group. The XRD patterns of AZ were coordinated by XRD reference codes Crystallography Open Database (COD): 9016326 for Tenorite (CuO) and by XRD reference COD: 9004179 for Zincite (ZnO). The CuO and ZnO crystal sizes were 21.87 Å and 24.89 Å, respectively. The XPS spectra indicated the presence of Cu as Cu (II) and Zn as ZnO.OH and ZnO. In conclusion, AZ exhibited antioxidant, acaricidal, and immunostimulant effects, with mild residues in the brain, liver, and kidney tissues, while maintaining a normal histological structure of tissues. Full article
Show Figures

Figure 1

17 pages, 5418 KB  
Article
Preparation of Copper Oxide Film at Low Temperature in Basic Conditions on a Copper Substrate
by Francesca Irene Barbaccia, Tilde de Caro, Fulvio Federici, Alessio Mezzi, Lucia Sansone, Michele Giordano and Andrea Macchia
Materials 2025, 18(7), 1487; https://doi.org/10.3390/ma18071487 - 26 Mar 2025
Cited by 1 | Viewed by 1462
Abstract
Copper is widely used in both its metallic form and as oxide across numerous scientific and industrial domains. The primary copper oxides, cuprite (Cu2O) and tenorite (CuO), naturally form on the copper surface and play a crucial role in advanced technologies, [...] Read more.
Copper is widely used in both its metallic form and as oxide across numerous scientific and industrial domains. The primary copper oxides, cuprite (Cu2O) and tenorite (CuO), naturally form on the copper surface and play a crucial role in advanced technologies, such as solar cells, lithium batteries, and sensors. Tenorite is appreciated for its optical properties, stability, low toxicity, and reactivity. While copper oxide thin films are traditionally synthesized through thermal treatments and oxidation in alkaline environments, these conventional high-temperature methods not only require significant energy consumption but can also compromise the metal–film interface. This study aims to develop a sustainable alternative approach for forming a homogeneous CuO layer on a copper substrate through environmentally friendly treatments based on low temperature, cost-effective, and time-saving procedures. Three different eco-conscious treatments were investigated: (i) immersion in NaOH basic solution, (ii) exposure to NaOH basic solution vapours, and (iii) a combined treatment involving both immersion and vapour exposure. This green synthesis approach significantly reduces energy consumption compared to traditional thermal methods while maintaining product quality. The surface oxide layer was investigated through an optical microscope (OM), scanning electron microscopy (SEM), spectrocolorimetric analysis, peel-off test, µ-Raman and X-ray photoelectron spectroscopy (XPS) analysis to investigate the surface oxidation state. Full article
Show Figures

Figure 1

16 pages, 5036 KB  
Article
Recovery of Different Cu-Phases from Industrial Wastewater
by Iphigenia Franziska Anagnostopoulos and Soraya Heuss-Aßbichler
Minerals 2025, 15(1), 23; https://doi.org/10.3390/min15010023 - 27 Dec 2024
Cited by 1 | Viewed by 1213
Abstract
The dominant treatment process for removing heavy metals from industrial wastewater is chemical neutralisation precipitation using lime milk as a precipitation agent, resulting in a highly voluminous hydroxide sludge with a low heavy metal concentration. These sludges are predominantly landfilled, and the metals [...] Read more.
The dominant treatment process for removing heavy metals from industrial wastewater is chemical neutralisation precipitation using lime milk as a precipitation agent, resulting in a highly voluminous hydroxide sludge with a low heavy metal concentration. These sludges are predominantly landfilled, and the metals are lost to the circular economy. At the same time, metals are urgently needed as raw materials. A new approach is represented by the low-pressure, low-energy Specific Product-Oriented Precipitation process (SPOP). This approach, however, requires the adjustment of various reaction parameters for optimal operation. This study presents the impacts of the stirring rate during the reaction and the Fe concentration in the solution on the recovery of Cu from Cu-enriched electroplating wastewater. Three different recovery options are described: Option (1), the formation of CuO; Option (2), the generation of brochantite, a Cu-hydroxysulphate; and Option (3), the incorporation of Cu into ferrite. Tenorite (CuO) is precipitated at 40 °C reaction temperature at a low stirring rate of 100–200 rpm. At an accelerated stirring rate of 400–500 rpm, brochantite (Cu4(OH)6SO4) is formed. With high Fe concentrations and a molar ratio of Cu:Fe of 1:2, Cu-ferrite (CuFe2O4) is the precipitation product. In any case, the achieved recovery rates in the treated wastewater are better than 99.9%. Full article
(This article belongs to the Special Issue Waste Minerals, Sediments and Their Environmental Mineralogy)
Show Figures

