Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = tenax sorbent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2056 KiB  
Article
Three-Dimensional Zeolitic Imidazolate Framework-8 as Sorbent Integrated with Active Capillary Plasma Mass Spectrometry for Rapid Assessment of Low-Level Wine and Grape Quality-Related Volatiles
by Morphy C. Dumlao, Liang Jiang, Saroj Kumar Bhattacharyya, William A. Donald, Christopher C. Steel and Leigh M. Schmidtke
Molecules 2024, 29(24), 6053; https://doi.org/10.3390/molecules29246053 - 23 Dec 2024
Cited by 1 | Viewed by 777
Abstract
The most commonly used methods to chemically assess grape and wine quality with high sensitivity and selectivity require lengthy analysis time and can be resource intensive. Here, we developed a rapid and non-destructive method that would help in grading and decision support. In [...] Read more.
The most commonly used methods to chemically assess grape and wine quality with high sensitivity and selectivity require lengthy analysis time and can be resource intensive. Here, we developed a rapid and non-destructive method that would help in grading and decision support. In this work, we demonstrate that integrating a three-dimensional (3D) material for volatile sampling with mass spectrometry detection can be used to sample grapes for phytosanitary, quality or smoke-taint assessments at low levels of marker compounds. An efficient zeolitic imidazolate framework-8 (ZIF-8) material was synthesised in situ on nickel foam (NF), taking advantage of its ultrahigh surface area, structural diversity, and functionality as an emerging nanostructured material for preconcentrating low-level wine and grape quality-related volatiles. When used as a sorbent in thermal desorption tubes and coupled directly to active capillary mass spectrometry, the average signal across the selected analytes increased by ~50% as compared to Tenax TA, a commercially available polymer, in a measurement that takes less than two minutes. The first integration of 3D materials into mass spectrometry opens new possibilities for developing new material architecture with enhanced selectivity of next-generation multifunctional instrumentation for volatile analysis and product quality assessment. Full article
(This article belongs to the Special Issue Metal Organic Frameworks: Synthesis and Application, 3rd Edition)
Show Figures

Figure 1

16 pages, 3907 KiB  
Article
Identifying the Early Post-Mortem VOC Profile from Cadavers in a Morgue Environment Using Comprehensive Two-Dimensional Gas Chromatography
by Darshil Patel, Rushali Dargan, Wesley S. Burr, Benoit Daoust and Shari Forbes
Separations 2023, 10(11), 566; https://doi.org/10.3390/separations10110566 - 10 Nov 2023
Cited by 5 | Viewed by 3834
Abstract
Understanding the VOC profile released during the early post-mortem period is essential for applications in training human remains detection dogs and urban search and rescue operations (USAR) to rapidly locate living and deceased victims. Human cadavers were sampled at the UQTR morgue within [...] Read more.
Understanding the VOC profile released during the early post-mortem period is essential for applications in training human remains detection dogs and urban search and rescue operations (USAR) to rapidly locate living and deceased victims. Human cadavers were sampled at the UQTR morgue within a 0–72 h post-mortem interval. VOC samples were collected from the headspace above the cadavers, using Tenax TA/Carbograph 5TD dual sorbent tubes, and analyzed using GC×GC-TOFMS. Multiple data processing steps, including peak table alignment and filtering, were undertaken using LECO ChromaToF and custom scripts in R programming language. This study identified 104 prevalent VOCs, some of which are linked to human decomposition, while others are connected to the persistence of living scent. Principal Component Analysis (PCA) further highlighted that VOC profiles can change dynamically over time, even in a controlled setting. The findings underscore the complexity and variability in VOC profiles during the early post-mortem period. This variability is influenced by multiple factors including the individual’s biological and physiological conditions. Despite the challenges in characterizing these profiles, the identified VOCs could potentially serve as markers in forensic applications. The study also highlights the need for additional research to build a dataset of VOCs for more robust forensic applications. Full article
(This article belongs to the Special Issue Chemical Separations in Criminalistics)
Show Figures

