Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (850)

Search Parameters:
Keywords = technology impact and risk assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 645 KB  
Article
From Control to Value: How Governance, Risk Management and Compliance Improve Operational Efficiency and Company Reputation in Saudi Technology-Driven Firms
by Wassim J. Aloulou and Nawaf F. Alshohail
Risks 2026, 14(1), 19; https://doi.org/10.3390/risks14010019 - 15 Jan 2026
Abstract
This study investigates the impact of Governance, Risk management, and Compliance (GRC) practices on operational efficiency and corporate reputation. Drawing on the Resource-Based View (RBV), Stakeholder Theory, and the signaling perspective, it conceptualizes GRC as a set of organizational capabilities that enhance operational [...] Read more.
This study investigates the impact of Governance, Risk management, and Compliance (GRC) practices on operational efficiency and corporate reputation. Drawing on the Resource-Based View (RBV), Stakeholder Theory, and the signaling perspective, it conceptualizes GRC as a set of organizational capabilities that enhance operational efficiency and company reputation. It also examines the mediating role of operational efficiency in the GRC–reputation relationship, particularly within technologically advanced and regulated sectors. Data were collected through a structured questionnaire distributed to 126 professionals across various Saudi technology-driven organizations, and the analyses combined descriptive statistics, hierarchical regression, and bootstrapped mediation testing using PROCESS to assess direct and indirect effects. The results indicate that operational efficiency partially mediates the effects of governance and compliance on reputation, supporting the argument that strengthened internal processes enhance external stakeholder evaluations; meanwhile, no mediation was found for risk management. Although the study offers meaningful insights, its sample size and sectoral focus limit the generalizability of conclusions, suggesting the need for broader or longitudinal research. This study contributes by advancing the conceptualization of GRC as organizational capabilities and empirically demonstrating their roles in strengthening both efficiency and reputation within technology-driven firms where digital governance and compliance capabilities are increasingly central. Full article
12 pages, 644 KB  
Article
Impact of Computational Histology AI Biomarkers on Clinical Management Decisions in Non-Muscle Invasive Bladder Cancer: A Multi-Center Real-World Study
by Vignesh T. Packiam, Saum Ghodoussipour, Badrinath R. Konety, Hamed Ahmadi, Gautum Agarwal, Lesli A. Kiedrowski, Viswesh Krishna, Anirudh Joshi, Stephen B. Williams and Armine K. Smith
Cancers 2026, 18(2), 249; https://doi.org/10.3390/cancers18020249 - 14 Jan 2026
Viewed by 52
Abstract
Background/Objectives: Non-muscle invasive bladder cancer (NMIBC) management is increasingly complex due to conflicting guideline-based risk classifications, ongoing Bacillus Calmette–Guérin (BCG) shortages, and emerging alternative therapies. Computational Histology Artificial Intelligence (CHAI) tests are clinically available, providing insights from tumor specimens including predicting BCG [...] Read more.
Background/Objectives: Non-muscle invasive bladder cancer (NMIBC) management is increasingly complex due to conflicting guideline-based risk classifications, ongoing Bacillus Calmette–Guérin (BCG) shortages, and emerging alternative therapies. Computational Histology Artificial Intelligence (CHAI) tests are clinically available, providing insights from tumor specimens including predicting BCG responsiveness and individualized recurrence and progression risks, which may support precision medicine. This technology features biomarkers purpose-built for clinically unmet needs and has practical advantages including a fast turnaround time and no need for consumption of tissue or other specimens. We assessed the impact of such tests on physicians’ decision-making in routine, real-world NMIBC management. Methods: Physicians at six centers ordered CHAI tests (Vesta Bladder) at their discretion during routine NMIBC care. Tumor specimens were processed by a CLIA/CAP-accredited laboratory (Valar Labs, Houston, TX, USA) where H&E-stained slides were analyzed with the CHAI assay to extract histomorphic features of the tumor and microenvironment, which were algorithmically assessed to generate biomarker test results. For each case from 24 June 2024 to 18 July 2025, ordering physicians were surveyed to assess pre- and post-test management plans and post-test result usefulness. Results: Among 105 high-grade NMIBC cases with complete survey results available, primary management changed in 67% (70/105). Changes included modality shifts (n = 7; three to radical cystectomy with high prognostic risk scores; four avoiding cystectomy with low scores) and intravesical agent change (n = 63). Surveillance was intensified in 7%, predominantly among those with ≥90th percentile risk scores. The therapeutic agent changed in 80% (40/50) of predictive biomarker-present (indicative of poor response to BCG) tumors vs. 48% (23/48) of biomarker-absent tumors. Conclusions: In two thirds of cases, CHAI biomarker results influenced clinical decision-making during routine care. BCG predictive biomarker results frequently guided intravesical agent selection. These results have implications for optimizing clinical outcomes, especially in the setting of ongoing BCG shortages. Prognostic risk stratification results guided treatment escalation vs. de-escalation, including surveillance intensification and surgical vs. bladder-sparing decisions. CHAI biomarkers are currently utilized in routine clinical care and informing precision NMIBC management. Full article
Show Figures