Figure 1

17 pages, 3033 KB  
Article
Advanced Copper Oxide Chemical and Green Synthesis: Characterization and Antibacterial Evaluation
by Ecaterina Magdalena Modan, Adriana-Gabriela Schiopu, Sorin Georgian Moga, Denis Aurelian Negrea, Daniela Istrate, Ion Ciuca and Mihai Oproescu
Crystals 2025, 15(1), 7; https://doi.org/10.3390/cryst15010007 - 25 Dec 2024
Cited by 6 | Viewed by 3520
Abstract
Recent advancements in nanotechnology have improved the application of copper oxide (CuO) nanostructures, known for their diverse antibacterial, electrical, catalytic, optical, and pharmacological properties, which depend on nanoparticle morphology. This study investigated two synthesis methods for structured CuO: microwave-assisted hydrolysis and ultrasound using [...] Read more.
Recent advancements in nanotechnology have improved the application of copper oxide (CuO) nanostructures, known for their diverse antibacterial, electrical, catalytic, optical, and pharmacological properties, which depend on nanoparticle morphology. This study investigated two synthesis methods for structured CuO: microwave-assisted hydrolysis and ultrasound using copper acetate and KOH, and an eco-friendly method involving cholesterol-free egg white albumin and Solanum lycopersicum extract. Characterization techniques, including XRD, FTIR, and SEM-EDS, were utilized to analyze the produced CuO. XRD confirmed high-purity monoclinic CuO structures in the sample obtained via the chemical method, while characteristic peaks of tenorite and dolerophanite were observed in the albumin-synthesized sample. ATR-FTIR analysis revealed O-H stretching bands around 3400 cm−1, indicating adsorbed H-OH or -OH and strong Cu-O bond peaks at 434 cm−1. The CuO synthesized via microwave and ultrasound methods displayed superior crystallinity compared to commercial CuO. SEM illustrated various morphologies, such as flakes, microspheres, and irregular polyhedra, influenced by the presence of proteins and organic acids. Antibacterial tests demonstrated the effective inhibition of Escherichia coli and Enterococcus faecalis, confirming the potential of CuO as a promising antibacterial agent. Overall, the findings highlight the effectiveness of green chemistry in developing crystalline CuO for various applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 3070 KB  
Article
Leaching Thermodynamics of Low-Grade Copper Oxide Ore from [(NH4)2SO4]-NH3-H2O Solution
by Faxin Xiao, Xinyu Cao, Xuwei Luo, Ganfeng Tu, Cuixia Yang, Yu Peng, Hui Li, Wei Xu and Shuo Wang
Materials 2024, 17(19), 4821; https://doi.org/10.3390/ma17194821 - 30 Sep 2024
Cited by 1 | Viewed by 1744
Abstract
This paper describes a highly alkaline low-grade copper oxide ore. Copper can be selectively leached out while other metals are retained. A thermodynamic model of the CuO-(NH4)2SO4-NH3-H2O system was established for the leaching [...] Read more.
This paper describes a highly alkaline low-grade copper oxide ore. Copper can be selectively leached out while other metals are retained. A thermodynamic model of the CuO-(NH4)2SO4-NH3-H2O system was established for the leaching of tenorite (CuO) under conditions of mass and charge conservation. MATLAB’s fitting functions, along with the diff and solve functions, were used to calculate the optimal ammonia concentration and total copper ion concentration of tenorite under different ammonium sulfate concentrations. The effects of various ammonia–ammonium salt solutions (ammonium sulfate, ammonium carbonate, ammonium chloride) on the copper leaching rate were investigated. Results show that under the conditions of an ammonia concentration of 1.2 mol/L, an ammonia–ammonium ratio of 2:1, a liquid–solid ratio of 3:1, a temperature of 25 °C, and a leaching time of 4 h, the copper leaching rate from the ammonium sulfate and ammonium chloride solutions reaches 70%, which is slightly higher than that of ammonium carbonate. Therefore, an ammonia–ammonium sulfate system is selected for leaching low-grade copper oxide due to its lower corrosion to equipment compared to the chlorination system. The impact of this study on industrial applications includes the potential to find more sustainable and cost-effective methods for resource recovery. The industry can reduce its dependence on resources and mitigate its environmental impact. Readers engaged in low-grade oxidized copper research will benefit from this study. Full article
Show Figures

