Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = temperature perturbation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6607 KB  
Article
Energy Transfer Characteristics of Surface Vortex Heat Flow Under Non-Isothermal Conditions Based on the Lattice Boltzmann Method
by Qing Yan, Lin Li and Yunfeng Tan
Processes 2026, 14(2), 378; https://doi.org/10.3390/pr14020378 - 21 Jan 2026
Viewed by 48
Abstract
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to [...] Read more.
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to deterioration of downstream product quality and abnormal equipment operation. The vortex evolution process exhibits notable three-dimensional unsteadiness, multi-scale turbulence, and dynamic gas–liquid interfacial changes, accompanied by strong coupling effects between temperature gradients and flow field structures. Traditional macroscopic numerical models show clear limitations in accurately capturing these complex physical mechanisms. To address these challenges, this study developed a mesoscopic numerical model for gas-liquid two-phase vortex flow based on the lattice Boltzmann method. The model systematically reveals the dynamic behavior during vortex evolution and the multi-field coupling mechanism with the temperature field while providing an in-depth analysis of how initial perturbation velocity regulates vortex intensity and stability. The results indicate that vortex evolution begins near the bottom drain outlet, with the tangential velocity distribution conforming to the theoretical Rankine vortex model. The vortex core velocity during the critical penetration stage is significantly higher than that during the initial depression stage. An increase in the initial perturbation velocity not only enhances vortex intensity and induces low-frequency oscillations of the vortex core but also markedly promotes the global convective heat transfer process. With regard to the temperature field, an increase in fluid temperature reduces the viscosity coefficient, thereby weakening viscous dissipation effects, which accelerates vortex development and prolongs drainage time. Meanwhile, the vortex structure—through the induction of Taylor vortices and a spiral pumping effect—drives shear mixing and radial thermal diffusion between fluid regions at different temperatures, leading to dynamic reconstruction and homogenization of the temperature field. The outcomes of this study not only provide a solid theoretical foundation for understanding the generation, evolution, and heat transfer mechanisms of vortices under industrial thermal conditions, but also offer clear engineering guidance for practical production-enabling optimized operational parameters to suppress vortices and enhance drainage efficiency. Full article
(This article belongs to the Section Energy Systems)
8 pages, 248 KB  
Article
Fermi Sea Topology and Boundary Geometry for Free Particles in One- and Two-Dimensional Lattices
by Guillermo R. Zemba
Mathematics 2026, 14(2), 303; https://doi.org/10.3390/math14020303 - 15 Jan 2026
Viewed by 134
Abstract
Free gases of spinless fermions moving on a lattice-symmetric geometric background are considered. Their topological properties at zero temperature can be used to classify their Fermi seas and associated boundaries. The flat orbifolds Rd/Γ, where Γ is the crystallographic [...] Read more.
Free gases of spinless fermions moving on a lattice-symmetric geometric background are considered. Their topological properties at zero temperature can be used to classify their Fermi seas and associated boundaries. The flat orbifolds Rd/Γ, where Γ is the crystallographic group of symmetry in d-dimensional momentum space, are used to accomplish this task. Two topological classes exist for d=1: an interval, which is identified as a conductor, and a circumference, which corresponds to an insulator. The number of topological classes increases to 17 for d=2: 8 have the topology of a disk, that are generally recognized as conductors, and 4 correspond to a two-sphere, matching insulators. Both sets eventually contain a finite number of conical singularities and reflection corners at the boundaries. The remaining cases in the listing relate to conductors (annulus, Möbius strip) and insulators (two-torus, real projective plane, Klein bottle). Examples that fall under this list are given, along with physical interpretations of the singularities. It is anticipated that the findings of this classification will be robust under perturbative interactions due to its topological character. Full article
(This article belongs to the Special Issue Effective Field Theories for Condensed Matter and Statistical Systems)
15 pages, 1797 KB  