Figure 1

21 pages, 4403 KiB  
Article
Chemical Composition of Atmospheric Air in Nemoral Scots Pine Forests and Submountainous Beech Forests: The Potential Region for the Introduction of Forest Therapy
by Tomasz Dudek, Mariusz Marć and Bożena Zabiegała
Int. J. Environ. Res. Public Health 2022, 19(23), 15838; https://doi.org/10.3390/ijerph192315838 - 28 Nov 2022
Cited by 12 | Viewed by 2402
Abstract
Studies show that forests are one of the main recreational destinations. This can be explained by their beneficial effects on the health of their visitors, which can be attributed to compounds from the terpene group. The aim of this research was to determine [...] Read more.
Studies show that forests are one of the main recreational destinations. This can be explained by their beneficial effects on the health of their visitors, which can be attributed to compounds from the terpene group. The aim of this research was to determine the chemical composition of air in the interiors of Nemoral Scots pine forests and submountainous beech forests, with the determination of compounds of the terpene group. Samples of organic compounds present in the air were collected with the use of Tenax TA sorbent tubes. The process of separation, identification, and determination of the extracted organic compounds was carried out with the use of the gas chromatography technique integrated with a flame ionization detector. Additional identification of the extracted compounds was carried out with the use of GC coupled with mass spectrometry. The most abundant group of compounds was the aliphatic hydrocarbons, both saturated (linear and branched) and unsaturated (terpenes). Carbonyl compounds were also found in the collected samples, but they constituted no more than 10% of all compounds present on the chromatograms. The concentrations of terpenes and terpenoids in the forest atmosphere varied from 10 to 74 µg·m−3, representing on average 33% of the total volatile organic compounds. Full article
Show Figures

Figure 1

14 pages, 1424 KiB  
Article
Practical Application of a Multi-Bed Adsorbent Tube Coupled with GC-MS for Low-Level VOCs Identification to Achieve Comprehensive Odor Management
by Yelim Choi, Kyunghoon Kim, Taeho Lee and Daekeun Kim
Atmosphere 2022, 13(9), 1457; https://doi.org/10.3390/atmos13091457 - 8 Sep 2022
Cited by 2 | Viewed by 2762
Abstract
We investigated the effectiveness of a multi-sorbent tube (M-Tube) to improve the sampling method for a wide range of odor-causing volatile organic compounds (VOCs) at low concentrations. The M-Tube applied in this study was a fixed tube packed with three adsorbents (Carboxen® [...] Read more.
We investigated the effectiveness of a multi-sorbent tube (M-Tube) to improve the sampling method for a wide range of odor-causing volatile organic compounds (VOCs) at low concentrations. The M-Tube applied in this study was a fixed tube packed with three adsorbents (Carboxen®, Carbopack™, and Tenax®-TA) in series. To verify the efficiency of the M-Tube, a comparative study was conducted against a single tube (S-Tube, Tenax®-TA). A total of 42 target compounds were selected, including eight different chemical groups: terpenes, hydrocarbons, aldehydes, ketones, alcohols, esters, furans, and alkanes, to verify the effectiveness of the M-Tube. In the laboratory test, response factors, which are the ratios between output signals of gas chromatography by the sorbent-tube sample and the liquid-standard sample, for the M-Tube were higher than those for the S-Tube. The breakthrough volume of the M-Tube was higher than that of the S-Tube, indicating that the M-Tube had a relatively lower method detection limit. In the field application to the sewage treatment plant, 29 compounds were identified, and their concentration ranged from 0.3 to 98 ppbv (above MDL). The detected compounds were considered odor-causing VOCs, and the odor contribution of the compounds could be assessed. We ultimately concluded that comprehensive odor management could be established by determining trace VOCs. Full article
Show Figures