Figure 1

18 pages, 12806 KB  
Article
Fatty Imidazolines as a Green Corrosion Inhibitor of Bronze Exposed to Acid Rain
by Ian Didiere Vázquez-Aguirre, Alvaro Torres-Islas, Edna Vázquez-Vélez, Horacio Martínez, Adrián del Pozo-Mares and Ave María Cotero-Villegas
Coatings 2024, 14(9), 1152; https://doi.org/10.3390/coatings14091152 - 7 Sep 2024
Cited by 2 | Viewed by 2091
Abstract
Acid rain is one of the primary corrosive agents on bronze exposed to the atmosphere. Bronze naturally forms a layer of oxides on its surface called patina, protecting it from corrosion. However, when exposed to acid rain, this layer dissolves, making it necessary [...] Read more.
Acid rain is one of the primary corrosive agents on bronze exposed to the atmosphere. Bronze naturally forms a layer of oxides on its surface called patina, protecting it from corrosion. However, when exposed to acid rain, this layer dissolves, making it necessary to use a corrosion inhibitor or stabilize the patina. This study investigated fatty imidazolines derived from agro-industrial waste bran as a corrosion inhibitor of SAE-62 bronze in simulated acid rain (pH of 4.16 ± 0.1). Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PC) measurements were used to evaluate corrosion inhibition efficiency, which was 90% for an inhibitor concentration of 50 ppm. The EIS measurements showed that the fatty imidazolines formed a protective film that stabilized the patina on the bronze surface to a certain extent by hindering the charge transfer process. SEM–EDS analyzed the morphology and composition of the protective oxide layer. The results were complemented by Raman spectroscopy and XRD analysis, indicating cuprite, tenorite, cassiterite, and covellite in the patina layer formed on the bronze surface. The SEM analysis showed that the protective coating on the bronze surface was homogeneous using a 50-ppm inhibitor concentration. The XRD analysis suggested the presence of an organic complex that stabilizes the corrosion products formed on the bronze surface. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Prevention in Extreme Environments)
Show Figures

Graphical abstract

16 pages, 3199 KB  
Article
Study of a Copper Oxide Leaching in Alkaline Monosodium Glutamate Solution
by Carlos G. Perea, Christian Ihle, Laurence Dyer, Simón Díaz Quezada and Humberto Estay
Minerals 2024, 14(7), 714; https://doi.org/10.3390/min14070714 - 15 Jul 2024
Cited by 3 | Viewed by 2640
Abstract
Oxide copper minerals are commonly extracted via acidic leaching, using acids such as H2SO4, HCl, or HNO3. These strong acids are the most widely used because of their high dissolution kinetics. However, their main concern is the [...] Read more.
Oxide copper minerals are commonly extracted via acidic leaching, using acids such as H2SO4, HCl, or HNO3. These strong acids are the most widely used because of their high dissolution kinetics. However, their main concern is the high acid consumption because copper oxide deposits contain large amounts of acid-consuming gangue. This paper proposes using an alternative aqueous alkaline monosodium glutamate (MSG) system to leach copper oxide minerals. Tenorite (CuO) was used as the copper oxide mineral under study. The influence of process variables (such as temperature and glutamate concentration) and kinetics of this system on copper leaching from tenorite were studied. The results showed that temperature has a significant effect on copper dissolution rates. Increased temperature from 15 °C to 60 °C enhanced the copper extraction from 9.1% to 97.7% after 2 h. Leaching kinetics were analyzed using the shrinking core model (SCM) under various conditions, indicating that the leaching rate presented a mixed control. This method, however, fails to describe leaching for broad particle sizes due to its requirement for single-sized solid grains. This study demonstrated that a large particle size distribution in tenorite supported a successful extension of the SCM for leaching it from mixed glutamate solutions. The activation energy for the 15–60 °C temperature range was calculated to be 102.6 kJ/mol for the chemical control. Full article
Show Figures