Figure 1

14 pages, 632 KB  
Article
Mitigating Indoor Radon Exposure: The Effect of Air Purifiers on Radon Progeny
by Katarzyna Wołoszczuk, Zuzanna Pawłowska, Mirosław Szyłak-Szydłowski, Maciej Norenberg and Joanna Lemańska
Sustainability 2026, 18(2), 823; https://doi.org/10.3390/su18020823 - 14 Jan 2026
Viewed by 58
Abstract
Radon is one of the leading causes of lung cancer worldwide. Following the implementation of the European Council Directive 2013/59/EURATOM, regular measurements of radon concentrations in workplaces have been carried out in European countries for approximately ten years. This provides a basis for [...] Read more.
Radon is one of the leading causes of lung cancer worldwide. Following the implementation of the European Council Directive 2013/59/EURATOM, regular measurements of radon concentrations in workplaces have been carried out in European countries for approximately ten years. This provides a basis for assessing the exposure of workers and the general population to radon, as well as for determining the need to implement measures aimed at reducing this exposure. In addition to commonly used methods that focus on eliminating radon sources or minimizing its ingress into buildings, there are also temporary measures available, such as using air purifiers to improve indoor air quality. Although they are not recommended as a standalone or definitive solution, they can be useful as an interim measure—until appropriate actions to reduce indoor radon concentrations are implemented. In this study, five commercially available air purifiers were tested under controlled laboratory conditions to assess their impact on radon and its decay products. The results show that none of the tested devices significantly reduced gaseous radon concentrations. However, the air purifiers were highly effective in removing radon progeny, achieving a 95–99% reduction in potential alpha energy concentration (PAEC) and reducing the equilibrium factor from 48 to 76% to 0–2%. From a sustainability perspective, these findings are relevant for public health protection, responsible consumer decision-making, and evidence-based indoor air quality management. By distinguishing between ineffective radon gas removal and effective reduction of dose-relevant decay products, this study supports sustainable risk mitigation strategies and helps prevent the misuse of energy- and resource-intensive technologies for purposes they cannot fulfill. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

32 pages, 2027 KB  
Article
Mitigating Livelihood Vulnerability of Farm Households Through Climate-Smart Agriculture in North-Western Himalayan Region
by Sonaly Bhatnagar, Rashmi Chaudhary, Yasmin Janjhua, Akhil Kashyap, Pankaj Thakur and Prashant Sharma
Resources 2026, 15(1), 14; https://doi.org/10.3390/resources15010014 - 8 Jan 2026
Viewed by 353
Abstract
Climate change brings considerable danger to India’s economic progress, with the agricultural sector and farmers’ livelihoods being particularly vulnerable. Himachal Pradesh is especially susceptible owing to its reliance on climate-sensitive economic activities and limited capacity to adapt to climate variability. Strengthening adaptation strategies [...] Read more.
Climate change brings considerable danger to India’s economic progress, with the agricultural sector and farmers’ livelihoods being particularly vulnerable. Himachal Pradesh is especially susceptible owing to its reliance on climate-sensitive economic activities and limited capacity to adapt to climate variability. Strengthening adaptation strategies in Himachal Pradesh is crucial for fortifying the resilience of communities reliant on environmental resources for their sustenance and economic well-being. This study examines the extent of adoption of Climate-Smart Agricultural Practices (CSAPs), identifies the factors influencing their uptake, and assesses their impact on the livelihood vulnerability of farm households in the temperate region of Himachal Pradesh. Using a multistage random sampling framework, data were collected from 432 farm households through primary surveys and secondary sources. The analysis employs descriptive statistics, a composite livelihood vulnerability index, and Ordinal Logistic and Multiple Linear Regression models. Results show higher adoption of low-cost practices such as composting, fruit-based agroforestry, crop–livestock integration, and mulching, while capital-intensive practices like micro-irrigation were limited due to financial constraints. Adoption is positively influenced by education, extension access, farming experience, financial resources, and climate information exposure. Importantly, CSAPs adoption is found to significantly reduce livelihood vulnerability, indicating enhanced resilience and reduced exposure to climate-induced risks among farm households. The findings highlight climate-smart agriculture as an effective adaptation strategy and underscore the need for policies that strengthen extension services, improve access to credit, and promote affordable climate-smart technologies to enhance resilience in vulnerable hill regions. Full article
Show Figures