Graphical abstract

19 pages, 1925 KiB  
Article
Development and Validation of a Method for the Simultaneous Quantification of 21 Microbial Volatile Organic Compounds in Ambient and Exhaled Air by Thermal Desorption and Gas Chromatography–Mass Spectrometry
by Sarah Tabbal, Badr El Aroussi, Michèle Bouchard, Geneviève Marchand and Sami Haddad
Atmosphere 2022, 13(9), 1432; https://doi.org/10.3390/atmos13091432 - 5 Sep 2022
Cited by 4 | Viewed by 3467
Abstract
Microbial volatile organic compounds (mVOCs) are metabolites developed by indoor molds responsible for several health effects. Their detection may be an alternative approach for fungal exposure assessment, given that the classical methods have limitations. The goal of this study was to develop and [...] Read more.
Microbial volatile organic compounds (mVOCs) are metabolites developed by indoor molds responsible for several health effects. Their detection may be an alternative approach for fungal exposure assessment, given that the classical methods have limitations. The goal of this study was to develop and validate an analytical method to quantify 21 mVOCs in ambient and exhaled air using active sampling on sorbent tubes followed by thermal desorption and gas chromatography–mass spectrometry analysis. Tenax/Carbograph sorbent was selected for its extraction/desorption efficiency. Reliable linearity was obtained over the concentration range of mVOCs with low limits of detection (≥1.76 ng/m3) and quantification (≥5.32 ng/m3). Furthermore, accuracy and precision in the percentage recoveries ranged between 80–118% with coefficients of variations lower than 4.35% for all mVOCs. Feasibility tests with ambient air of different places (toxicology laboratory, office, and mold contaminated bedroom) showed that variations between settings were observable and that the highest mVOCs concentrations in the bedroom. Consequently, concentrations of 17 mVOCs were higher in the volunteer’s exhalate after exposure in the bedroom than in the laboratory. In conclusion, this method allows the detection of mVOCs in a new matrix, i.e., exhaled air and targeting the contaminated environment and, therefore, intervening for the protection of human health. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

20 pages, 1110 KiB  
Article
Comparative Investigation of Conventional and Innovative Headspace Extraction Methods to Explore the Volatile Content of Human Milk
by Sarah Le Roy, Catherine Fillonneau, Benoist Schaal, Carole Prost, Angélique Villière and MILKODOR Consortium
Molecules 2022, 27(16), 5299; https://doi.org/10.3390/molecules27165299 - 20 Aug 2022
Cited by 4 | Viewed by 2033
Abstract
The odor of human milk induces search-like movements and oral activation in newborns, which increases their chances of taking advantage of milk intake and benefits. However, the underlying volatile fraction of human milk remains understudied. This study aimed to devise a simple method [...] Read more.
The odor of human milk induces search-like movements and oral activation in newborns, which increases their chances of taking advantage of milk intake and benefits. However, the underlying volatile fraction of human milk remains understudied. This study aimed to devise a simple method to extract a wide range of volatile compounds from small-volume human milk samples. Headspace solid phase micro-extraction (HS-SPME) with a Car/PDMS fiber and dynamic headspace extraction (D-HS) with a Tenax or a trilayer sorbent were tested because of their selective affinity for volatiles. Then, innovative variations of these methods were developed to combine their respective advantages in a one-step extraction: Static headspace with multiple SPME fibers (S-HS-MultiSPME), Dynamic headspace with multiple SPME fibers (D-HS-MultiSPME) and dynamic headspace with multiple SPME fibers and Tenax (D-HS-MultiSPME/Tenax). The extracts were analyzed by gas chromatography coupled with mass spectrometric and flame ionization detection. The relative performances of these methods were compared based on qualitative and semi-quantitative analyses of the chromatograms. The D-HS technique showed good sensitivity for most compounds, whereas HS-SPME favored the extraction of acids. The D-HS-MultiSPME/Tenax identified more than 60 compounds from human milk (some for the first time) and evidence of individual singularities. This method that can be applied to volatilome analysis of any biological fluid should further our understanding of human milk odor. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