Figure 1

20 pages, 10885 KB  
Article
On a Composite Obtained by Thermolysis of Cu-Doped Glycine
by Pedro Chamorro-Posada, Roberto C. Dante, Jesús Martín-Gil, Denisse G. Dante, Alma Cioci, José Vázquez-Cabo, Óscar Rubiños-López, Irene Mediavilla-Martínez and Pablo Martín-Ramos
C 2024, 10(2), 49; https://doi.org/10.3390/c10020049 - 26 May 2024
Cited by 1 | Viewed by 2782
Abstract
Metal-doped carbonaceous materials have garnered significant attention in recent years due to their versatile applications in various fields, including catalysis, energy storage, environmental remediation, electronics, and sensors, as well as reinforcement. This study investigates the synthesis and characterization of a composite material featuring [...] Read more.
Metal-doped carbonaceous materials have garnered significant attention in recent years due to their versatile applications in various fields, including catalysis, energy storage, environmental remediation, electronics, and sensors, as well as reinforcement. This study investigates the synthesis and characterization of a composite material featuring a carbonaceous matrix doped with copper, focusing on the thermolysis of glycine as a precursor. The synthesis methodology involved utilizing glycine and copper acetate monohydrate in varying ratios, with the mixture subjected to heating in ceramic crucibles at temperatures ranging from 450 to 550 °C, with pyrolysis yields over the 5 to 39% interval. The pristine and Cu-doped samples obtained at 500 °C underwent characterization using a diverse array of techniques, including scanning and transmission electron microscopies, multi-elemental analysis by energy dispersive X-ray spectroscopy, CHNS elemental analysis, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared and Raman spectroscopies, ultraviolet-visible spectroscopy, and terahertz time-domain spectroscopy, along with conductivity measurements. Under optimized conditions, copper (at 6.5%) was present primarily in the free metallic form, accompanied by traces of tenorite (CuO) and cuprite (Cu2O). The carbonaceous matrix exhibited a 6:1 ratio of graphitic carbon to a carbon-nitrogen compound with the formula C2H2N2O2, such as isomers of diazetidinedione, according to multi-elemental analysis results. Conductivity measurements disclosed a significant increase in conductivity compared to the product of glycine thermolysis, showcasing the enhanced electrical properties of the new composite. Additionally, terahertz measurements showed the potential of the material as a broadband absorber for the fabrication of terahertz devices and provided compelling evidence of a significant improvement in radiation absorption upon copper doping. In conclusion, this research sheds light on the promising properties of copper-doped carbonaceous composites obtained by glycine pyrolysis, offering insights into their potential applications in emerging technological domains. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

16 pages, 82983 KB  
Article
Why Are the Early Gothic Murals in St. Jacob’s Church in Ormož, Slovenia, Almost Entirely Black?
by Anabelle Kriznar, Katja Kavkler and Sabina Dolenec
Spectrosc. J. 2024, 2(2), 37-52; https://doi.org/10.3390/spectroscj2020003 - 13 Apr 2024
Viewed by 2882
Abstract
In St. Jacob’s parish church in Ormož, Slovenia, mural paintings from around 1350–1370 are partially conserved in the northeastern corner of the main nave. They are almost completely black, indicating a large-scale pigment degradation. They were studied as a part of a larger [...] Read more.
In St. Jacob’s parish church in Ormož, Slovenia, mural paintings from around 1350–1370 are partially conserved in the northeastern corner of the main nave. They are almost completely black, indicating a large-scale pigment degradation. They were studied as a part of a larger research project aiming to identify materials applied and their possible degradation. First, they were studied in situ, and next, extracted samples of plaster, pigments, and colour layers were analysed by optical microscopy, Raman spectroscopy, FTIR spectroscopy, SEM-EDS, and XRD. Haematite, green earth, malachite, azurite, and tenorite were identified, showing that azurite and perhaps also malachite degraded to black tenorite, probably due to their fine grinding and their application directly on the fresh plaster. The plaster is made with small and large amounts of aggregate with mostly quartz with some impurities, which makes it fragile. The original appearance of these murals was of bright blue and green colours. Full article
Show Figures