Article
Embryonic Thermal Manipulation Affects Neurodevelopment and Induces Heat Tolerance in Layers
by Zixuan Fan, Yuchen Jie, Bowen Niu, Xinyu Wu, Xingying Chen, Junying Li and Li-Wa Shao
Genes 2026, 17(1), 35; https://doi.org/10.3390/genes17010035 - 30 Dec 2025
Viewed by 204
Abstract
Background/Objectives: The poultry industry faces severe heat-stress challenges that threaten both economic sustainability and animal welfare. Embryonic thermal manipulation (ETM) has been proposed as a thermal programming strategy to enhance chick heat tolerance, yet its efficacy in layers requires verification, and its effects [...] Read more.
Background/Objectives: The poultry industry faces severe heat-stress challenges that threaten both economic sustainability and animal welfare. Embryonic thermal manipulation (ETM) has been proposed as a thermal programming strategy to enhance chick heat tolerance, yet its efficacy in layers requires verification, and its effects on growth performance and neurodevelopment remain unclear. Methods: White Leghorn embryos at embryonic days 13 to 18 (ED 13–18) were exposed to 39.5 °C (ETM). Hatch traits and thermotolerance were recorded, and morphometric and histopathological analyses were performed on brain sections. Transcriptome profiling of the whole brains and hypothalami was conducted to identify differentially expressed genes (DEGs). Representative pathway genes responsive to ETM were validated by RT-qPCR. Results: ETM reduced hatchability, increased deformity rate, and decreased hatch weight and daily weight gain. During a 37.5 °C challenge, ETM chicks exhibited delayed panting and lower cloacal temperature. Histopathology revealed impaired neuronal development and myelination. Transcriptomic analysis of ED18 whole brains showed DEGs enriched in neurodevelopment, stimulus response, and homeostasis pathways. RT-qPCR confirmed hypothalamic sensitivity to ETM: up-regulation of heat-shock gene HSP70, antioxidant gene GPX1, the inflammatory marker IL-6, and apoptotic genes CASP3, CASP6, CASP9; elevated neurodevelopmental marker DCX, indicative of a stress-responsive neuronal state; and reduced orexigenic neuropeptide AGRP. Conclusions: ETM improves heat tolerance in layers but compromises hatching performance and brain development, with widespread perturbation of hypothalamic stress responses and neurodevelopmental gene networks. These findings elucidate the mechanisms underlying ETM and provide a reference for enhancing thermotolerance in poultry. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3245 KB  
Article
Swirl Flame Stability for Hydrogen-Enhanced LPG Combustion in a Low-Swirl Burner: Experimental Investigation
by Abdulrahman E. J. Alhamd, Abdulrazzak Akroot and Hasanain A. Abdul Wahhab
Appl. Sci. 2026, 16(1), 347; https://doi.org/10.3390/app16010347 - 29 Dec 2025
Viewed by 218
Abstract
Recent progress in hydrogen combustion indicates that hydrogen could partially or fully replace traditional fuels in power plants, but maintaining stable flames remains a major challenge for many combustion systems. This study presents the effect of hydrogen enrichment of Liquid Petroleum Gas (LPG) [...] Read more.
Recent progress in hydrogen combustion indicates that hydrogen could partially or fully replace traditional fuels in power plants, but maintaining stable flames remains a major challenge for many combustion systems. This study presents the effect of hydrogen enrichment of Liquid Petroleum Gas (LPG) on the low-swirl flame structure and flame temperature at different hydrogen mass fractions and equivalence ratios (φ = 0.501 and 1.04). The experimental observations for low-swirl flames under various conditions, including the effect of increasing hydrogen enrichment from 0% to ~20%, were discussed. Experiments were performed using a swirl burner, flame photography, and temperature measurements to evaluate the dynamic swirl flame, stability, and flame temperature distribution. The results show that moderate hydrogen enrichment (5–15%) improves flame stability and delays blow-off. In contrast, very high hydrogen concentrations may destabilize the flame due to higher reactivity and enhanced sensitivity to flow perturbations. Also, hydrogen enrichment up to ~20% enhances flame compactness, intensifies heat release, and reduces oscillatory instability without triggering blow-off or flashback, making hydrogen blending a promising strategy for stabilizing swirl flames at rich operating conditions. Finally, hydrogen enrichment consistently increases swirl flame temperature at both equivalence ratios. Full article
(This article belongs to the Special Issue Clean Combustion Technologies and Renewable Fuels)
Show Figures

