Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,105)

Search Parameters:
Keywords = temperature controller

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3613 KB  
Article
Modeling and Optimization of Phenolic Compound Adsorption from Olive Wastewater Using XAD-4 Resin, Activated Carbon, and Chitosan Biosorbent
by Chaimaa Hakim, Hélène Carrère, Abdessadek Essadek, Soukaina Terroufi, Audrey Battimelli, Renaud Escudie, Jérôme Harmand and Mounsef Neffa
Appl. Sci. 2026, 16(3), 1231; https://doi.org/10.3390/app16031231 (registering DOI) - 25 Jan 2026
Abstract
This study proposes a circular economy strategy to recover phenolic compounds by valorizing shrimp shell waste into a chitosan biosorbent (CH-B). Its adsorption efficiency was evaluated compared to commercial activated carbon (AC) and synthetic XAD-4 resin. Kinetic analysis revealed that while both pseudo-first-order [...] Read more.
This study proposes a circular economy strategy to recover phenolic compounds by valorizing shrimp shell waste into a chitosan biosorbent (CH-B). Its adsorption efficiency was evaluated compared to commercial activated carbon (AC) and synthetic XAD-4 resin. Kinetic analysis revealed that while both pseudo-first-order (PFO) and pseudo-second-order (PSO) models exhibited high correlations (R2  0.96), both CH-B and XAD-4 resin were best described by the PFO model. This aligns with diffusion-controlled processes consistent with the porous and physical nature of these adsorbents. In contrast, AC followed the PSO model. Isotherm modeling indicated that CH-B and AC fit the Temkin model, reflecting heterogeneous surfaces, whereas XAD-4 followed the Langmuir model (monolayer adsorption). Notably, CH-B exhibited a maximum adsorption capacity (qm) of 229.2 mg/g, significantly outperforming XAD-4 (104.8 mg/g) and AC (90.2 mg/g). Thermodynamic and kinetic modeling confirmed that the adsorption mechanism was governed by a combination of electrostatic interactions, π–π stacking, and hydrogen bonding between the hydroxyl/amine groups of chitosan and phenolic compounds. Optimization using Box–Behnken design for CH-B showed optimal acidic pH and moderate temperature but non-significant effect of CH-B dose in the experimental domain. Optimisation results showed unexpected high removal efficiency at low CH-B dosages. A tentative explanation may be adsorbent aggre-gation, which needs to be confirmed by further experimental evidence. Full article
Show Figures

Figure 1

15 pages, 6046 KB  
Article
Design and Characterization of a Fully Automated Free-Standing Liquid Crystal Film Holder
by Elias Bürkle, Marius Lutz, Klara M. Meyer-Hermann, Azat Khadiev, Dmitri Novikov, Patrick Friebel and Laura Cattaneo
Liquids 2026, 6(1), 7; https://doi.org/10.3390/liquids6010007 (registering DOI) - 25 Jan 2026
Abstract
We present the design and characterization of a fully automated free-standing liquid crystal (FSLC) film holder, enabling remote and precise control of liquid crystal (LC) volume release, wiping speed, and temperature. Using 4-octyl-4′-cyanobiphenyl (8CB) as a test material, we systematically investigated the influence [...] Read more.
We present the design and characterization of a fully automated free-standing liquid crystal (FSLC) film holder, enabling remote and precise control of liquid crystal (LC) volume release, wiping speed, and temperature. Using 4-octyl-4′-cyanobiphenyl (8CB) as a test material, we systematically investigated the influence of formation parameters on the resulting film thickness and temporal evolution. Thickness measurements performed by monitoring the difference in optical path lengths of two arms of a standard optical intensity autocorrelation setup reveal that the wiping speed is the dominant factor determining both the initial film thickness and the subsequent annealing dynamics, while temperature becomes relevant only at the highest wiping speeds. Faster wiping speeds consistently produce thinner and more uniform FSLC films on the order of 3 µm, due to reduced LC mass deposition. Time-resolved optical and X-ray scattering measurements confirm the presence of an annealing phase following film formation, which can last for between 1 s and 10 min time scales, until a stable smectic configuration is reached. The holder provides a reliable and fully remote tool for generating high-quality FSLC films at rates up to 1 Hz, suitable for optical to hard X-ray experiments where direct access to the sample environment is limited. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