Figure 1

23 pages, 673 KB  
Article
Advanced Energy Collection and Storage Systems: Socio-Economic Benefits and Environmental Effects in the Context of Energy System Transformation
by Alina Yakymchuk, Bogusława Baran-Zgłobicka and Russell Matia Woruba
Energies 2026, 19(2), 309; https://doi.org/10.3390/en19020309 - 7 Jan 2026
Viewed by 447
Abstract
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal [...] Read more.
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal (PV/T) hybrid systems, advanced batteries, hydrogen-based storage, and thermal energy storage (TES). Through a mixed-methods approach combining techno-economic analysis, macroeconomic modeling, and policy review, we evaluate the cost trajectories, performance indicators, and deployment impacts of these technologies across major economies. The paper also introduces a novel economic-mathematical model to quantify the long-term macroeconomic benefits of large-scale ECSS deployment, including GDP growth, job creation, and import substitution effects. Our results indicate significant cost reductions for ECSS by 2050, with battery storage costs projected to fall below USD 50 per kilowatt-hour (kWh) and green hydrogen production reaching as low as USD 1.2 per kilogram. Large-scale ECSS deployment was found to reduce electricity costs by up to 12%, lower fossil fuel imports by up to 25%, and generate substantial GDP growth and job creation, particularly in regions with supportive policy frameworks. Comparative cross-country analysis highlighted regional differences in economic effects, with the European Union, China, and the United States demonstrating the highest economic gains from ECSS adoption. The study also identified key challenges, including high capital costs, material supply risks, and regulatory barriers, emphasizing the need for integrated policies to accelerate ECSS deployment. These findings provide valuable insights for policymakers, industry stakeholders, and researchers aiming to design effective strategies for enhancing energy security, economic resilience, and environmental sustainability through advanced energy storage technologies. Full article
(This article belongs to the Special Issue Energy Economics and Management, Energy Efficiency, Renewable Energy)
Show Figures

