A Taxonomy of Pressure Sensors for Compression Garment Development
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Pressure Sensor Definitions
3.2. Functional Form: Sensing Mechanism
- train Gauge: Solid metals are desirable materials for resistive pressure sensors because of their hysteresis-free properties [67] and fast response time in the elastic region [7]. As pressure is applied to a strain gauge, deformation leads to changes in length and cross-sectional area, resulting in a change in resistance.
- Contact resistance: This sensing mechanism relies on two resistive surfaces encased in an insulating matrix that make contact as pressure is applied. Disadvantages of this mechanism are drift, hysteresis, and slow response due to the viscoelastic effects of insulating soft elastomers [40].
- Electrochemical: When a mechanical force is applied to the sensor systems, an electrolyte within causes a chemical reaction forming an electrochemical cell [46,69]. This reaction emits an electrical signal proportional to the applied stimulus. These sensing mechanisms are often self-powered, which is highly advantageous for wearable applications [38].
3.3. Fabricated Form: Sensing Structures and Materials
- Nanowires and Ribbons: Nanowires are broadly defined as structures that have diameters of tens of nanometers or less and are commonly found as carbon nanotubes. Nanoribbons have microstructures that allow them to stretch with dynamic movement and provide high spatial–temporal sensitivity and reliability [38,77].
- Conductive Surface Alterations: Deposition of conductive materials on a surface is one of the more common methods of sensor development and is used in both capacitive and piezoresistive sensors. The conductive materials are often nickel, gold, or aluminum, which create low-profile conductive surfaces [26]. Graphene or other forms of conductive carbon are also increasing in the development of pressure sensors [40].
- Dielectric Composites: There are many types of dielectric composites, including polydimethylsiloxane (PDMS) and dielectric electroactive polymers (DEAP) [44,45,47,78]. PDMS is the most explored elastomer for dielectric composites due to its high elasticity and biocompatibility. PDMS is also used as structural substrates to increase measurement stability or sensor reliability.
- Poly(3,4-ethylenedioxythiophene) (PEDOT): PEDOT is an aqueous conductive, biocompatible polymer that has recently been used extensively in electronic textiles and flexible electronics [64,79]. PEDOT has been shown to be effective as a conductive element through doping non-woven or foam structures creating textile-based electrodes or complex surface structures [9,39,42].
- Graphene Coating: There are multiple different forms of graphene for pressure sensor applications, but reduced graphene oxide (rGO) has become one of the most common types. rGO refers to graphene-like nanosheets that can be synthesized via chemical reaction, electrochemical reduction, or thermal reduction [80,81]. These conductive sheets are often embedded or used to coat insulative substrates [36,47].
4. Discussion
4.1. Sensors for the Understanding of Pressure Physiology
4.2. Sensors for Facilitating Design and Development
4.3. Sensors for Performance Verification of Pressure Systems
4.4. Sensors for Enabling Operational Monitoring
4.5. Discussion
4.6. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FSR | Force Sensing Resistors |
PDMS | polydimethylsiloxane |
DEAP | dielectric electroactive polymers |
PEDOT | Poly(3,4-ethylenedioxythiophene) |
rGO | reduced graphene oxide |
HCI | Human computer interaction |
EGaIn | eutectic gallium-indium |
References
- Gupta, B.; Quamara, M. An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols. Concurr. Comput. Pract. Exp. 2018, 32, e4946. [Google Scholar] [CrossRef]
- Xiao, Y.; Williams, J.S.; Brownell, I. Merkel cells and touch domes: More than mechanosensory functions? Exp. Dermatol. 2014, 23, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, M.; Townsend, D.; Goubran, R.; Knoefel, F. Validation of pressure sensors for physiological monitoring in home environments. In Proceedings of the 2010 IEEE International Workshop on Medical Measurements and Applications, Ottawa, ON, Canada, 30 April 2010–1 May 2010; pp. 38–42. [Google Scholar] [CrossRef]
- Zhang, J.w.; Zhang, Y.; Li, Y.y.; Wang, P. Textile-Based Flexible Pressure Sensors: A Review. Polym. Rev. 2021, 62, 65–94. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.B. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano 2017, 11, 4507–4513. [Google Scholar] [CrossRef] [PubMed]
- Asghar, W.; Li, F.; Zhou, Y.; Wu, Y.; Yu, Z.; Li, S.; Tang, D.; Han, X.; Shang, J.; Liu, Y.; et al. Piezocapacitive Flexible E-Skin Pressure Sensors Having Magnetically Grown Microstructures. Adv. Mater. Technol. 2020, 5, 1900934. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, S.; Wang, L.; Jiang, K.; Shen, G. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14. [Google Scholar] [CrossRef]
- Kumaresan, Y.; Ozioko, O.; Dahiya, R. Multifunctional Electronic Skin With a Stack of Temperature and Pressure Sensor Arrays. IEEE Sens. J. 2021, 21, 26243–26251. [Google Scholar] [CrossRef]
- Sharma, S.; Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Park, J.Y. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Appl. Mater. Interfaces 2020, 12, 22212–22224. [Google Scholar] [CrossRef]