19 pages, 1924 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 (registering DOI) - 25 Jan 2026
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
23 pages, 3554 KB  
Article
Hybrid Mechanism–Data-Driven Modeling for Crystal Quality Prediction in Czochralski Process
by Duqiao Zhao, Junchao Ren, Xiaoyan Du, Yixin Wang and Dong Ding
Crystals 2026, 16(2), 86; https://doi.org/10.3390/cryst16020086 (registering DOI) - 25 Jan 2026
Abstract
The V/G criterion is a critical indicator for monitoring dynamic changes during Czochralski silicon single crystal (Cz-SSC) growth. However, the inability to measure it in real time forces reliance on offline feedback for process regulation, leading to imprecise control and compromised crystal quality. [...] Read more.
The V/G criterion is a critical indicator for monitoring dynamic changes during Czochralski silicon single crystal (Cz-SSC) growth. However, the inability to measure it in real time forces reliance on offline feedback for process regulation, leading to imprecise control and compromised crystal quality. To overcome this limitation, this paper proposes a novel soft sensor modeling framework that integrates both mechanism-based knowledge and data-driven learning for the real-time prediction of the crystal quality parameter, specifically the V/G value (the ratio of growth rate to axial temperature gradient). The proposed approach constructs a hybrid prediction model by combining a data-driven sub-model with a physics-informed mechanism sub-model. The data-driven component is developed using an attention-based dynamic stacked enhanced autoencoder (AD-SEAE) network, where the SEAE structure introduces layer-wise reconstruction operations to mitigate information loss during hierarchical feature extraction. Furthermore, an attention mechanism is incorporated to dynamically weigh historical and current samples, thereby enhancing the temporal representation of process dynamics. In addition, a robust ensemble approach is achieved by fusing the outputs of two subsidiary models using an adaptive weighting strategy based on prediction accuracy, thereby enabling more reliable V/G predictions under varying operational conditions. Experimental validation using actual industrial Cz-SSC production data demonstrates that the proposed method achieves high-prediction accuracy and effectively supports real-time process optimization and quality monitoring. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