Figure 1

26 pages, 378 KB  
Review
Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios
by Klaus Schomäcker, Ferdinand Sudbrock, Thomas Fischer, Felix Dietlein, Markus Dietlein, Philipp Krapf and Alexander Drzezga
Int. J. Mol. Sci. 2026, 27(2), 590; https://doi.org/10.3390/ijms27020590 - 6 Jan 2026
Viewed by 329
Abstract
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile [...] Read more.
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile organic forms, which evade standard filtration and reflect metabolic pathways of iodine turnover. Our experimental work in patients and mice confirms the metabolic origin of these species, modulated by thyroidal function. In nuclear reactor environments, both under routine operation and during accidents, organic iodides such as [131I]CH3I have also been identified as major airborne components, often termed “penetrating iodine” due to their low adsorption to conventional filters. This review compares the molecular speciation, environmental persistence, and dosimetric impact of airborne I-131 across clinical, technical, and accidental release scenarios. While routine reactor emissions yield negligible doses (<0.1 µSv/year), severe nuclear incidents like Chernobyl and Fukushima have resulted in significant thyroid exposures. Doses from these events ranged from tens of millisieverts to several Sieverts, particularly in children. We argue that a deeper understanding of chemical forms is essential for effective risk assessment, filtration technology, and emergency preparedness. Iodine-131 exemplifies the dual nature of radioactive substances: in nuclear medicine its radiotoxicity is therapeutically harnessed, whereas in industrial or reactor contexts it represents an unwanted hazard. The same physicochemical properties that enable therapeutic efficacy also determine, in the event of uncontrolled release, the range, persistence, and the potential for unwanted radiotoxic exposure in the general population. In nuclear medicine, exhaled activity after radioiodine therapy is minute but largely organically bound, reflecting enzymatic and metabolic methylation processes. During normal reactor operation, airborne iodine levels are negligible and dominated by inorganic vapors efficiently captured by filtration systems. In contrast, major accidents released large fractions of volatile iodine, primarily as elemental [131I]I2 and organically bound iodine species like [131I]CH3I. The chemical nature of these compounds defined their atmospheric lifetime, transport distance, and deposition pattern, thereby governing the thyroid dose to exposed populations. Chemical speciation is the key determinant across all scenarios. Exhaled iodine in medicine is predominantly organic; routine reactor releases are negligible; severe accidents predominantly release elemental and organic iodine that drive environmental transport and exposure. Integrating these domains shows how chemical speciation governs volatility, mobility, and bioavailability. The novelty of this review lies not in introducing new iodine chemistry, but in the systematic comparative synthesis of airborne radioiodine speciation across medical therapy, routine nuclear operation, and severe accident scenarios, identifying chemical form as the unifying determinant of volatility, environmental transport, and dose. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
18 pages, 296 KB  
Article
Lender of Last Resort and Financial Systemic Risks in Times of Economic Stability: Evidence from 55 Countries
by Wenlong Miao, Yuxian Ma and Yuanyuan Huo
Int. J. Financial Stud. 2026, 14(1), 9; https://doi.org/10.3390/ijfs14010009 - 6 Jan 2026
Viewed by 229
Abstract
As a cornerstone of the modern financial safety net, the Lender of Last Resort (LOLR) is essential in mitigating liquidity crises and containing financial contagion. However, during periods of economic stability, risk-taking incentives in the banking sector may undermine its effectiveness. Using quarterly [...] Read more.
As a cornerstone of the modern financial safety net, the Lender of Last Resort (LOLR) is essential in mitigating liquidity crises and containing financial contagion. However, during periods of economic stability, risk-taking incentives in the banking sector may undermine its effectiveness. Using quarterly panel data from 55 countries over the period 2010–2023, this study employs a two-way fixed effects model to assess the impact of LOLR support on systemic financial risk and its transmission mechanisms. We find that LOLR support significantly increases systemic risk during stable economic periods. Mechanism analysis indicates that this effect is channeled through the erosion of bank asset liquidity, expansion of financial leverage, and deterioration in asset quality. Moreover, the adverse impact is more pronounced in emerging economies, bank-dominated financial systems, countries with low capital adequacy ratios, underdeveloped regulatory frameworks, and lower levels of digital technology adoption. This study provides cross-country evidence on the potential negative consequences of central bank rescue functions during calm periods and offers important policy insights for optimizing the LOLR framework and building a more resilient financial safety net. Full article
11 pages, 519 KB  
Article
CarieCheck: An mHealth App for Caries-Risk Self-Assessment—User-Perceived Usability and Quality in a Pilot Study
by Eduardo Guerreiro, Guilherme Souza, José João Mendes, Ana Cristina Manso and João Botelho
Dent. J. 2026, 14(1), 31; https://doi.org/10.3390/dj14010031 - 5 Jan 2026
Viewed by 500
Abstract
Background/Objectives: Mobile health (mHealth) technologies are increasingly used to support preventive oral care and patient self-management. CarieCheck is a Portuguese app intended to improve oral health literacy and support caries-risk self-assessment. This prospective pilot study focused on users’ perceived app quality and usability, [...] Read more.
Background/Objectives: Mobile health (mHealth) technologies are increasingly used to support preventive oral care and patient self-management. CarieCheck is a Portuguese app intended to improve oral health literacy and support caries-risk self-assessment. This prospective pilot study focused on users’ perceived app quality and usability, assessed with uMARS-PT. Methods: Thirty participants from the academic community of Egas Moniz School of Health and Science used the app for 30 days and completed the uMARS-PT questionnaire. Descriptive statistics were used to calculate mean scores for Engagement, Functionality, Aesthetics, Information Quality, Subjective Quality, and Perceived Impact. Results: The overall mean uMARS-PT score was 4.22, indicating excellent perceived quality. The highest domain scores were Functionality (4.51), Aesthetics (4.45), and Information Quality (4.22). Engagement (3.71) and Subjective Quality (3.05) were moderate. Perceived Impact (3.85) reflected self-reported perception of increased awareness and motivation regarding oral health behaviors. Conclusions: CarieCheck was rated highly in usability, aesthetics, and information quality. These findings suggest that CarieCheck may be considered as a digital tool for preventive education and user-supported caries-risk self-assessment. Larger, longer-term studies in diverse populations using objective behavioral and clinical outcomes are warranted. Full article
Show Figures