14 pages, 3860 KiB  
Article
Optimization Study of Sampling Device for Semi-Volatile Oil Mist in the Industrial Workshop
by Yukun Wang, Zhengwei Long, Hongsheng Zhang, Xiong Shen and Tao Yu
Atmosphere 2022, 13(7), 1048; https://doi.org/10.3390/atmos13071048 - 30 Jun 2022
Cited by 5 | Viewed by 2326
Abstract
A large number of metalworking fluids in industrial manufacturing processes generate high-concentrations of oil mist pollution, which is a typical semi-volatile aerosol and is generally composed of liquid particles and volatile gas components. Long-term exposure to oil mist pollution brings a series of [...] Read more.
A large number of metalworking fluids in industrial manufacturing processes generate high-concentrations of oil mist pollution, which is a typical semi-volatile aerosol and is generally composed of liquid particles and volatile gas components. Long-term exposure to oil mist pollution brings a series of occupational diseases to workers. For the semi-volatile aerosol, the traditional filter sampling method will lead to particle volatilization, which underestimates the concentration of particles and overestimates the concentration of gas. Therefore, this study combined the advantages of the electrostatic method and the Tenax tube adsorption method, to develop a more accurate measurement technology. First, a dichotomous sampler that could efficiently separate the gas and liquid phases of aerosols was optimized through a numerical model, which was validated by literature results. Next, a test table for oil mist sampling was built with a sampler which was fabricated by 3D printing, and the performance of the sampler was evaluated. The results show that the sampling technique can separate the gas and particulate phases of the oil mist efficiently and accurately. Compared with the traditional single sampling methods, the new sampler can better determine the true concentration of oil mist. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

14 pages, 1427 KiB  
Article
Quantitative Analysis of Indoor Gaseous Semi-Volatile Organic Compounds Using Solid-Phase Microextraction: Active Sampling and Calibration
by Jianping Cao, Li Zhang, Zhibin Cheng, Siqi Xie, Runze Li, Ying Xu and Haibao Huang
Atmosphere 2022, 13(5), 693; https://doi.org/10.3390/atmos13050693 - 26 Apr 2022
Cited by 5 | Viewed by 2559
Abstract
Semi-volatile organic compounds (SVOCs) are important pollutants in indoor environments. Quantification of gaseous SVOC concentrations is essential to assess the pollution levels. Solid-phase microextraction (SPME) is considered to be an attractive sampling technique with merits, including simplicity of use, rapid sampling, and solvent [...] Read more.
Semi-volatile organic compounds (SVOCs) are important pollutants in indoor environments. Quantification of gaseous SVOC concentrations is essential to assess the pollution levels. Solid-phase microextraction (SPME) is considered to be an attractive sampling technique with merits, including simplicity of use, rapid sampling, and solvent free. However, the applications of SPME for sampling gaseous SVOCs are often limited by the fluctuating velocity of indoor air (leading to an unstable sampling rate) and the uncertainties associated with the traditional calibration of SPME. Therefore, we established an SPME-based active sampler to ensure the stable sampling of SVOCs in fluctuating air and developed a two-step calibration method based on the sampling principle of SPME. The presented method and a traditional method (sorbent tubes packed with Tenax TA) were simultaneously used to measure SVOC concentrations in an airstream generated in experiments. Three typical indoor SVOCs, diisobutyl phthalate (DiBP), tris (1-chloro-2-propyl) phosphate (TCPP), and benzyl butyl phthalate (BBzP) were chosen as the analytes. Mean concentrations measured by SPME agreed well with the sorbent tubes (relative deviations <12%), supporting the feasibility of the presented method. Further studies are expected to facilitate the application of the presented method (especially the problem associated with the sampling-tube loss of low volatile SVOCs). Full article
(This article belongs to the Special Issue Characterization and Mitigation of Indoor Air Pollution)
Show Figures