42 pages, 30007 KB  
Article
Fundamental Analysis of Sinter Solid Structure: Implications of Mineral Associations for Understanding Industrial Iron Ore Sinter Formation
by John M. F. Clout, Natalie A. Ware, James R. Manuel, Nathan A. S. Webster and Mark I. Pownceby
Minerals 2026, 16(2), 129; https://doi.org/10.3390/min16020129 (registering DOI) - 25 Jan 2026
Abstract
The solid structure of industrial sinter comprises seven mineral associations (A, B, C, D, Ds, E, N) which have different relative abundances of key minerals, textures and spatial relationships to micro-macropores and hematite nuclei. Among the key characteristics of the mineral associations: (MA), [...] Read more.
The solid structure of industrial sinter comprises seven mineral associations (A, B, C, D, Ds, E, N) which have different relative abundances of key minerals, textures and spatial relationships to micro-macropores and hematite nuclei. Among the key characteristics of the mineral associations: (MA), MA-A comprises abundant SFCA-I microplates with hematite; MA-B consists of disseminated fine-grained magnetite in a network of SFCA-III microplates; MA-C is similar to MA-B but contains patches of dendritic SFCA-III with larnite and minor glass; MA-D comprises magnetite surrounded by coarse prisms of SFCA within glass; MA-Ds, a subtype of MA-D, includes SFCA with secondary skeletal hematite; MA-E consists of anhedral to skeletal magnetite or hematite in a matrix of glass; and MA-N comprises unmelted hematite nuclei from iron ore feedstock. SFCA-III and SFCA-I are dominant in MA-B and MA-A, respectively, whilst magnetite is the most common mineral in MA-C, MA-D/Ds and MA-E. Low-temperature sintering samples are largely of MA-A to MA-D (62 area %), which contain higher combined levels of SFCA-SFCA-III and lower levels of magnetite-dominant MA-E (12.6 area %), whereas high-temperature/magnetite sintering examples had high levels of magnetite-dominant MA-E (31.6 area %) and MA-D/Ds (52.1 area %) and low levels of MA-A to MA-C (8.9 area %). It is proposed that the formation of each MA is controlled by the peak sintering temperature attained, the dwell time at higher temperature which adversely allows fractional crystallisation to tie up more Fe in magnetite rather than forming SFCA phases during cooling, and especially a slower rate of cooling which promotes the formation of more SFCA family phases at lower temperatures. However, local variations in chemistry inherited from raw material granulation and assimilation during sintering of Si-rich gangue or ore nuclei are also important. Full article
(This article belongs to the Special Issue Mineralogy of Iron Ore Sinters, 3rd Edition)
31 pages, 6026 KB  
Article
Selective Extraction of Lithium from Li Batteries by Leaching the Black Mass in Oxalic Acid
by Kristina Talianova, Martina Laubertová, Zita Takáčová, Jakub Klimko, Jaroslav Briančin, Simon Nagy and Dušan Oráč
Batteries 2026, 12(2), 43; https://doi.org/10.3390/batteries12020043 (registering DOI) - 25 Jan 2026
Abstract
In this work, a method for leaching black mass from spent Li batteries using oxalic acid was developed and experimentally verified with the objective of selectively separating lithium and cobalt. Oxalic acid proved to be an efficient and selective leaching agent. Under 1 [...] Read more.
In this work, a method for leaching black mass from spent Li batteries using oxalic acid was developed and experimentally verified with the objective of selectively separating lithium and cobalt. Oxalic acid proved to be an efficient and selective leaching agent. Under 1 M C2H2O4, 120 min, L:S = 20, 80 °C and 300 rpm, a lithium yield of 90% was achieved, while cobalt dissolution remained low at 1.57%. Subsequently, cobalt spontaneously precipitated from the leachate within several hours, and the solid phase was fully separated after 24 h. The leachate contained minor amounts of accompanying metals, with dissolution yields of 0.5% Mn, 8% Fe and 1.4% Cu. These impurities were removed from the leachate by controlled pH adjustment using NaOH at ambient temperature and 450 rpm, with complete precipitation at pH 12. This procedure generated a purified lithium-rich leachate, which was converted into lithium oxalate by crystallisation at 105 °C. Subsequent calcination of the resulting solid at 450 °C for 30 min produced Li2CO3 with a purity of 91%. Based on the experimental findings, a conceptual technological process for selective lithium leaching using oxalic acid was proposed, demonstrating the potential of this method for sustainable lithium recovery. Full article
41 pages, 5336 KB  
Review
From Processing to Performance: Innovations and Challenges in Ceramic-Based Materials
by Sachin Kumar Sharma, Sandra Gajević, Lokesh Kumar Sharma, Yogesh Sharma, Mohit Sharma, Saša Milojević, Slobodan Savić and Blaža Stojanović
Crystals 2026, 16(2), 85; https://doi.org/10.3390/cryst16020085 (registering DOI) - 25 Jan 2026
Abstract
In aerospace, defense, and energy systems, ceramic matrix composites (CMCs) are smart structural materials designed to function continuously in harsh mechanical, thermal, and oxidative conditions. Using high-strength fiber reinforcements and tailored interphases that enable damage-tolerant behavior, their creation tackles the intrinsic brittleness and [...] Read more.
In aerospace, defense, and energy systems, ceramic matrix composites (CMCs) are smart structural materials designed to function continuously in harsh mechanical, thermal, and oxidative conditions. Using high-strength fiber reinforcements and tailored interphases that enable damage-tolerant behavior, their creation tackles the intrinsic brittleness and low fracture toughness of monolithic ceramics. With a focus on chemical vapor infiltration, polymer infiltration and pyrolysis, melt infiltration, and additive manufacturing, this paper critically analyzes current developments in microstructural design, processing technologies, and interfacial engineering. Toughening mechanisms are examined in connection to multiscale mechanical responses, including controlled debonding, fiber bridging, fracture deflection, and energy dissipation pathways. Cutting-edge environmental barrier coatings are assessed alongside environmental durability issues like oxidation, volatilization, and hot corrosion. High-performance braking, nuclear systems, hypersonic vehicles, and turbine propulsion are evaluated as emerging uses. Future directions emphasize self-healing systems, ultra-high-temperature design, and environmentally friendly production methods. Full article
Show Figures