Figure 1

18 pages, 1069 KB  
Protocol
Preventing Indigenous Cardiovascular Disease and Diabetes Through Exercise (PrIDE) Study Protocol: A Co-Designed Wearable-Based Exercise Intervention with Indigenous Peoples in Australia
by Morwenna Kirwan, Connie Henson, Blade Bancroft-Duroux, David Meharg, Vita Christie, Amanda Capes-Davis, Sara Boney, Belinda Tully, Debbie McCowen, Katrina Ward, Neale Cohen and Kylie Gwynne
Diabetology 2026, 7(1), 9; https://doi.org/10.3390/diabetology7010009 - 4 Jan 2026
Viewed by 187
Abstract
Chronic diseases disproportionately impact Indigenous peoples in Australia, with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) representing leading causes of morbidity and mortality. Despite evidence supporting community-based exercise interventions for T2DM management, no culturally adapted programs utilizing wearable technology have been [...] Read more.
Chronic diseases disproportionately impact Indigenous peoples in Australia, with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) representing leading causes of morbidity and mortality. Despite evidence supporting community-based exercise interventions for T2DM management, no culturally adapted programs utilizing wearable technology have been co-designed specifically with Indigenous Australian communities. This study protocol aims to determine if wearable-based exercise interventions can effectively prevent CVD development and manage T2DM progression in Indigenous Australians through culturally safe, community-led approaches. The PrIDE study protocol describes a mixed-methods translational research design incorporating Indigenous and Western methodologies across three phases: (1) co-designing culturally adapted exercise programs and assessment tools, (2) implementing interventions with wearable monitoring, and (3) conducting evaluation and scale-up assessment. Sixty-four Indigenous Australian adults with T2DM will be recruited across remote, rural/regional sites to self-select into either individual or group exercise programs using the Withings ScanWatch 2. Primary outcomes include cardiovascular risk factors, physical fitness, and health self-efficacy measured using culturally adapted tools. Indigenous governance structures will ensure cultural safety and community ownership throughout. The PrIDE protocol presents a novel approach to improving health equity while advancing understanding of wearable technology integration in Indigenous healthcare, informing future larger-scale trials and policy development. Full article
Show Figures

Graphical abstract

23 pages, 7093 KB  
Article
Harmful Algal Blooms as Emerging Marine Pollutants: A Review of Monitoring, Risk Assessment, and Management with a Mexican Case Study
by Seyyed Roohollah Masoomi, Mohammadamin Ganji, Andres Annuk, Mohammad Eftekhari, Aamir Mahmood, Mohammad Gheibi and Reza Moezzi
Pollutants 2026, 6(1), 4; https://doi.org/10.3390/pollutants6010004 - 4 Jan 2026
Viewed by 350
Abstract
Harmful algal blooms (HABs) represent an escalating threat in marine and coastal ecosystems, posing increasing risks to ecological balance, public health, and blue economy industries including fisheries, aquaculture, and tourism. This review examines the impact of climate change and anthropogenic pressures on the [...] Read more.
Harmful algal blooms (HABs) represent an escalating threat in marine and coastal ecosystems, posing increasing risks to ecological balance, public health, and blue economy industries including fisheries, aquaculture, and tourism. This review examines the impact of climate change and anthropogenic pressures on the escalation of HAB occurrences, focusing especially on vulnerable regions in Mexico, which are the primary case study for this investigation. The methodological framework integrates HAB risk assessment (RA) methods found in the literature. Progress in detection and monitoring technologies—such as sensing, in situ sensor networks, and prediction tools based on machine learning—are reviewed for their roles in enhancing early-warning systems and aiding decision support. The key findings emphasize four linked aspects: (i) patterns of HAB risk in coastal zones, (ii) deficiencies and prospects in HAB-related policy development, (iii) how governance structures facilitate or hinder effective actions, and (iv) the growing usefulness of online monitoring and evaluation tools for real-time environmental observation. The results emphasize the need for coupled technological and governance solutions to reduce HAB impacts, protect marine biodiversity, and enhance the resilience of coastal communities confronting increasingly frequent and severe bloom events. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