Graphical abstract

21 pages, 3729 KB  
Article
Composition Effect on the Formation of Oxide Phases by Thermal Decomposition of CuNiM(III) Layered Double Hydroxides with M(III) = Al, Fe
by Iqra Zubair Awan, Phuoc Hoang Ho, Giada Beltrami, Bernard Fraisse, Thomas Cacciaguerra, Pierrick Gaudin, Nathalie Tanchoux, Stefania Albonetti, Annalisa Martucci, Fabrizio Cavani, Francesco Di Renzo and Didier Tichit
Materials 2024, 17(1), 83; https://doi.org/10.3390/ma17010083 - 23 Dec 2023
Cited by 2 | Viewed by 3028
Abstract
The thermal decomposition processes of coprecipitated Cu-Ni-Al and Cu-Ni-Fe hydroxides and the formation of the mixed oxide phases were followed by thermogravimetry and derivative thermogravimetry analysis (TG – DTG) and in situ X-ray diffraction (XRD) in a temperature range from 25 to 800 [...] Read more.
The thermal decomposition processes of coprecipitated Cu-Ni-Al and Cu-Ni-Fe hydroxides and the formation of the mixed oxide phases were followed by thermogravimetry and derivative thermogravimetry analysis (TG – DTG) and in situ X-ray diffraction (XRD) in a temperature range from 25 to 800 °C. The as-prepared samples exhibited layered double hydroxide (LDH) with a rhombohedral structure for the Ni-richer Al- and Fe-bearing LDHs and a monoclinic structure for the CuAl LDH. Direct precipitation of CuO was also observed for the Cu-richest Fe-bearing samples. After the collapse of the LDHs, dehydration, dehydroxylation, and decarbonation occurred with an overlapping of these events to an extent, depending on the structure and composition, being more pronounced for the Fe-bearing rhombohedral LDHs and the monoclinic LDH. The Fe-bearing amorphous phases showed higher reactivity than the Al-bearing ones toward the crystallization of the mixed oxide phases. This reactivity was improved as the amount of embedded divalent cations increased. Moreover, the influence of copper was effective at a lower content than that of nickel. Full article
(This article belongs to the Topic Chemistry of 2D Materials)
Show Figures

Graphical abstract

18 pages, 5153 KB  
Article
The Addition of Co into CuO–ZnO Oxides Triggers High Antibacterial Activity and Low Cytotoxicity
by Elvira Maria Bauer, Alessandro Talone, Patrizia Imperatori, Rossella Briancesco, Lucia Bonadonna and Marilena Carbone
Nanomaterials 2023, 13(21), 2823; https://doi.org/10.3390/nano13212823 - 25 Oct 2023
Cited by 7 | Viewed by 2486
Abstract
In the present work, a simple two-step method is proposed for mixed oxide synthesis aimed at the achievement of antibacterial nanomaterials. In particular, Cu, Zn and Co have been selected to achieve single-, double- and triple-cation oxides. The synthesized samples are characterized by [...] Read more.
In the present work, a simple two-step method is proposed for mixed oxide synthesis aimed at the achievement of antibacterial nanomaterials. In particular, Cu, Zn and Co have been selected to achieve single-, double- and triple-cation oxides. The synthesized samples are characterized by XRD, IR, SEM and EDX, indicating the formation of either crystalline or amorphous hydrocarbonate precursors. The oxides present one or two crystalline phases, depending on their composition; the triple-cation oxides form a solid solution of tenorite. Also, the morphology of the samples varies with the composition, yielding nanoparticles, filaments and hydrangea-like microaggregates. The antibacterial assays are conducted against E. coli and indicate an enhanced efficacy, especially displayed by the oxide containing 3% Co and 9% Zn incorporated into the CuO lattice. The oxides with the highest antibacterial properties are tested for their cytotoxicity, indicating a low toxicity impact, in line with literature data. Full article
Show Figures

Graphical abstract

Back to TopTop