Figure 1

18 pages, 3018 KB  
Article
Different Climate Responses to Northern, Tropical, and Southern Volcanic Eruptions in CMIP6 Models
by Qinghong Zeng and Shengbo Chen
Climate 2026, 14(1), 8; https://doi.org/10.3390/cli14010008 - 28 Dec 2025
Viewed by 540
Abstract
Explosive volcanic eruptions are key drivers of climate variability, yet their hemispheric-dependent impacts remain uncertain. Using multi-model ensembles from Coupled Model Intercomparison Project Phase 6 (CMIP6) historical data and Decadal Climate Prediction Project (DCPP) simulations, this study examines how the spatial distribution of [...] Read more.
Explosive volcanic eruptions are key drivers of climate variability, yet their hemispheric-dependent impacts remain uncertain. Using multi-model ensembles from Coupled Model Intercomparison Project Phase 6 (CMIP6) historical data and Decadal Climate Prediction Project (DCPP) simulations, this study examines how the spatial distribution of volcanic aerosols modulates climate responses to Northern Hemisphere (NH), Tropical (TR), and Southern Hemisphere (SH) eruptions. The CMIP6 ensemble captures observed temperature and precipitation patterns, providing a robust basis for assessing volcanic effects. The results show that the hemispheric distribution of aerosols strongly controls radiative forcing, surface air temperature, and hydrological responses. TR eruptions cause nearly symmetric cooling and widespread tropical rainfall reduction, while NH and SH eruptions produce asymmetric temperature anomalies and clear Intertropical Convergence Zone (ITCZ) displacements away from the perturbed hemisphere. The vertical temperature structure, characterized by stratospheric warming and tropospheric cooling, further amplifies hemispheric contrasts through enhanced cross-equatorial energy transport and shifts in the Hadley circulation. ENSO-like responses depend on eruption latitude, TR and NH eruptions favor El Niño–like warming through westerly wind anomalies and Bjerknes feedback, and SH eruptions induce La Niña–like cooling. The DCPP experiments confirm that these signals primarily arise from volcanic forcing rather than internal variability. These findings highlight the critical role of aerosol asymmetry and vertical temperature structure in shaping post-eruption climate patterns and advancing the understanding of volcanic–climate interactions. Full article
Show Figures

Figure 1

26 pages, 1111 KB  
Article
Heat Waves and Photovoltaic Performance: Modelling, Sensitivity, and Economic Impacts in Portugal
by Rui Castro and Isabela Teixeira
Sustainability 2026, 18(1), 289; https://doi.org/10.3390/su18010289 - 27 Dec 2025
Viewed by 412
Abstract
The increasing frequency and intensity of heat waves across Southern Europe pose growing challenges to the performance and profitability of photovoltaic (PV) systems. This study quantifies the impact of elevated ambient temperatures on three large-scale PV power plants located in distinct Portuguese climatic [...] Read more.
The increasing frequency and intensity of heat waves across Southern Europe pose growing challenges to the performance and profitability of photovoltaic (PV) systems. This study quantifies the impact of elevated ambient temperatures on three large-scale PV power plants located in distinct Portuguese climatic zones: Amareleja, Alcoutim, and Tábua. Using 15 years of hourly meteorological data from PVGIS (2009–2023), five temperature models—NOCT, Faiman, PVSyst, NOCT (SAM), and Sandia—were implemented to estimate cell temperature and corresponding PV output under reference and elevated temperature conditions (+2 °C and +5 °C). A three-fold sensitivity analysis assessed (i) the influence of module parameters (temperature coefficient and NOCT), (ii) the effect of stochastic, non-uniform temperature perturbations mimicking realistic heat waves, and (iii) the impact of the selected PV performance model by comparing the simplified linear temperature-corrected approach with the one-diode and three-parameter (1D + 3P) model. Results show that a uniform +2 °C rise reduces annual energy yield by 0.74% and a +5 °C rise by 1.85%, while stochastic perturbations slightly amplify these losses to 0.80% and 2.01%. The 1D + 3P model predicts stronger nonlinear effects, with reductions of −2.42% and −6.06%. Although modest at plant scale, such impacts could translate into annual national revenue losses exceeding 10 million EUR, considering Portugal’s 6.32 GW installed PV capacity. The findings highlight the importance of accounting for realistic temperature dynamics and model uncertainty when assessing PV performance under a warming climate. Full article
Show Figures