Figure 1

20 pages, 1792 KB  
Article
Genome-Wide Analysis of the Heat Shock Transcription Factor Gene Family in Flammulina filiformis and Its Response to CO2-Mediated Fruit Body Development
by Xinlian Duan, Xing Han, Ruixiang Zhao, Ying Gan, Jie Chen, Renyun Miao, Junbin Lin, Rencai Feng, Zongjun Tong, Bingcheng Gan and Junjie Yan
Horticulturae 2026, 12(2), 132; https://doi.org/10.3390/horticulturae12020132 (registering DOI) - 24 Jan 2026
Abstract
Flammulina filiformis is the key industrial edible fungus that requires elevated CO2 to promote the growth of long stipe and small pileus fruiting bodies. Heat shock transcription factors (HSFs) play vital roles in stress response and development regulation; yet the HSF gene [...] Read more.
Flammulina filiformis is the key industrial edible fungus that requires elevated CO2 to promote the growth of long stipe and small pileus fruiting bodies. Heat shock transcription factors (HSFs) play vital roles in stress response and development regulation; yet the HSF gene family and its expression dynamics during fruiting body development in F. filiformis remain uncharacterized. This study aims to identify and characterize the HSF gene family in F. filiformis and to investigate their expression patterns during fruiting body development and in response to CO2 treatments. In this study, 7 FfHSFs were identified, and their structures, sequence features, and phylogenetics were further analyzed. Expression patterns under CO2 regulation were examined via qRT-PCR. The FfHSFs exhibited CDS lengths of 618–2298 bp, encoding 301–765 hydrophilic amino acids, with molecular weights ranging from 23.4 to 83.8 kDa and theoretical pI values between 4.75 and 9.15. All were predicted to be nuclear-localized. Cis-element analysis revealed motifs associated with growth regulation and stress responses such as low temperature, drought, and hypoxia. Phylogenetically, fungal HSFs were grouped into five clusters, with FfHSFs distributed across four. In this study, we examined the expression levels at four time points (0 h, 2 h, 12 h, and 36 h), under three different carbon dioxide concentrations (0.1%, 5%, and 20%) and in two types of tissues (pileus and stipe) for each six biological replicates. CO2 treatments showed that 5% CO2 significantly suppressed pileus expansion but not stipe elongation, while 20% CO2 inhibited both. Under 20% CO2 treatment, the pileus diameter decreased by approximately 40%, and simultaneously, the expression level of FfHSF1 decreased by about 70%. qRT-PCR indicated that FfHSF1 decreased with pileus expansion, whereas FfHSF4 increased. All FfHSFs were highly expressed in the stipe elongation zone. Elevated CO2 down-regulated FfHSF1 in pileus and FfHSF6 in stipes. Based on these findings, it could be proposed that FfHSF1 and FfHSF6 might be candidate regulators in CO2-mediated morphogenesis, providing insights into hormonal and environmental control of fruiting body development in F. filiformis. Full article
(This article belongs to the Special Issue Edible Mushrooms: Genetics, Genomics, and Breeding)
13 pages, 1249 KB  
Article
Optimization of Efficient Tungsten Extraction Process from Wolframite by Na2CO3 Alkaline Melting
by Yang Zheng, Liwen Zhang, Hailong Bai and Xiaoli Xi
Minerals 2026, 16(2), 126; https://doi.org/10.3390/min16020126 (registering DOI) - 24 Jan 2026
Abstract
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using [...] Read more.
Tungsten is a critical metal for advanced industrial applications, yet its supply is challenged by the depletion of high-grade ores. This study presents a comprehensive optimization and mechanistic analysis of the alkaline fusion process for extracting tungsten from wolframite ((Fe,Mn)WO4) using sodium carbonate (Na2CO3). Experimental investigations systematically evaluated the effects of alkali-to-ore ratio, reaction temperature (650–1000 °C), and reaction duration (30–270 min). Optimal conditions were established at a 2:1 Na2CO3-to-ore molar ratio, a reaction temperature of 750 °C, and a holding time of 30 min, achieving a tungsten extraction efficiency exceeding 99.9%. This represents a significant improvement in energy and process efficiency over conventional methods. A novel kinetic analysis reveals a two-stage reaction mechanism, transitioning from a slow, diffusion-controlled solid-state reaction (Ea = 243 kJ/mol) to a rapid, autocatalytic liquid-phase reaction (Ea = 212 kJ/mol) upon the formation of a Na2WO4–Na2CO3 eutectic above approximately 590 °C. The optimal temperature of 750 °C is rationalized as the point that ensures operation within this kinetically favorable liquid-phase regime. Furthermore, a thermochemical analysis of ore impurities indicates that silicon, lead, sulfur, and calcium are effectively sequestered into the slag phase as stable silicates, insoluble lead compounds, and sulfates, highlighting an intrinsic purification benefit. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed minimal residual tungsten in the processed slag. This streamlined process, supported by a robust mechanistic understanding, reduces alkaline consumption, shortens reaction times, and maintains high yields, offering a sustainable and efficient pathway for leveraging declining wolframite resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 11061 KB  
