Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (391)

Search Parameters:
Keywords = technology development roadmap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 1241 KiB  
Review
A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal
by Janaína Oliveira Gonçalves, André Rodríguez Leones, Bruna Silva de Farias, Mariele Dalmolin da Silva, Débora Pez Jaeschke, Sibele Santos Fernandes, Anelise Christ Ribeiro, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Water 2025, 17(14), 2141; https://doi.org/10.3390/w17142141 - 18 Jul 2025
Abstract
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the [...] Read more.
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the development of efficient bioadsorbents. Based on a wide range of recent studies, this work presents various types of materials, such as rice husks, sugarcane bagasse, and açaí seeds, that can be transformed through thermal and chemical treatments into advanced bioadsorbents capable of removing pharmaceuticals, pesticides, dyes, and in some cases, even addressing highly persistent pollutants such as PFASs. The main objectives of this review are to (1) assess agricultural-residue-derived bioadsorbents for the removal of ECs; (2) examine physical and chemical modification techniques that enhance adsorption performance; (3) evaluate their scalability and applicability in real-world treatment systems. The review also highlights key adsorption mechanisms—such as π–π interactions, hydrogen bonding, and ion exchange—alongside the influence of parameters like pH and ionic strength. The review also explores the kinetic, isothermal, and thermodynamic aspects of the adsorption processes, highlighting both the efficiency and reusability potential of these materials. This work uniquely integrates microwave-assisted pyrolysis, magnetic functionalization, and hybrid systems, offering a roadmap for sustainable water remediation. Finally, comparative performance analyses, applications using real wastewater, regeneration strategies, and the integration of these bioadsorbents into continuous treatment systems are presented, reinforcing their promising role in advancing sustainable water remediation technologies. Full article
Show Figures

Figure 1

33 pages, 1708 KiB  
Systematic Review
Circular Economy and Water Sustainability: Systematic Review of Water Management Technologies and Strategies (2018–2024)
by Gary Christiam Farfán Chilicaus, Luis Edgardo Cruz Salinas, Pedro Manuel Silva León, Danny Alonso Lizarzaburu Aguinaga, Persi Vera Zelada, Luis Alberto Vera Zelada, Elmer Ovidio Luque Luque, Rolando Licapa Redolfo and Emma Verónica Ramos Farroñán
Sustainability 2025, 17(14), 6544; https://doi.org/10.3390/su17146544 - 17 Jul 2025
Abstract
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant [...] Read more.
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant patterns: (i) rapid diffusion of membrane bioreactors, constructed wetlands, and advanced oxidation processes; (ii) research geographically concentrated in Asia and the European Union; (iii) industry’s marked preference for by-product valorization. Key barriers—high energy costs, fragmented regulatory frameworks, and low social acceptance—converge as critical constraints during scale-up. The following three practical action lines emerge: (1) adopt progressive tariffs and targeted tax credits that internalize environmental externalities; (2) harmonize water-reuse regulations with comparable circularity metrics; (3) create multi-actor platforms that co-design projects, boosting local legitimacy. These findings provide policymakers and water-sector practitioners with a clear roadmap for accelerating Sustainable Development Goals 6, 9, and 12 through circular, inclusive, low-carbon water systems. Full article
Show Figures

Figure 1

19 pages, 899 KiB  
Review
A Taxonomy of Pressure Sensors for Compression Garment Development
by Gabriella Schauss and Allison P. A. Hayman
Sensors 2025, 25(14), 4445; https://doi.org/10.3390/s25144445 - 17 Jul 2025
Abstract
Recent pressure sensor research often focuses on developing sensors for impulse applications, including touch sensors, e-skin development, or physiological monitoring. However, static loading applications, such as those needed for compression garment design, are significantly under-researched in comparison. Many technology solutions do not translate [...] Read more.
Recent pressure sensor research often focuses on developing sensors for impulse applications, including touch sensors, e-skin development, or physiological monitoring. However, static loading applications, such as those needed for compression garment design, are significantly under-researched in comparison. Many technology solutions do not translate across applications, as static loading requires measurements which have high accuracy, high precision, and low drift. To address the gap in sensor development between impulse and static applications, we define a literature-based taxonomy providing two conceptual classifications based on sensor functionality and specific design characteristics. The taxonomy’s utility is demonstrated through the mapping of sensors onto compression garment development phases by matching application requirements with sensor performance. The taxonomy developed will advance research and the industry by providing a roadmap of how sensor characteristics influence performance to drive a focused development for future sensors, specifically for compression garment innovation. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