15 pages, 533 KB  
Article
Effects of Exergame with Biofeedback Training on Functional Status, Cognition, and Quality of Life in Outpatients with Polyneuropathies: A Longitudinal Pilot Study
by Francesco Zanatta, Daniela Mancini, Patrizia Steca, Monica Panigazzi, Elena Prestifilippo, Cesare Grilli, Marco D’Addario, Antonia Pierobon and Marina Maffoni
Brain Sci. 2026, 16(1), 45; https://doi.org/10.3390/brainsci16010045 - 29 Dec 2025
Viewed by 227
Abstract
Background: Polyneuropathies impair sensory, motor, and autonomic functions, affecting functional status, cognition, and quality of life. This pilot study investigated the effects of exergame with biofeedback training (Riablo system) versus standard rehabilitation on these outcomes in outpatients with mixed-etiology polyneuropathies. Methods: Seventeen outpatients [...] Read more.
Background: Polyneuropathies impair sensory, motor, and autonomic functions, affecting functional status, cognition, and quality of life. This pilot study investigated the effects of exergame with biofeedback training (Riablo system) versus standard rehabilitation on these outcomes in outpatients with mixed-etiology polyneuropathies. Methods: Seventeen outpatients were assigned to standard rehabilitation (Group 1, n = 9) or combined standard plus Riablo training (Group 2, n = 8) over three weeks. Functional status, pain, cognition, quality of life, and psychological well-being were assessed pre- and post-intervention, with a 6-month follow-up. Outcome measures included the Morse Fall Scale, Visual Analogue Scales for pain and autonomy, Montreal Cognitive Assessment (MoCA), Trail Making Test (TMT), Stroop Test, Frontal Assessment Battery (FAB), Verbal fluency test, the Short-Form Health Survey-12 (SF-12), and the Patient Health Questionnaire-4 (PHQ-4). Longitudinal changes and between-group differences were analyzed using nonparametric statistics. Results: Both groups showed significant improvements in functional status and global cognition at post-intervention. Group 2 demonstrated greater improvements in executive functions and attention, with significant reductions in pain and fall risk. At 6-month follow-up, Group 2 maintained post-intervention gains in QoL and psychological outcomes, while Group 1 showed a significant decline. Technology evaluation revealed high usability and positive psychosocial impact in Group 2, with strong correlations between executive function improvements and device usability. Conclusions: Integrating exergames with biofeedback into standard rehabilitation may provide broader and longer-lasting benefits for polyneuropathy patients. These findings support further large-scale trials to confirm efficacy and optimize technology-assisted rehabilitation protocols. Full article
(This article belongs to the Special Issue Outcome Measures in Rehabilitation)
Show Figures