Article
On Microstructure Evolution and Magnetic Properties of Annealed FeNiCrMn Alloy
by Yu Zhang, Caili Ma, Jingwen Gao, Wenjie Chen, Song Zhang and Xia Huang
Metals 2026, 16(2), 141; https://doi.org/10.3390/met16020141 (registering DOI) - 24 Jan 2026
Abstract
Fe-Ni-based alloys have attracted attention due to their potential for applications such as transmission line de-icing, where the core requirements include a Curie temperature near the freezing point and sufficient saturation magnetization. Accordingly, this study designed an Fe-29Ni-2Cr-1.5Mn (at.%) alloy with a Curie [...] Read more.
Fe-Ni-based alloys have attracted attention due to their potential for applications such as transmission line de-icing, where the core requirements include a Curie temperature near the freezing point and sufficient saturation magnetization. Accordingly, this study designed an Fe-29Ni-2Cr-1.5Mn (at.%) alloy with a Curie temperature around the freezing point, aiming to investigate the correlation between microstructural evolution and magnetic properties after cold rolling and annealing. The alloy was cold-rolled by 65% and subsequently annealed at 873 K for 0 to 60 min. The study reveals systematic evolutions in the alloy’s microstructure and magnetic properties. During the initial annealing stage, recovery substructures predominantly formed within the deformed grains, accompanied by a reduction in dislocation density and lattice constant. In the later annealing stage, the recrystallized fraction increased, although complete recrystallization was not achieved. Texture analysis indicates that the intensity of the Cube texture strengthened from 0.48 to 1.13. Correspondingly, the saturation magnetization and Curie temperature increased by approximately 9.76% and 10.25%, respectively, in the early annealing period, and then stabilized thereafter. The early-stage improvement in properties is likely related to stress relief and lattice distortion relaxation during the recovery stage. The calculated magnetocrystalline anisotropy constant of this alloy at 273 K is K1 = 126 ± 18 J/m3, indicating that the <100> direction is its easy magnetization axis. This study provides insights into optimizing the magnetic properties of this alloy through controlled annealing. Full article
19 pages, 11499 KB  
Article
A Novel Plasticization Mechanism in Poly(Lactic Acid)/PolyEthyleneGlycol Blends: From Tg Depression to a Structured Melt State
by Nawel Mechernene, Lina Benkraled, Assia Zennaki, Khadidja Arabeche, Abdelkader Berrayah, Lahcene Mechernene, Amina Bouriche, Sid Ahmed Benabdellah, Zohra Bouberka, Ana Barrera and Ulrich Maschke
Polymers 2026, 18(3), 317; https://doi.org/10.3390/polym18030317 (registering DOI) - 24 Jan 2026
Abstract
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of [...] Read more.
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of PLA remain insufficiently understood. This study presents a comprehensive analysis of PLA plasticized with 0–20 wt% PEG 4000, employing differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and rheology. DSC confirmed excellent miscibility and a significant glass transition temperature (Tg) depression exceeding 19 °C for the highest concentration. A complex, non-monotonic evolution of crystallinity was observed, associated with the formation of different crystalline forms (α′ and α). Critically, DMA revealed that the material’s thermo-mechanical response is dominated by its thermal history: while the plasticizing effect is masked in highly crystalline, as-cast films, it is unequivocally demonstrated in quenched amorphous samples. The core finding emerges from a targeted rheological investigation. An anomalous increase in melt viscosity and elasticity at intermediate PEG concentrations (5–15 wt%), observed at 180 °C, was systematically shown to vanish at 190 °C and in amorphous samples. This proves that the anomaly stems from residual crystalline domains (α′ precursors) persisting near the melting point, not from a transient molecular network. These results establish that PEG 4000 is a highly effective PLA plasticizer whose impact is profoundly mediated by processing-induced crystallinity. This work provides essential guidelines for tailoring PLA properties by controlling thermal history to optimize flexibility and processability for advanced applications, specifically in melt-processing for flexible packaging. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