49 pages, 763 KiB  
Review
A Comprehensive Review on Sensor-Based Electronic Nose for Food Quality and Safety
by Teodora Sanislav, George D. Mois, Sherali Zeadally, Silviu Folea, Tudor C. Radoni and Ebtesam A. Al-Suhaimi
Sensors 2025, 25(14), 4437; https://doi.org/10.3390/s25144437 - 16 Jul 2025
Viewed by 61
Abstract
Food quality and safety are essential for ensuring public health, preventing foodborne illness, reducing food waste, maintaining consumer confidence, and supporting regulatory compliance and international trade. This has led to the emergence of many research works that focus on automating and streamlining the [...] Read more.
Food quality and safety are essential for ensuring public health, preventing foodborne illness, reducing food waste, maintaining consumer confidence, and supporting regulatory compliance and international trade. This has led to the emergence of many research works that focus on automating and streamlining the assessment of food quality. Electronic noses have become of paramount importance in this context. We analyze the current state of research in the development of electronic noses for food quality and safety. We examined research papers published in three different scientific databases in the last decade, leading to a comprehensive review of the field. Our review found that most of the efforts use portable, low-cost electronic noses, coupled with pattern recognition algorithms, for evaluating the quality levels in certain well-defined food classes, reaching accuracies exceeding 90% in most cases. Despite these encouraging results, key challenges remain, particularly in diversifying the sensor response across complex substances, improving odor differentiation, compensating for sensor drift, and ensuring real-world reliability. These limitations indicate that a complete device mimicking the flexibility and selectivity of the human olfactory system is not yet available. To address these gaps, our review recommends solutions such as the adoption of adaptive machine learning models to reduce calibration needs and enhance drift resilience and the implementation of standardized protocols for data acquisition and model validation. We introduce benchmark comparisons and a future roadmap for electronic noses that demonstrate their potential to evolve from controlled studies to scalable industrial applications. In doing so, this review aims not only to assess the state of the field but also to support its transition toward more robust, interpretable, and field-ready electronic nose technologies. Full article
(This article belongs to the Special Issue Sensors in 2025)
Show Figures

Figure 1

23 pages, 1562 KiB  
Article
Decomposition of Industrial Carbon Emission Drivers and Exploration of Peak Pathways: Empirical Evidence from China
by Yuling Hou, Xinyu Zhang, Kaiwen Geng and Yang Li
Sustainability 2025, 17(14), 6479; https://doi.org/10.3390/su17146479 - 15 Jul 2025
Viewed by 120
Abstract
Against the backdrop of increasing extreme weather events associated with global climate change, regulating carbon dioxide emissions, a primary contributor to atmospheric warming, has emerged as a pressing global challenge. Focusing on China as a representative case study of major developing economies, this [...] Read more.
Against the backdrop of increasing extreme weather events associated with global climate change, regulating carbon dioxide emissions, a primary contributor to atmospheric warming, has emerged as a pressing global challenge. Focusing on China as a representative case study of major developing economies, this research examines industrial carbon emission patterns during 2001–2022. Methodologically, it introduces an innovative analytical framework that integrates the Generalized Divisia Index Method (GDIM) with the Low Emissions Analysis Platform (LEAP) to both decompose industrial emission drivers and project future trajectories through 2040. Key findings reveal that:the following: (1) Carbon intensity in China’s industrial sector has been substantially decreasing under green technological advancements and policy interventions. (2) Industrial restructuring demonstrates constraining effects on carbon output, while productivity gains show untapped potential for emission abatement. Notably, the dual mechanisms of enhanced energy efficiency and cleaner energy transitions emerge as pivotal mitigation levers. (3) Scenario analyses indicate that coordinated policies addressing energy mix optimization, efficiency gains, and economic restructuring could facilitate achieving industrial carbon peaking before 2030. These results offer substantive insights for designing phased decarbonization roadmaps, while contributing empirical evidence to international climate policy discourse. The integrated methodology also presents a transferable analytical paradigm for emission studies in other industrializing economies. Full article
Show Figures