Figure 1

15 pages, 4578 KiB  
Article
Primary and Secondary Emissions of VOCs and PAHs in Indoor Air from a Waterproof Coal-Tar Membrane: Diagnosis and Remediation
by Rafael Piñeiro, Eva Jimenez-Relinque, Roman Nevshupa and Marta Castellote
Int. J. Environ. Res. Public Health 2021, 18(23), 12855; https://doi.org/10.3390/ijerph182312855 - 6 Dec 2021
Cited by 6 | Viewed by 3014
Abstract
Primary and secondary emissions of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) from a waterproof coal tar membrane and their effect on the indoor air quality were investigated through a case study in a residential building situated in Madrid, Spain. The [...] Read more.
Primary and secondary emissions of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) from a waterproof coal tar membrane and their effect on the indoor air quality were investigated through a case study in a residential building situated in Madrid, Spain. The air contaminants were analyzed in situ using photoionization method and several samples of contaminants were taken using three sorbents: activated carbon, XAD2 and Tenax GR. It was found that various VOCs such as toluene, p- and m-Xylene, PAHs such as naphthalene, methyl-naphthalenes, acenaphthene, acenaphthylene, phenanthrene and fluorine, volatile organic halogens including chloroform and trichlorofluoromethane, and alkylbenzene (1,2,4-trimethylbenzene) were found at concentrations, which exceeded the limits established by international and national agencies (WHO, EPA, OSHA). Some of the above organic compounds were found also in the samples of construction and building materials, which were obtained at different heights and places. The analysis of possible sources of the contaminants pointed at the original coal-tar membrane, which was applied on the terrace to be waterproof. During a posterior reparation the membrane was coated with a new one that hindered dissipation of emitted contaminants. The contaminants leached out and were absorbed by construction materials down in the dwelling. These materials then acted as secondary emission sources. To remediate the emission problem as the contaminated materials were removed and then a ventilation system was installed to force the gasses being emitted from the rest of contaminated slab outside. Follow-up has validated the success of the remediation procedure. Full article
Show Figures

Figure 1

15 pages, 1395 KiB  
Article
Occurrence of Volatile and Semi-Volatile Organic Pollutants in the Russian Arctic Atmosphere: The International Siberian Shelf Study Expedition (ISSS-2020)
by Dmitry S. Kosyakov, Irina S. Shavrina, Nikolay V. Ul’yanovskii, Dmitry E. Lakhmanov and Albert T. Lebedev
Atmosphere 2021, 12(6), 767; https://doi.org/10.3390/atmos12060767 - 14 Jun 2021
Cited by 9 | Viewed by 3874
Abstract
Environmental issues in the Arctic region are of primary importance due to the fragility of the Arctic ecosystem. Mainly persistent organic compounds are monitored in the region by nine stationary laboratories. Information on the volatile (VOC) and semi volatile (SVOC) organic priority pollutants [...] Read more.
Environmental issues in the Arctic region are of primary importance due to the fragility of the Arctic ecosystem. Mainly persistent organic compounds are monitored in the region by nine stationary laboratories. Information on the volatile (VOC) and semi volatile (SVOC) organic priority pollutants is very limited, especially for the Russian Arctic. Air samples from 16 sites along the Russian Arctic coast from the White Sea to the East Siberian Sea were collected on sorption tubes packed with Tenax, Carbograph, and Carboxen sorbents with different selectivity for a wide range of VOCs and SVOCs in 2020 within the framework of the International Siberian Shelf Study Expedition on the research vessel Akademik Keldysh. Thermal desorption gas chromatography–high-resolution mass spectrometry with Orbitrap was used for the analysis. Eighty-six VOCs and SVOCs were detected in the air samples at ng/m3 levels. The number of quantified compounds varied from 26 to 66 per sample. Benzoic acid was the major constituent, followed by BTEX, phenol, chloroform, bis(2-ethylhexyl) phthalate, and carbon tetrachloride. The study allowed for obtaining the first ever data on the presence of 138 priority pollutants in the air of Russian Arctic, whereas the thorough assessment of their possible sources will be the aim of a next investigation. Full article
(This article belongs to the Special Issue Air Pollution in the Polar Regions: Levels, Sources and Trends)
Show Figures