27 pages, 7306 KB  
Article
Design and Implementation of the AquaMIB Unmanned Surface Vehicle for Real-Time GIS-Based Spatial Interpolation and Autonomous Water Quality Monitoring
by Huseyin Duran and Namık Kemal Sonmez
Appl. Sci. 2026, 16(3), 1209; https://doi.org/10.3390/app16031209 (registering DOI) - 24 Jan 2026
Abstract
This article introduces the design and implementation of an Unmanned Surface Vehicle (USV), named “AquaMIB”, which introduces a novel and integrated approach for real-time and autonomous water quality monitoring in aquatic environments. The system integrates modular hardware and software, combining sensors for temperature, [...] Read more.
This article introduces the design and implementation of an Unmanned Surface Vehicle (USV), named “AquaMIB”, which introduces a novel and integrated approach for real-time and autonomous water quality monitoring in aquatic environments. The system integrates modular hardware and software, combining sensors for temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential with GPS, LiDAR, a digital compass, communication modules, and a dedicated power unit. Software components include Python on a Raspberry Pi for navigation and control, C on an Atmega 324P for sensing, C++ on an Arduino Uno for remote control, and C#/JavaScript for the web-based control center. Users assign task points, and the USV autonomously navigates, collects data, and transmits it via RESTful API. Field trials showed 96.5% navigation accuracy over 2.2 km, with 66% of task points reached within 3 m. A total of 120 measurements were processed in real time and visualized as GIS-based spatial maps. The system demonstrates a cost-effective, modular solution for aquatic monitoring. The system’s ability to generate real-time GIS maps enables immediate identification of environmental anomalies, transforming raw sensor data into an actionable decision-support tool for aquatic management. Full article
Show Figures

Figure 1

15 pages, 4616 KB  
Article
Acoustic Absorption Behavior of Boards Made from Multilayer Packaging Waste
by Miron Rancea, Ovidiu Nemeș, Ancuța-Elena Tiuc and Ovidiu Vasile
Appl. Sci. 2026, 16(3), 1206; https://doi.org/10.3390/app16031206 (registering DOI) - 24 Jan 2026
Abstract
The increasing amount of multilayer packaging waste poses significant environmental challenges and calls for sustainable valorization solutions. This study aimed to investigate the acoustic properties of composite materials produced by hot-pressing multilayer waste without the addition of binders or other substances. The waste [...] Read more.
The increasing amount of multilayer packaging waste poses significant environmental challenges and calls for sustainable valorization solutions. This study aimed to investigate the acoustic properties of composite materials produced by hot-pressing multilayer waste without the addition of binders or other substances. The waste was carefully cleaned and shredded into square or strip-like geometries, and the composite material plates were compressed at different temperatures (120 °C, 125 °C, 130 °C, 135 °C, and 140 °C) under a constant pressure of 5 MPa. The sound absorption coefficients were evaluated for representative samples, with results analyzed as a function of constituent geometry and processing temperature. Experimental results indicate that the pressing temperature critically affects the internal structure of the material, while waste shape exhibits a frequency-dependent influence on the absorption coefficient. The resulting composite materials display low porosity, which limits internal sound absorption and promotes sound wave reflection, indicating that these materials are more suitable for sound insulation rather than acoustic absorption. These results highlight the potential of multilayer packaging waste-based composites as a sustainable solution for noise control applications and highlight the importance of processing parameters in tailoring their acoustic performance. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