Figure 1

30 pages, 55073 KiB  
Review
Advances in Gecko-Inspired Climbing Robots: From Biology to Robotics—A Review
by Wenrui Xiang and Barmak Honarvar Shakibaei Asli
Electronics 2025, 14(14), 2810; https://doi.org/10.3390/electronics14142810 - 12 Jul 2025
Viewed by 337
Abstract
Wall-climbing robots have garnered significant attention for their ability to operate in hazardous environments. Among these, bioinspired gecko robots exhibit exceptional adaptability and climbing performance due to their flexible morphology and intelligent motion strategies. This review systematically analyzes studies published between 2000–2025, sourced [...] Read more.
Wall-climbing robots have garnered significant attention for their ability to operate in hazardous environments. Among these, bioinspired gecko robots exhibit exceptional adaptability and climbing performance due to their flexible morphology and intelligent motion strategies. This review systematically analyzes studies published between 2000–2025, sourced from IEEE Xplore, Web of Science, and Scopus databases, to explore the biological principles of gecko adhesion and locomotion. A structured literature review methodology is employed, through which representative climbing robots are systematically categorized based on spine flexibility (rigid vs. flexible) and attachment mechanisms (adhesive, suction, claw-based). We analyze various motion control strategies, from hierarchical architectures to advanced neural algorithms, with a focus on central pattern generator (CPG)-based systems. By synthesizing current research and technological advancements, this paper provides a roadmap for developing more efficient, adaptive, and intelligent wall-climbing robots, addressing key challenges and future directions in the field. Full article
(This article belongs to the Special Issue Robotics: From Technologies to Applications)
Show Figures

Figure 1

26 pages, 1985 KiB  
Review
Stomatal and Non-Stomatal Leaf Traits for Enhanced Water Use Efficiency in Rice
by Yvonne Fernando, Mark Adams, Markus Kuhlmann and Vito Butardo Jr
Biology 2025, 14(7), 843; https://doi.org/10.3390/biology14070843 - 10 Jul 2025
Viewed by 345
Abstract
Globally, rice cultivation consumes large amounts of fresh water, and urgent improvements in water use efficiency (WUE) are needed to ensure sustainable production, given increasing water scarcity. While stomatal traits have been a primary focus for enhancing WUE, complex interactions between stomatal and [...] Read more.
Globally, rice cultivation consumes large amounts of fresh water, and urgent improvements in water use efficiency (WUE) are needed to ensure sustainable production, given increasing water scarcity. While stomatal traits have been a primary focus for enhancing WUE, complex interactions between stomatal and non-stomatal leaf traits remain poorly understood. In this review, we present an analysis of stomatal and non-stomatal leaf traits influencing WUE in rice. The data suggests that optimising stomatal density and size will be insufficient to maximise WUE because non-stomatal traits such as mesophyll conductance, leaf anatomy, and biochemical composition significantly modulate the relationship between stomatal conductance and the photosynthetic rate. Integrating recent advances in high-throughput phenotyping, multi-omics technologies, and crop modelling, we suggest that combinations of seemingly contradictory traits can enhance WUE without compromising yield potential. We propose a multi-trait breeding framework that leverages both stomatal and non-stomatal adaptations to develop rice varieties with superior WUE and climate resilience. This integrated approach provides a roadmap for accelerating the development of water-efficient rice cultivars, with broad implications for improving WUE in other crops. Full article
Show Figures