Figure 1

18 pages, 1672 KiB  
Article
Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment
by Isis Frausto-Vicencio, Alondra Moreno, Hugh Goldsmith, Ying-Kuang Hsu and Francesca M. Hopkins
Sensors 2021, 21(6), 2095; https://doi.org/10.3390/s21062095 - 17 Mar 2021
Cited by 12 | Viewed by 5331
Abstract
In this study, we test the performance of a compact gas chromatograph with photoionization detector (GC-PID) and optimize the configuration to detect ambient (sub-ppb) levels of benzene, toluene, ethylbenzene, and xylene isomers (BTEX). The GC-PID system was designed to serve as a relatively [...] Read more.
In this study, we test the performance of a compact gas chromatograph with photoionization detector (GC-PID) and optimize the configuration to detect ambient (sub-ppb) levels of benzene, toluene, ethylbenzene, and xylene isomers (BTEX). The GC-PID system was designed to serve as a relatively inexpensive (~10 k USD) and field-deployable air toxic screening tool alternative to conventional benchtop GCs. The instrument uses ambient air as a carrier gas and consists of a Tenax-GR sorbent-based preconcentrator, a gas sample valve, two capillary columns, and a photoionization detector (PID) with a small footprint and low power requirement. The performance of the GC-PID has been evaluated in terms of system linearity and sensitivity in field conditions. The BTEX-GC system demonstrated the capacity to detect BTEX at levels as high as 500 ppb with a linear calibration range of 0–100 ppb. A detection limit lower than 1 ppb was found for all BTEX compounds with a sampling volume of 1 L. No significant drift in the instrument was observed. A time-varying calibration technique was established that requires minimal equipment for field operations and optimizes the sampling procedure for field measurements. With an analysis time of less than 15 min, the compact GC-PID is ideal for field deployment of background and polluted atmospheres for near-real time measurements of BTEX. The results highlight the application of the compact and easily deployable GC-PID for community monitoring and screening of air toxics. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 5252 KiB  
Article
Hydrogen Purity Analysis: Suitability of Sorbent Tubes for Trapping Hydrocarbons, Halogenated Hydrocarbons and Sulphur Compounds
by Karine Arrhenius, Haleh Bohlen, Oliver Büker, Iris de Krom, Dita Heikens and Janneke van Wijk
Appl. Sci. 2020, 10(1), 120; https://doi.org/10.3390/app10010120 - 23 Dec 2019
Cited by 4 | Viewed by 4798
Abstract
The ISO 14687-2 standard sets requirements for the purity of the hydrogen that is delivered at refuelling stations. These specifications cover a wide range of impurities and include challenging measurements, mainly due to the very low levels of the required detection limits and [...] Read more.
The ISO 14687-2 standard sets requirements for the purity of the hydrogen that is delivered at refuelling stations. These specifications cover a wide range of impurities and include challenging measurements, mainly due to the very low levels of the required detection limits and the need for “total” measurements (total hydrocarbons, total sulphur compounds, halogenated compounds). Most of the compounds belonging to the species are organic. Thermal desorption often coupled with gas chromatography is a common speciation method used to determine the content of organic impurities. However, no existing sorbent tubes are sufficiently universal to trap all possible impurities; depending on the sorbents and the sampling volume, some compounds may irreversibly adsorb or may break through. It is therefore necessary to evaluate sorbents for the compounds targeted at the level required. In this study, the suitability of sorbent tubes for trapping organic impurities in hydrogen was investigated. Suitable sorbents were selected based on a literature review of suitable sorbent materials. Short-term stability studies for compounds among hydrocarbons, halogenated compounds and sulphur compounds on the selected sorbents have then been performed for storage periods of two weeks since this is the period typically required to complete the collection, transport and analysis of hydrogen samples. The study clearly shows that the method is promising for total species, even through the results show that not all of the compounds belonging to the three total species to be analysed when performing hydrogen purity analysis can be quantified on one unique sorbent. A multibed sorbent consisting of Tenax TA (weak), Carboxen 1003 (medium), Carbograph 1 (strong) is shown to be a versatile sorbent suitable for the three “total species”; only a few compounds from each family would need to be analysed using other analytical methods. This method proposed here for total species will not only provide a sum of concentrations, but also an identification of which compound(s) is/are actually present in the hydrogen. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