Figure 1

29 pages, 10446 KB  
Article
Safety Risk Analysis of a Construction Project on a Tropical Island
by Bo Huang, Junwu Wang, Jun Huang, Chunbao Yuan and Sijun Lv
Appl. Sci. 2026, 16(1), 271; https://doi.org/10.3390/app16010271 - 26 Dec 2025
Viewed by 226
Abstract
Construction projects on tropical islands face a high incidence of safety accidents due to complex environmental conditions, construction technologies, and varying levels of worker safety awareness. Traditional risk analysis frameworks, constrained by narrow analytical perspectives, struggle to account for the escalating uncertainties and [...] Read more.
Construction projects on tropical islands face a high incidence of safety accidents due to complex environmental conditions, construction technologies, and varying levels of worker safety awareness. Traditional risk analysis frameworks, constrained by narrow analytical perspectives, struggle to account for the escalating uncertainties and safety perturbations inherent in tropical island construction processes. To address this gap, and to improve upon both Health Safety and Environment Management System (HSE) and Bayesian Networks (BN) methods, an IHIB model for construction safety risk analysis of tropical island buildings was established. The Improve Health Safety and Environment Management System (IHSE) method constructs an indicator system from six dimensions: institutional, health, organizational, safety, environmental, and emergency response factors. The Improved Bayesian network (IBN)method, by introducing fuzzy set theory and an improved similarity aggregation method, more accurately infers the influencing factors and the most probable causal chains for construction safety on tropical islands. Taking the Sanya Haitang Bay construction project as a case study, the IHIB analysis model reveals that high temperatures and strong winds are the decisive factors influencing construction safety risks on tropical islands. The findings contribute to proactive risk prevention and mitigation, offering practical guidance for enhancing construction safety management on tropical islands. Full article
(This article belongs to the Special Issue Risk Assessment for Hazards in Infrastructures)
Show Figures

Figure 1

15 pages, 2558 KB  
Article
Influence of Silver Nanoparticles on Liposomal Membrane Properties Relevant in Photothermal Therapy
by Maria Lyudmilova, Lyubomir Stoychev, Denitsa Yancheva, Stoyanka Nikolova, Mina Todorova, Charilaos Xenodochidis, Kamelia Hristova-Panusheva, Natalia Krasteva and Julia Genova
Appl. Sci. 2026, 16(1), 220; https://doi.org/10.3390/app16010220 - 24 Dec 2025
Viewed by 311
Abstract
Silver nanoparticles (AgNPs) are promising agents for nanomedicine but their interactions with lipid membranes, which are a key interfaces for drug delivery, require a deeper understanding. This study investigates the influence of fructose-capped AgNPs on the physicochemical properties of SOPC-based liposomal bilayers, with [...] Read more.
Silver nanoparticles (AgNPs) are promising agents for nanomedicine but their interactions with lipid membranes, which are a key interfaces for drug delivery, require a deeper understanding. This study investigates the influence of fructose-capped AgNPs on the physicochemical properties of SOPC-based liposomal bilayers, with potential implications for drug delivery and photothermal therapy. We employed a multitechnique approach, including infrared (IR) spectroscopy, differential scanning calorimetry (DSC), thermally induced shape fluctuation analysis, and laser irradiation at 343, 515, and 1030 nm. Our results show that AgNPs incorporated into the bilayer cause measurable perturbations: DSC reveals a decrease in the main phase transition enthalpy (from 0.280 to 0.234 J/g) and temperature (from 2.80 to 3.41 °C), while shape fluctuation analysis indicates a reduction in bending modulus (from 1.18 × 10−19 J to 0.93 × 10−19 J), confirming increased membrane fluidity. FTIR confirms interactions of fructose-capped nanoparticles and the lipid’s carbonyl and phosphate groups. Furthermore, the AgNPs-liposomes exhibit a strong, wavelength-dependent photothermal response with a temperature increase of ≈22 °C under 515 nm laser irradiation, compared to only 3–5 °C at 1030 nm. We conclude that fructose-capped AgNPs moderately fluidify lipid bilayers while enabling efficient, controllable photothermal capability, making them excellent candidates for the eventual design of advanced liposomal systems for combined therapy and diagnostics. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