Figure 1

13 pages, 4195 KB  
Article
Impact of Rear-Hanging String-Cable-Bundle Shading on Performance Parameters of Bifacial Photovoltaic Modules
by Dan Smith, Scott Rand, Peter Hruby, Ben De Fresart, Paul Subzak, Sai Tatapudi, Nijanth Kothandapani and GovindaSamy TamizhMani
Energies 2026, 19(1), 126; https://doi.org/10.3390/en19010126 - 25 Dec 2025
Viewed by 255
Abstract
The 2025 International Technology Roadmap for Photovoltaics (ITRPV) projects that bifacial modules will dominate the photovoltaic (PV) market, reaching roughly 60–80% global share between 2024 and 2035, while monofacial PV modules will steadily decline. Current industry practice is to route the cable bundles [...] Read more.
The 2025 International Technology Roadmap for Photovoltaics (ITRPV) projects that bifacial modules will dominate the photovoltaic (PV) market, reaching roughly 60–80% global share between 2024 and 2035, while monofacial PV modules will steadily decline. Current industry practice is to route the cable bundles along structural members such as main beams or torque tubes, thereby preventing rear-side shading but resulting in two key drawbacks: increased cable length and decreased system reliability due to cable proximity with rotating members and pinch points. Both effects contribute to higher system costs and reduced cable reliability. An alternative method involves suspending cable bundles directly behind the modules using hangers. While this approach mitigates excess length and risk of cable snags, it introduces the possibility of partial rear-side shading, which could possibly cause performance loss and hot-spot formation due to shade-induced electrical mismatch. Experimental evidence indicates that this risk is minimal, as albedo irradiance typically represents only 10–30% of front-side irradiance as reported in the literature and is largely diffuse, thereby limiting the likelihood of significant directional shading. This study evaluates the performance and reliability impacts of hanger-supported cable bundles under varying experimental conditions. Performance metrics assessed include maximum power output (Pmax), short-circuit current (Isc), open-circuit voltage (Voc), and fill factor (FF), while hot-spot risk was evaluated through measurements of module temperature uniformity using infrared imaging. Each cable (1X) was 6 AWG with a total outer diameter of approximately 9 mm. Experiments covered different cable bundle counts/sizes (2X, 6X, 16X), mounting configurations (fixed-tilt and single-axis tracker), and albedo conditions (snow-covered and snow-free ground). Measurements were conducted hourly on clear days between 8:00 and 16:00 from June to September 2025. The results consistently show that hanger-supported cable bundles have a negligible shading impact across all hours of the day and throughout the measurement period. This indicates that rear-side cable shading can be safely and practically disregarded in performance modeling and energy-yield assessments for the tested configurations, including fixed-tilt systems and single-axis trackers with or without torque tube shading and with various hanger sizes and cable-bundle counts. Therefore, hanging cables behind modules is a cost- and reliability-friendly, safe and recommended practice. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

49 pages, 4074 KB  
Review
Reviews of the Static, Adoptive, and Dynamic Sampling in Wafer Manufacturing
by Hsuan-Yu Chen and Chiachung Chen
Appl. Syst. Innov. 2026, 9(1), 1; https://doi.org/10.3390/asi9010001 - 19 Dec 2025
Viewed by 465
Abstract
Semiconductor wafer manufacturing is one of the most complex and data-intensive processes in the industry, encompassing the front-end (FEOL), middle-end (MOL), and back-end (BEOL) stages, involving thousands of interdependent processes. Each stage can introduce potential variability, thereby reducing yield, making metrology and inspection [...] Read more.
Semiconductor wafer manufacturing is one of the most complex and data-intensive processes in the industry, encompassing the front-end (FEOL), middle-end (MOL), and back-end (BEOL) stages, involving thousands of interdependent processes. Each stage can introduce potential variability, thereby reducing yield, making metrology and inspection crucial for process control. However, due to capacity, cost, and destructive testing constraints, exhaustive metrology for every wafer or die is impractical. Therefore, this study aims to introduce sampling strategies that have evolved to balance the accuracy, risk, and efficiency of measurement allocation. This review presents a literature review of static, adaptive, and dynamic sampling and discusses recent intelligent sampling techniques. The results show that traditional static sampling provides fixed, rule-based inspection schemes that ensure comparability and compliance but lack responsiveness to process variations. Adaptive sampling introduces flexibility, allowing measurement density to be adjusted based on detected drift, anomalies, or statistical control limits. Building on this, dynamic sampling represents a paradigm shift towards predictive, real-time decision-making driven by machine learning, risk analysis, and digital twin integration. The dynamic framework continuously assesses process uncertainties and prioritizes metrology to maximize information gain, thereby significantly reducing metrology workload without impacting yield or quality. Static, adaptive, and dynamic sampling together constitute a continuous evolution from deterministic control to self-optimizing intelligence. As semiconductor nodes move towards sub-3 nm, this intelligent sampling technology is crucial for maintaining yield, cost competitiveness, and process flexibility in autonomous, data-centric wafer fabs. Full article
(This article belongs to the Section Industrial and Manufacturing Engineering)
Show Figures