13 pages, 3300 KiB  
Communication
Developing a Method for the Collection and Analysis of Burnt Remains for the Detection and Identification of Ignitable Liquid Residues Using Body Bags, Dynamic Headspace Sampling, and TD-GC×GC-TOFMS
by Katie D. Nizio and Shari L. Forbes
Separations 2018, 5(3), 46; https://doi.org/10.3390/separations5030046 - 17 Sep 2018
Cited by 5 | Viewed by 5915
Abstract
In cases of suspected arson, a body may be intentionally burnt to cause loss of life, dispose of remains, or conceal identification. A primary focus of a fire investigation, particularly involving human remains, is to establish the cause of the fire; this often [...] Read more.
In cases of suspected arson, a body may be intentionally burnt to cause loss of life, dispose of remains, or conceal identification. A primary focus of a fire investigation, particularly involving human remains, is to establish the cause of the fire; this often includes the forensic analysis of fire debris for the detection of ignitable liquid residues (ILRs). Commercial containers for the collection of fire debris evidence include metal cans, glass jars, and polymer/nylon bags of limited size. This presents a complication in cases where the fire debris consists of an intact, or partially intact, human cadaver. This study proposed the use of a body bag as an alternative sampling container. A method was developed and tested for the collection and analysis of ILRs from burnt porcine remains contained within a body bag using dynamic headspace sampling (using an Easy-VOC™ hand-held manually operated grab-sampler and stainless steel sorbent tubes containing Tenax TA) followed by thermal desorption comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (TD-GC×GC-TOFMS). The results demonstrated that a body bag containing remains burnt with gasoline tested positive for the presence of gasoline, while blank body bag controls and a body bag containing remains burnt without gasoline tested negative. The proposed method permits the collection of headspace samples from burnt remains before the remains are removed from the crime scene, limiting the potential for contamination and the loss of volatiles during transit and storage. Full article
(This article belongs to the Special Issue Advances in Fire Debris Analysis)
Show Figures

Graphical abstract

10 pages, 273 KiB  
Article
Evaluation of Bio-VOC Sampler for Analysis of Volatile Organic Compounds in Exhaled Breath
by Jae Kwak, Maomian Fan, Sean W. Harshman, Catherine E. Garrison, Victoria L. Dershem, Jeffrey B. Phillips, Claude C. Grigsby and Darrin K. Ott
Metabolites 2014, 4(4), 879-888; https://doi.org/10.3390/metabo4040879 - 29 Sep 2014
Cited by 38 | Viewed by 9471
Abstract
Monitoring volatile organic compounds (VOCs) from exhaled breath has been used to determine exposures of humans to chemicals. Prior to analysis of VOCs, breath samples are often collected with canisters or bags and concentrated. The Bio-VOC breath sampler, a commercial sampling device, has [...] Read more.
Monitoring volatile organic compounds (VOCs) from exhaled breath has been used to determine exposures of humans to chemicals. Prior to analysis of VOCs, breath samples are often collected with canisters or bags and concentrated. The Bio-VOC breath sampler, a commercial sampling device, has been recently introduced to the market with growing use. The main advantage for this sampler is to collect the last portion of exhaled breath, which is more likely to represent the air deep in the lungs. However, information about the Bio-VOC sampler is somewhat limited. Therefore, we have thoroughly evaluated the sampler here. We determined the volume of the breath air collected in the sampler was approximately 88 mL. When sampling was repeated multiple times, with the succeeding exhalations applied to a single sorbent tube, we observed linear relationships between the normalized peak intensity and the number of repeated collections with the sampler in many of the breath VOCs detected. No moisture effect was observed on the Tenax sorbent tubes used. However, due to the limitation in the collection volume, the use of the Bio-VOC sampler is recommended only for detection of VOCs present at high concentrations unless repeated collections of breath samples on the sampler are conducted. Full article
(This article belongs to the Special Issue Breath Analysis in Metabolomics)
Show Figures

Figure 1

17 pages, 1221 KiB  
Article
Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals
by Raquel Cumeras, William H.K. Cheung, Frances Gulland, Dawn Goley and Cristina E. Davis
Metabolites 2014, 4(3), 790-806; https://doi.org/10.3390/metabo4030790 - 12 Sep 2014
Cited by 22 | Viewed by 9654
Abstract
We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition [...] Read more.
We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research. Full article
(This article belongs to the Special Issue Breath Analysis in Metabolomics)
Show Figures

Figure 1

Back to TopTop