11 pages, 2756 KB  
Article
Raw Material Heating and Optical Glass Synthesis Using Microwaves
by Takeshi Miyata, Keiichiro Kashimura and Kiyoyuki Momono
Processes 2026, 14(1), 54; https://doi.org/10.3390/pr14010054 - 23 Dec 2025
Viewed by 368
Abstract
Microwaves have been used as a heat source in various chemical processes, and their application range is expanding to include high-temperature processes. Existing microwave-based methods for glass syntheses predominantly involve coating and drying. Moreover, microwaves have rarely been applied to glass melting, which [...] Read more.
Microwaves have been used as a heat source in various chemical processes, and their application range is expanding to include high-temperature processes. Existing microwave-based methods for glass syntheses predominantly involve coating and drying. Moreover, microwaves have rarely been applied to glass melting, which consumes a large amount of energy. In this study, the raw materials required for preparing optical glass were heated using microwaves to reduce the energy consumption of the glass-melting process. Microwaves were applied to the raw materials of a typical optical glass, i.e., borosilicate crown glass (BK7). The results indicated that the raw materials rapidly reached the target temperature of 1000 °C and were heated particularly well at temperatures above 500 °C. This was reflected in the high microwave absorption of BK7 above 500 °C, as confirmed by dielectric-constant measurements in the high-temperature range using resonance perturbation. Additionally, BK7 was heated on a 100 g scale in a large microwave-concentrated hexagonal furnace. The obtained glass exhibited a refractive index of 1.5155 (d-line of helium: λ = 587.56 nm), which is comparable to that obtained via conventional heating. Our findings are expected to help reduce the time needed for glass melting considerably and conserve energy, thus contributing to a sustainable society. Full article
Show Figures

Figure 1

35 pages, 14987 KB  
Article
High-Resolution Modeling of Storm Surge Response to Typhoon Doksuri (2023) in Fujian, China: Impacts of Wind Field Fusion, Parameter Sensitivity, and Sea-Level Rise
by Ziyi Xiao and Yimin Lu
J. Mar. Sci. Eng. 2026, 14(1), 5; https://doi.org/10.3390/jmse14010005 - 19 Dec 2025
Viewed by 394
Abstract
To quantitatively assess the storm surge induced by Super Typhoon Doksuri (2023) along the complex coastline of Fujian Province, a high-resolution Finite-Volume Coastal Ocean Model (FVCOM) was developed, driven by a refined Holland–ERA5 hybrid wind field with integrated physical corrections. The hybrid approach [...] Read more.
To quantitatively assess the storm surge induced by Super Typhoon Doksuri (2023) along the complex coastline of Fujian Province, a high-resolution Finite-Volume Coastal Ocean Model (FVCOM) was developed, driven by a refined Holland–ERA5 hybrid wind field with integrated physical corrections. The hybrid approach retains the spatiotemporal coherence of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis in the far field, while incorporating explicit inner-core adjustments for quadrant asymmetry, sea-surface-temperature dependency, and bounded decay after landfall. A series of numerical experiments were conducted, including paired tidal-only and full storm-forcing simulations, along with a systematic sensitivity ensemble in which bottom-friction parameters were perturbed and the anomalous (typhoon-related) wind component was scaled by factors ranging from 0.8 to 1.2. Static sea-level rise (SLR) scenarios (+0.3 m, +0.5 m, +1.0 m) were imposed to evaluate their influence on extreme water levels. Storm surge extremes were analyzed using a multi-scale coastal buffer framework, comparing two extreme extraction methods: element-mean followed by time-maximum, and node-maximum then assigned to elements. The model demonstrates high skill in reproducing astronomical tides (Pearson r = 0.979–0.993) and hourly water level series (Pearson r > 0.98) at key validation stations. Results indicate strong spatial heterogeneity in the sensitivity of surge levels to both bottom friction and wind intensity. While total peak water levels rise nearly linearly with SLR, the storm surge component itself exhibits a nonlinear response. The choice of extreme-extraction method significantly influences design values, with the node-based approach yielding peak values 0.8% to 4.5% higher than the cell-averaged method. These findings highlight the importance of using physically motivated adjustments to wind fields, extreme-value analysis across multiple coastal buffer scales, and uncertainty quantification in future SLR-informed coastal risk assessments. By integrating analytical, physics-based inner-core corrections with sensitivity experiments and multi-scale analysis, this study provides an enhanced framework for storm surge modeling suited to engineering and coastal management applications. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