Figure 1

50 pages, 1773 KiB  
Review
Understanding Smart Governance of Sustainable Cities: A Review and Multidimensional Framework
by Abdulaziz I. Almulhim and Tan Yigitcanlar
Smart Cities 2025, 8(4), 113; https://doi.org/10.3390/smartcities8040113 - 8 Jul 2025
Viewed by 407
Abstract
Smart governance—the integration of digital technologies into urban governance—is increasingly recognized as a transformative approach to addressing complex urban challenges such as rapid urbanization, climate change, social inequality, and resource constraints. As a foundational pillar of the smart city paradigm, it enhances decision-making, [...] Read more.
Smart governance—the integration of digital technologies into urban governance—is increasingly recognized as a transformative approach to addressing complex urban challenges such as rapid urbanization, climate change, social inequality, and resource constraints. As a foundational pillar of the smart city paradigm, it enhances decision-making, service delivery, transparency, and civic participation through data-driven tools, digital platforms, and emerging technologies such as AI, IoT, and blockchain. While often positioned as a pathway toward sustainability and inclusivity, existing research on smart governance remains fragmented, particularly regarding its relationship to urban sustainability. This study addresses that gap through a systematic literature review using the PRISMA methodology, synthesizing theoretical models, empirical findings, and diverse case studies. It identifies key enablers—such as digital infrastructure, data governance, citizen engagement, and institutional capacity—and highlights enduring challenges including digital inequity, data security concerns, and institutional inertia. In response to this, the study proposes a multidimensional framework that integrates governance, technology, and sustainability, offering a holistic lens through which to understand and guide urban transformation. This framework underscores the importance of balancing technological innovation with equity, resilience, and inclusivity, providing actionable insights for policymakers and planners navigating the complexities of smart cities and urban development. By aligning smart governance practices with the United Nations’ sustainable development goals (SDG)—particularly SDG 11 on sustainable cities and communities—the study offers a strategic roadmap for fostering resilient, equitable, and digitally empowered urban futures. Full article
(This article belongs to the Collection Smart Governance and Policy)
Show Figures

Figure 1

40 pages, 3472 KiB  
Review
The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei and Anze Li
Appl. Sci. 2025, 15(13), 7505; https://doi.org/10.3390/app15137505 - 3 Jul 2025
Viewed by 302
Abstract
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability [...] Read more.
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability for mechanization, traditional agricultural machinery experiences significantly reduced operational efficiency—typically by 30% to 50%—along with poor mobility. These limitations impose serious constraints on grain yield stability and the advancement of agricultural modernization. Therefore, enhancing the scenario-adaptive performance of chassis systems (e.g., slope adaptability ≥ 25°, lateral tilt stability > 30°) is a major research priority for China’s agricultural equipment industry. This paper presents a systematic review of the global development status of agricultural machinery chassis tailored for hilly and mountainous environments. It focuses on three core subsystems—power systems, traveling systems, and leveling systems—and analyzes their technical characteristics, working principles, and scenario-specific adaptability. In alignment with China’s “Dual Carbon” strategy and the unique operational requirements of hilly–mountainous areas (such as high gradients, uneven terrain, and small field sizes), this study proposes three key technological directions for the development of intelligent agricultural machinery chassis: (1) Multi-mode traveling mechanism design: Aimed at improving terrain traversability (ground clearance ≥400 mm, obstacle-crossing height ≥ 250 mm) and traction stability (slip ratio < 15%) across diverse landscapes. (2) Coordinated control algorithm optimization: Designed to ensure stable torque output (fluctuation rate < ±10%) and maintain gradient operation efficiency (e.g., less than 15% efficiency loss on 25° slopes) through power–drive synergy while also optimizing energy management strategies. (3) Intelligent perception system integration: Facilitating high-precision adaptive leveling (accuracy ± 0.5°, response time < 3 s) and enabling terrain-adaptive mechanism optimization to enhance platform stability and operational safety. By establishing these performance benchmarks and focusing on critical technical priorities—including terrain-adaptive mechanism upgrades, energy-drive coordination, and precision leveling—this study provides a clear roadmap for the development of modular and intelligent chassis systems specifically designed for China’s hilly and mountainous regions, thereby addressing current bottlenecks in agricultural mechanization. Full article
Show Figures