22 pages, 2785 KB  
Article
Intelligent Optimization of Ground-Source Heat Pump Systems Based on Gray-Box Modeling
by Kui Wang, Zijian Shuai and Ye Yao
Energies 2026, 19(3), 608; https://doi.org/10.3390/en19030608 (registering DOI) - 24 Jan 2026
Abstract
Ground-source heat pump (GSHP) systems are widely regarded as an energy-efficient solution for building heating and cooling. However, their actual performance in large commercial buildings is often limited by rigid control strategies, insufficient equipment coordination, and suboptimal load matching. In the Liuzhou Fengqing [...] Read more.
Ground-source heat pump (GSHP) systems are widely regarded as an energy-efficient solution for building heating and cooling. However, their actual performance in large commercial buildings is often limited by rigid control strategies, insufficient equipment coordination, and suboptimal load matching. In the Liuzhou Fengqing Port commercial complex, the seasonal coefficient of performance (SCOP) of the GSHP system remains at a relatively low level of 3.0–3.5 under conventional operation. To address these challenges, this study proposes a gray-box-model-based cooperative optimization and group control strategy for GSHP systems. A hybrid gray-box modeling approach (YFU model), integrating physical-mechanism modeling with data-driven parameter identification, is developed to characterize the energy consumption behavior of GSHP units and variable-frequency pumps. On this basis, a multi-equipment cooperative optimization framework is established to coordinate GSHP unit on/off scheduling, load allocation, and pump staging. In addition, continuous operational variables (e.g., chilled-water supply temperature and circulation flow rate) are globally optimized within a hierarchical control structure. The proposed strategy is validated through both simulation analysis and on-site field implementation, demonstrating significant improvements in system energy efficiency, with annual electricity savings of no less than 3.6 × 105 kWh and an increase in SCOP from approximately 3.2 to above 4.0. The results indicate that the proposed framework offers strong interpretability, robustness, and engineering applicability. It also provides a reusable technical paradigm for intelligent energy-saving retrofits of GSHP systems in large commercial buildings. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
Show Figures

Figure 1

11 pages, 1945 KB  
Article
Kinetics of Boron Recovery from Boron-Rich Slag via Low-Temperature Soda Roasting
by Jie Li, Jinbiao Li, Guolu Lv, Yanfen Li, Yan Lu, Zhaoxin Du and Quhan Mu
Materials 2026, 19(3), 469; https://doi.org/10.3390/ma19030469 (registering DOI) - 24 Jan 2026
Abstract
This study proposes an innovative process of low-temperature soda roasting followed by water leaching to extract boron and produce borax from boron-rich slag. To further enhance the leaching rate of boron, pretreatment of the boron-rich slag with the nucleating agent TiO2 was [...] Read more.
This study proposes an innovative process of low-temperature soda roasting followed by water leaching to extract boron and produce borax from boron-rich slag. To further enhance the leaching rate of boron, pretreatment of the boron-rich slag with the nucleating agent TiO2 was conducted. The effects of roasting temperature and Na2CO3 addition on the boron leaching rate, as well as the roasting kinetics of the TiO2-nucleated furnace-cooled slag, were investigated. The results indicate that at a roasting temperature of 700 °C for 150 min, the maximum boron leaching rate can reach 88.65%. The reaction of low-temperature soda roasting for TiO2-nucleated furnace-cooled slag to produce Na2B6O10 is controlled by interfacial chemical reaction, with an apparent activation energy of 88.677 kJ/mol. Full article
(This article belongs to the Special Issue Sustainable Materials for Renewable Energy Application)
Show Figures

Figure 1

Back to TopTop