24 pages, 8113 KB  
Article
Incorporation of Temperature Impact on Hot-Carrier Degradation into Compact Physics Model
by Stanislav Tyaginov, Erik Bury, Alexander Grill, Ethan Kao, An De Keersgieter, Alexander Makarov, Michiel Vandemaele, Alessio Spessot, Adrian Chasin and Ben Kaczer
Micromachines 2025, 16(12), 1424; https://doi.org/10.3390/mi16121424 - 18 Dec 2025
Viewed by 478
Abstract
We extend our compact physics model (CPM) for hot-carrier degradation (HCD) to cover the impact of ambient temperature on HCD. Three components of this impact are taken into account. First, variations in temperature perturb carrier transport. Second, the thermal component of Si-H bond [...] Read more.
We extend our compact physics model (CPM) for hot-carrier degradation (HCD) to cover the impact of ambient temperature on HCD. Three components of this impact are taken into account. First, variations in temperature perturb carrier transport. Second, the thermal component of Si-H bond rupture becomes more prominent at elevated temperatures. Third, vibrational lifetime of the bond decreases with temperature. While the first and the third mechanisms impede HCD, the second one accelerates this detrimental phenomenon. The aforementioned mechanisms are consolidated in our extended CPM, which was verified against experimental data acquired from foundry quality n-channel transistors with a gate length of 28 nm. For model validation, we use experimental data recorded using four combinations of gate and drain voltages and across a broad temperature range of 150–300 K. We demonstrate that the extended CPM is capable of reproducing measured degradation ΔId,lin(t) (normalized change of the linear drain current with stress time) traces with good accuracy over a broad temperature range. Full article
(This article belongs to the Special Issue Reliability Issues in Advanced Transistor Nodes, Second Edition)
Show Figures