Figure 1

31 pages, 4728 KiB  
Article
A Dynamic Assessment of Digital Maturity in Industrial SMEs: An Adaptive AHP-Based Digital Maturity Model (DMM)with Customizable Weighting and Multidimensional Classification (DAMA-AHP)
by Elvis Krulčić, Sandro Doboviček, Duško Pavletić and Ivana Čabrijan
Technologies 2025, 13(7), 282; https://doi.org/10.3390/technologies13070282 - 3 Jul 2025
Viewed by 364
Abstract
The ongoing digitalization of industrial companies requires a structured, strategic integration of digital concepts into business processes. Digital transformation (DT) requires clearly defined roadmaps that align digital technologies with business objectives. Although there are many digital maturity models (DMMs), most are industry-specific and [...] Read more.
The ongoing digitalization of industrial companies requires a structured, strategic integration of digital concepts into business processes. Digital transformation (DT) requires clearly defined roadmaps that align digital technologies with business objectives. Although there are many digital maturity models (DMMs), most are industry-specific and do not address the unique characteristics of individual companies. Even SME-focused models often struggle to close the gap between current and target maturity levels, hindering effective DT implementation. This study examines the existing academic and professional literature on DMMs for SMEs and assesses digital readiness in an industrial context. From these findings, the Dynamic Adaptive Maturity Assessment Model (DAMA-AHP) was developed. It comprises 66 DT elements in six dimensions: People and Expertise, Operability, Organization, Products and Production Processes, Strategy, and Technology. DAMA-AHP incorporates the Analytic Hierarchy Process (AHP), which has been enhanced with customizable weighting at both the dimension and element levels. This enables precise alignment with the company’s priorities and the definition of customized target maturity levels that form the basis for a tailored transformation roadmap. Validation through a case study confirmed the practical value of DAMA-AHP in measuring digital maturity and defining strategic DT priorities. It provides a comprehensive, adaptable, and dynamic framework that promotes continuous improvement and sustainable competitiveness of SMEs in the evolving digital economy. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Graphical abstract

30 pages, 3060 KiB  
Article
Integration of Renewable Energy Strategies: A Case in Dubai South
by Oshba AlMheri and Dua Weraikat
Sustainability 2025, 17(13), 6093; https://doi.org/10.3390/su17136093 - 3 Jul 2025
Viewed by 331
Abstract
As cities worldwide pursue sustainability, integrating renewable energy has emerged as a strategic priority in urban planning. This research provides a case study investigation into how Dubai South, a distinctive aerotropolis combining aviation, logistics, and residential sectors, can implement a comprehensive renewable energy [...] Read more.
As cities worldwide pursue sustainability, integrating renewable energy has emerged as a strategic priority in urban planning. This research provides a case study investigation into how Dubai South, a distinctive aerotropolis combining aviation, logistics, and residential sectors, can implement a comprehensive renewable energy strategy aligned with the UAE’s clean energy goals. Grounded in the theoretical frameworks of Sustainable Strategic Management (SSM) and Energy Management Systems (EMSs), and informed by global best practices and advanced technological innovations, this study proposes a strategic roadmap tailored to the complex energy demands and urban dynamics of Dubai South. Using the Dubai South HQ solar deployment as a baseline, this research explores technical, regulatory, and economic barriers alongside key enabling factors. Its core contribution is the development of a scalable strategy for renewable energy integration in aerotropolis settings, offering practical insights for policymakers, urban planners, and developers aiming to advance sustainability in rapidly evolving, logistics-based cities. Full article
Show Figures