Figure 1

41 pages, 3475 KB  
Review
Digital Twins for Clean Energy Systems: A State-of-the-Art Review of Applications, Integrated Technologies, and Key Challenges
by Myeongin Kim, Fatemeh Ghobadi, Amir Saman Tayerani Charmchi, Mihong Lee and Jungmin Lee
Sustainability 2026, 18(1), 43; https://doi.org/10.3390/su18010043 - 19 Dec 2025
Viewed by 698
Abstract
In the context of Industry 4.0, digital transformation is reshaping global energy systems. Among the key enabling technologies, Digital Twin (DT)—a dynamic, virtual replica of physical systems—has emerged as a critical tool for improving the performance, reliability, and safety of clean energy infrastructure. [...] Read more.
In the context of Industry 4.0, digital transformation is reshaping global energy systems. Among the key enabling technologies, Digital Twin (DT)—a dynamic, virtual replica of physical systems—has emerged as a critical tool for improving the performance, reliability, and safety of clean energy infrastructure. In line with the United Nations Sustainable Development Goals (SDGs)—particularly SDG 7 (Affordable and Clean Energy) and SDG 11 (Sustainable Cities and Communities)—the integration of DTs presents unprecedented opportunities to enhance operational efficiency and support proactive decision making. This state-of-the-art review, focused on studies published in 2020–2025, summarizes applications of DTs across the energy value chain, encompassing a broad spectrum of sectors—including solar, wind, hydropower, hydrogen, geothermal, bioenergy, nuclear, and tidal energy—and their critical role in building-to-grid integration. It synthesizes foundational concepts, assesses the evolution of the DT from a predictive tool to a system-level risk-management platform, and provides a critical analysis of its impact. Furthermore, this review discusses the key challenges hindering widespread adoption, including the critical need for interoperability across systems, ensuring the cybersecurity of socio-technical infrastructure, and addressing the complexities of the human-in-the-loop problem. Key research gaps are identified to guide future innovation. Ultimately, this study underscores the transformative potential of DTs as essential tools for accelerating the digital transformation of the energy sector, offering a robust framework for both methodological development and practical deployment. Full article
Show Figures

Figure 1

40 pages, 1665 KB  
Article
Exploring Determinants of Information Security Systems Adoption in Saudi Arabian SMEs: An Integrated Multitheoretical Model
by Ali Abdu M Dighriri, Sarvjeet Kaur Chatrath and Masoud Mohammadian
J. Cybersecur. Priv. 2025, 5(4), 113; https://doi.org/10.3390/jcp5040113 - 18 Dec 2025
Viewed by 458
Abstract
High cybersecurity risks and attacks cause information theft, unauthorized access to data and information, reputational damage, and financial loss in small and medium enterprises (SMEs). This creates a need to adopt information security systems of SMEs through innovation and compliance with information security [...] Read more.
High cybersecurity risks and attacks cause information theft, unauthorized access to data and information, reputational damage, and financial loss in small and medium enterprises (SMEs). This creates a need to adopt information security systems of SMEs through innovation and compliance with information security policies. This study seeks to develop an integrated research model assessing the adoption of InfoSec systems in SMEs based on three existing theories, namely the technology acceptance model (TAM), theory of reasoned action (TRA), and unified theory of acceptance and use of technology (UTAUT). A thorough review of literature identified prior experience, enjoyment of new InfoSec technology, top management support, IT infrastructure, security training, legal-governmental regulations, and attitude as potential determinants of adoption of InfoSec systems. A self-developed and self-administered questionnaire was distributed to 418 employees, mid-level managers, and top-level managers working in SMEs operating in Riyadh, Saudi Arabia. The study found that prior experience, top management support, IT infrastructure, security training, and legal-governmental regulations have a positive impact on attitude toward InfoSec systems, which in turn positively influences the adoption of InfoSec systems. Gender, education, and occupation significantly moderated the impact of some determinants on attitude and, consequently, adoption of InfoSec systems. Such an integrated framework offers actionable insights and recommendations, including enhancing information security awareness and compliance with information security policies, as well as increasing profitability within SMEs. The study findings make considerable theoretical contributions to the development of knowledge and deliver practical contributions towards the status of SMEs in Saudi Arabia. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

Back to TopTop