Figure 1

47 pages, 2290 KB  
Article
Enhanced Henry Gas Solubility Optimization for Solving Data and Engineering Design Problems
by Jamal Zraqou, Ayman Alnsour, Riyad Alrousan, Hussam N. Fakhouri and Niveen Halalsheh
Eng 2025, 6(12), 374; https://doi.org/10.3390/eng6120374 - 18 Dec 2025
Viewed by 280
Abstract
Many engineering design problems are formulated as constrained optimization tasks that are nonlinear and nonconvex, and often treated as black boxes. In such cases, metaheuristic algorithms are attractive because they can search complex design spaces without requiring gradient information. In this work, we [...] Read more.
Many engineering design problems are formulated as constrained optimization tasks that are nonlinear and nonconvex, and often treated as black boxes. In such cases, metaheuristic algorithms are attractive because they can search complex design spaces without requiring gradient information. In this work, we propose an Enhanced Henry Gas Solubility Optimization (eHGSO) algorithm, which is an improved version of the physics-inspired HGSO method. The enhanced variant introduces six main contributions: (i) a more diverse, population-wide initialization strategy to cover the design space more thoroughly; (ii) adaptive temperature/pressure control parameters that automatically shift the search from global exploration to local refinement; (iii) an elitist archive with differential perturbation that accelerates exploitation around high-quality candidate designs; (iv) a simple combination of the global HGSO search moves with a lightweight gradient-free local search to refine promising solutions; (v) a constraint-handling mechanism that explicitly prioritizes feasible solutions while still allowing exploration near the constraint boundaries; and (vi) a complexity and ablation analysis that quantifies the impact of each mechanism and confirms that they introduce only modest computational overhead. We evaluate eHGSO on four classical constrained engineering design problems: the stepped cantilever beam, the tension/compression spring, the welded beam, and the three-bar truss. Its performance is compared with seventeen recent metaheuristic optimizers over multiple independent runs. eHGSO achieves the best average objective value on the cantilever, spring, and welded-beam problems and shares the best average result on the three-bar truss. Compared to the second-best method, the mean objective is improved by about 0.84% for the cantilever beam and 0.35% for the welded beam, while the spring and truss results are essentially equivalent at four significant figures. Convergence and robustness analyses show that eHGSO reaches high-quality solutions quickly and consistently. Overall, the proposed eHGSO algorithm appears to be a competitive and practical tool for constrained engineering design problems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

26 pages, 3837 KB  
Article
Design and Performance Analysis of MPPT Algorithms Applied to Multistring Thermoelectric Generator Arrays Under Multiple Thermal Gradients
by Emerson Rodrigues de Lira, Eder Andrade da Silva, Sergio Vladimir Barreiro Degiorgi, João Paulo Pereira do Carmo and Oswaldo Hideo Ando Junior
Energies 2025, 18(24), 6613; https://doi.org/10.3390/en18246613 - 18 Dec 2025
Viewed by 325
Abstract
Thermoelectric systems configured in multistring arrays of thermoelectric generators (TEGs) represent a promising solution for energy harvesting in environments with non-uniform thermal gradients. However, the presence of multiple maximum power points (MPPs) in such configurations poses significant challenges to energy extraction efficiency. This [...] Read more.
Thermoelectric systems configured in multistring arrays of thermoelectric generators (TEGs) represent a promising solution for energy harvesting in environments with non-uniform thermal gradients. However, the presence of multiple maximum power points (MPPs) in such configurations poses significant challenges to energy extraction efficiency. This study presents a comprehensive performance evaluation of four maximum power point tracking (MPPT) algorithms, Perturb and Observe (P&O), Incremental Conductance (InC), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), applied to multistring thermoelectric generator (TEG) arrays under multiple and asymmetric thermal gradients. The simulated systems, modeled in MATLAB/Simulink, replicate real-world thermoelectric configurations by employing series-parallel topologies and eleven distinct thermal scenarios, including uniform, localized, and sinusoidal temperature distributions. The key contribution of this work lies in demonstrating the superior capability of metaheuristic algorithms (PSO and GA) to locate the global maximum power point (GMPP) in complex thermal environments, outperforming classical methods (P&O and InC), which consistently converged to local maxima under multi-peak conditions. Notably, PSO achieved the best average convergence time (0.23 s), while the GA recorded the fastest response (0.05 s) in the most challenging multi-peak scenarios. Both maintained high tracking accuracy (error ≈ 0.01%) and minimized power ripple, resulting in conversion efficiencies exceeding 97%. The study emphasizes the crucial role of algorithm selection in maximizing energy harvesting performance in practical TEG applications such as embedded systems, waste heat recovery, and autonomous sensor networks. Future directions include physical validation through prototypes, incorporation of dynamic thermal modeling, and development of hybrid or AI-enhanced MPPT strategies. Full article
Show Figures