Figure 1

17 pages, 1233 KiB  
Article
Roadmap Toward Sustainable Tourism Development: An Evidence- and Knowledge-Based Approach from Thailand
by Nisit Manotungvorapun and Nathasit Gerdsri
Sustainability 2025, 17(13), 6028; https://doi.org/10.3390/su17136028 - 1 Jul 2025
Viewed by 473
Abstract
Tourism is recognized as one of the key enabling industries driving Thailand’s strategic transition toward the Thailand 4.0 economic model. This paper presents the development of a national technology roadmap to support the transition toward sustainable tourism in Thailand, conducted between January and [...] Read more.
Tourism is recognized as one of the key enabling industries driving Thailand’s strategic transition toward the Thailand 4.0 economic model. This paper presents the development of a national technology roadmap to support the transition toward sustainable tourism in Thailand, conducted between January and October 2024. The primary objective is to promote tourism growth that is environmentally responsible, economically viable, and socially inclusive. The roadmap was developed through a combination of a literature review, statistical data, and group discussions with tourism professionals. The roadmapping process focused on aligning external drivers, strategic goals, and the current capabilities of Thailand’s technological ecosystem. The key drivers identified include environmental concerns, the advancement of digital platforms, the growing trends of an aging population, diversity, and inclusion, political instability, and the emergence of middle-income nations. The resulting roadmap outlines a strategic vision for Thailand’s tourism sector from 2024 to beyond 2030. It emphasizes the transition linking sustainability and eco-design principles to smart tourism, metaverse applications, and personalized travel experiences. Priority areas include the adoption of green technologies, sustainable practices, and advanced digital platforms. This study further recommends research and development (R&D) initiatives in sustainability, biodiversity conservation, Data Analytics, Cybersecurity, and E-Tourism solutions. Ultimately, this roadmap provides actionable guidance for tourism stakeholders in defining their roles, responsibilities, and contributions toward achieving a sustainable tourism future in Thailand. Full article
Show Figures

Figure 1

32 pages, 2155 KiB  
Article
A Study on Information Strategy Planning (ISP) for Applying Smart Technologies to Airport Facilities in South Korea
by Sunbae Moon, Gutaek Kim, Heechang Seo, Jiwon Jun and Eunsoo Park
Aerospace 2025, 12(7), 595; https://doi.org/10.3390/aerospace12070595 - 30 Jun 2025
Viewed by 259
Abstract
This study aims to develop an information strategy plan (ISP) for the integrated management of airport facility information in South Korea by applying smart technologies such as building information modeling (BIM), digital twins, and openBIM. As the demand for intelligent lifecycle management and [...] Read more.
This study aims to develop an information strategy plan (ISP) for the integrated management of airport facility information in South Korea by applying smart technologies such as building information modeling (BIM), digital twins, and openBIM. As the demand for intelligent lifecycle management and efficient facility operations continues to grow, airport infrastructure requires standardized and interoperable systems to manage complex assets and stakeholder collaboration. This research addresses three core challenges facing Korean airports: the lack of sustainable maintenance environments, the absence of data standards and systems, and the insufficiency of user-oriented platforms. Through system analysis, benchmarking, and SWOT assessment, the study proposes a stepwise implementation roadmap consisting of development, integration, and advancement phases and designs a “To-Be” model that incorporates 37 component technologies and a standardized information framework. The proposed ISP supports data-driven airport operations, enhances collaboration, and accelerates digital transformation, ultimately contributing to the development of smart and globally competitive airports. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

33 pages, 6831 KiB  
Review
Machine Learning and Artificial Intelligence Techniques in Smart Grids Stability Analysis: A Review
by Arman Fathollahi
Energies 2025, 18(13), 3431; https://doi.org/10.3390/en18133431 - 30 Jun 2025
Viewed by 442
Abstract
The incorporation of renewable energy sources in power grids has necessitated innovative solutions for effective energy management. Smart grids have emerged as transformative systems which integrate consumer, generator and dual-role entities to deliver secure, sustainable and economical electricity supplies. This review explores the [...] Read more.
The incorporation of renewable energy sources in power grids has necessitated innovative solutions for effective energy management. Smart grids have emerged as transformative systems which integrate consumer, generator and dual-role entities to deliver secure, sustainable and economical electricity supplies. This review explores the important role of artificial intelligence and machine learning approaches in managing the developing stability characteristics of smart grids. This work starts with a discussion of the smart grid’s dynamic structures and subsequently transitions into an overview of machine learning approaches that explore various algorithms and their applications to enhance smart grid operations. A comprehensive analysis of frameworks illustrates how machine learning and artificial intelligence solve issues related to distributed energy supplies, load management and contingency planning. This review includes general pseudocode and schematic architectures of artificial intelligence and machine learning methods which are categorized into supervised, semi-supervised, unsupervised and reinforcement learning. It includes support vector machines, decision trees, artificial neural networks, extreme learning machines and probabilistic graphical models, as well as reinforcement strategies like dynamic programming, Monte Carlo methods, temporal difference learning and Deep Q-networks, etc. Examination extends to stability, voltage and frequency regulation along with fault detection methods that highlight their applications in increasing smart grid operational boundaries. The review underlines the various arrays of machine learning algorithms that emphasize the integration of reinforcement learning as a pivotal enhancement in intelligent decision-making within smart grid environments. As a resource this review offers insights for researchers, practitioners and policymakers by providing a roadmap for leveraging intelligent technologies in smart grid control and stability analysis. Full article
(This article belongs to the Special Issue Advances in Power Converters and Microgrids)
Show Figures

Figure 1

20 pages, 1478 KiB  
Review
Cyanobacteria and Soil Restoration: Bridging Molecular Insights with Practical Solutions
by Matias Garcia, Pablo Bruna, Paola Duran and Michel Abanto
Microorganisms 2025, 13(7), 1468; https://doi.org/10.3390/microorganisms13071468 - 24 Jun 2025
Viewed by 558
Abstract
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being [...] Read more.
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being the only prokaryotes capable of performing oxygenic photosynthesis. Moreover, they can capture atmospheric carbon and nitrogen, release exopolysaccharides (EPSs) that stabilize the soil, and facilitate the development of biological soil crusts (biocrusts). In recent years, the convergence of multi-omics tools, such as metagenomics, metatranscriptomics, and metabolomics, has advanced our understanding of cyanobacterial dynamics, their metabolic potential, and symbiotic interactions with microbial consortia, as exemplified by the cyanosphere of Microcoleus vaginatus. In addition, recent advances in bioinformatics have enabled high-resolution taxonomic and functional profiling of environmental samples, facilitating the identification and prediction of resilient microorganisms suited to challenging degraded soils. These tools also allow for the prediction of biosynthetic gene clusters and the detection of prophages or cyanophages within microbiomes, offering a novel approach to enhance carbon sequestration in dry and nutrient-poor soils. This review synthesizes the latest findings and proposes a roadmap for the translation of molecular-level knowledge into scalable biotechnological strategies for soil restoration. We discuss approaches ranging from the use of native biocrust strains to the exploration of cyanophages with the potential to enhance cyanobacterial photosynthetic activity. By bridging ecological functions with cutting-edge omics technologies, this study highlights the critical role of cyanobacteria as a nature-based solution for climate-smart soil management in degraded and arid ecosystems. Full article
(This article belongs to the Special Issue Omics Research in Microbial Ecology)
Show Figures

Figure 1

Back to TopTop