Figure 1

23 pages, 10338 KB  
Article
Numerical Analysis of the Three-Dimensional Interaction Between Nanosecond-Pulsed Actuation and Pulsed H2 Jets in Supersonic Crossflow
by Keyu Li, Jiangfeng Wang and Yuxuan Gu
Aerospace 2025, 12(12), 1113; https://doi.org/10.3390/aerospace12121113 - 17 Dec 2025
Viewed by 198
Abstract
A combined flow control method, integrating nanosecond pulsed surface dielectric barrier discharge (NS-SDBD) with pulsed jets, is proposed to address the challenge of low mixing efficiency in supersonic combustion. Numerical validation and mechanism analysis were conducted by solving the three-dimensional unsteady Reynolds-averaged Navier–Stokes [...] Read more.
A combined flow control method, integrating nanosecond pulsed surface dielectric barrier discharge (NS-SDBD) with pulsed jets, is proposed to address the challenge of low mixing efficiency in supersonic combustion. Numerical validation and mechanism analysis were conducted by solving the three-dimensional unsteady Reynolds-averaged Navier–Stokes (RANS) equations, coupled with the shear stress transport (SST) k–ω turbulence model. The simulations were carried out under a Mach 2.8 inflow condition with a 50 kHz pulsed frequency for H2 jets. The results demonstrate that, compared to the steady jet case, the combined control scheme increases the combustion product mass flow rate by 27.1% and enhances combustion efficiency by 26.8%. The average temperature in the wake region increases by 65 K, while the total pressure recovery coefficient shows only a marginal change. The pressure disturbance center evolves along the outer edge of the counter-rotating vortex pair (CVP) and is eventually absorbed by the vortex core. This process generates favorable velocity and vorticity perturbations, which enhance O2 entrainment into the CVP and increase the average wake temperature. Meanwhile, the strengthened reflected shock induces favorable velocity perturbations in the upper shear layer of the wake and further elevates the local temperature. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 4912 KB  
Article
Comparative Study of Distributed Acoustic Sensing Responses in Telecommunication Optical Cables
by Abdulfatah A. G. Abushagur, Mohd Ridzuan Mokhtar, Noor Shafikah Md Rodzi, Khazaimatol Shima Subari, Siti Azlida Ibrahim, Zulkifli Mahmud, Zulfadzli Yusoff, Andre Franzen and Hairul Abdul Rashid
Sensors 2025, 25(24), 7600; https://doi.org/10.3390/s25247600 - 15 Dec 2025
Viewed by 516
Abstract
Distributed Acoustic Sensing (DAS) transforms conventional optical fibres into large-scale acoustic sensor arrays. While existing telecommunication cables are increasingly considered for DAS-based monitoring, their performance depends strongly on cable construction and strain transfer efficiency. In this study, the relative DAS signal amplitudes of [...] Read more.
Distributed Acoustic Sensing (DAS) transforms conventional optical fibres into large-scale acoustic sensor arrays. While existing telecommunication cables are increasingly considered for DAS-based monitoring, their performance depends strongly on cable construction and strain transfer efficiency. In this study, the relative DAS signal amplitudes of three commercial telecommunication optical cables were experimentally compared using a benchtop Rayleigh backscattering-based interrogator under controlled laboratory conditions. By maintaining a constant temperature and ensuring no additional strain changes from the outside environment, we guaranteed that only strain-induced variations from acoustic excitations were measured. The results show clear differences in signal amplitude and signal-to-noise ratio (SNR) among the tested cables. The Microcable consistently produced the highest spatial peak amplitude (up to 0.029 a.u.) and SNR (up to 79), while the Duct cable reached 0.00268 a.u. with mean SNR ≈ 32. The Anti-Rodent cable showed low signal amplitude (0.0018 a.u.) but exhibited a high mean SNR (≈111) driven by an exceptional low noise floor in one of the runs. These findings reflect the variations in mechanical coupling between the fibre core and external perturbations and provide practical insights into the suitability of different telecom cable types for DAS applications, supporting informed choices for future deployments. Full article
(This article belongs to the Special Issue Distributed Fibre Optic Sensing Technologies and Applications)
Show Figures

Figure 1

Back to TopTop