- Burke, M.; Murphy, B.; Geraghty, D. Measurement of sub-bandage pressure during venous compression therapy using flexible force sensors. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1623–1626. [Google Scholar] [CrossRef]
- MacRae, B.A.; Laing, R.M.; Niven, B.E.; Cotter, J.D. Pressure and coverage effects of sporting compression garments on cardiovascular function, thermoregulatory function, and exercise performance. Eur. J. Appl. Physiol. 2011, 112, 1783–1795. [Google Scholar] [CrossRef]
- Waldie, J.M. Mechanical Counter Pressure Space Suits: Advantages, Limitations and Concepts for Martian Exploration; The Mars Society: Boulder, CO, USA, 2005; pp. 1–16. [Google Scholar]
- Xiong, Y.; Tao, X. Compression Garments for Medical Therapy and Sports. Polymers 2018, 10, 663. [Google Scholar] [CrossRef]
- MacRae, B.A.; Cotter, J.D.; Laing, R.M. Compression Garments and Exercise. Sports Med. 2011, 41, 815–843. [Google Scholar] [CrossRef]
- Brown, F.; Gissane, C.; Howatson, G.; van Someren, K.; Pedlar, C.; Hill, J. Compression Garments and Recovery from Exercise: A Meta-Analysis. Sports Med. 2017, 47, 2245–2267. [Google Scholar] [CrossRef] [PubMed]
- Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I.K.; Bagherifard, S.; Dokmeci, M.R.; Ziaie, B.; et al. Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small 2018, 14, 1703509. [Google Scholar] [CrossRef] [PubMed]
- Friedstat, J.S.; Hultman, C.S. Hypertrophic Burn Scar Management: What Does the Evidence Show? A Systematic Review of Randomized Controlled Trials. Ann. Plast. Surg. 2014, 72, S198. [Google Scholar] [CrossRef] [PubMed]
- Duvall, J.; Granberry, R.; Dunne, L.E.; Holschuh, B.; Johnson, C.; Kelly, K.; Johnson, B.; Joyner, M. The Design and Development of Active Compression Garments for Orthostatic Intolerance. In Proceedings of the 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, Minneapolis, MI, USA, 10–13 April 2017; p. V001T01A013. [Google Scholar] [CrossRef]
- Zanette, M.C.; Scaraboto, D. From the corset to Spanx: Shapewear as a marketplace icon. Consum. Mark. Cult. 2018, 22, 183–199. [Google Scholar] [CrossRef]
- Tanaka, K.; Limberg, R.; Webb, P.; Reddig, M.; Jarvis, C.W.; Hargens, A.R. Mechanical Counter Pressure on the Arm Counteracts Adverse Effects of Hypobaric Exposures. Aviat. Space Environ. Med. 2003, 74, 827–832. [Google Scholar] [PubMed]
- Kahn, S.R.; Elman, E.; Rodger, M.A.; Wells, P.S. Use of elastic compression stockings after deep venous thrombosis: A comparison of practices and perceptions of thrombosis physicians and patients1. J. Thromb. Haemost. 2003, 1, 500–506. [Google Scholar] [CrossRef]
- Partsch, H.; Clark, M.; Bassez, S.; Benigni, J.P.; Becker, F.; Blazek, V.; Caprini, J.; Cornu-Thénard, A.; Hafner, J.; Flour, M.; et al. Measurement of Lower Leg Compression In Vivo: Recommendations for the Performance of Measurements of Interface Pressure and Stiffness. Dermatol. Surg. 2006, 32, 224. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Acad. Clin. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Ellis, B.; Kirkpatrick, E.; Kothari Phan, S.; Imler, S.; Beckham, H. Measuring compression caused by garments. Int. J. Cloth. Sci. Technol. 2018, 30, 138–151. [Google Scholar] [CrossRef]
- Flaud, P.; Bassez, S.; Counord, J.L. Comparative In Vitro Study of Three Interface Pressure Sensors Used to Evaluate Medical Compression Hosiery. Dermatol. Surg. 2010, 36, 1930. [Google Scholar] [CrossRef]
- Kwak, J.W.; Han, M.; Xie, Z.; Chung, H.U.; Lee, J.Y.; Avila, R.; Yohay, J.; Chen, X.; Liang, C.; Patel, M.; et al. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci. Transl. Med. 2020, 12, eabc4327. [Google Scholar] [CrossRef]
- Nandasiri, G.K.; Shahidi, A.M.; Dias, T. Study of Three Interface Pressure Measurement Systems Used in the Treatment of Venous Disease. Sensors 2020, 20, 5777. [Google Scholar] [CrossRef]
- Hirasawa, M.; Okada, H.; Shimojo, M. The Development of the Plantar Pressure Sensor Shoes for Gait Analysis. J. Robot. Mechatron. 2008, 20, 289–295. [Google Scholar] [CrossRef]
- Nair, P.; Mathur, S.; Bhandare, R.; Narayanan, G. Bed sore Prevention using Pneumatic controls. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Hammond, A.; Jones, V.; Prior, Y. The effects of compression gloves on hand symptoms and hand function in rheumatoid arthritis and hand osteoarthritis: A systematic review. Clin. Rehabil. 2015, 30, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Cho, H.R.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S.; et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.; Zheng, A.; Xiong, F.; et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, J.; Won, S.M.; Ma, Y.; Kang, D.; Xie, Z.; Lee, K.T.; Chung, H.U.; Banks, A.; Min, S.; et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 2018, 10, eaan4950. [Google Scholar] [CrossRef] [PubMed]
- Khodasevych, I.; Parmar, S.; Troynikov, O. Flexible Sensors for Pressure Therapy: Effect of Substrate Curvature and Stiffness on Sensor Performance. Sensors 2017, 17, 2399. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.L.; Chen, B.R.; Wood, R. Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors. IEEE Sens. J. 2012, 12, 2711–2718. [Google Scholar] [CrossRef]
- Ge, G.; Cai, Y.; Dong, Q.; Zhang, Y.; Shao, J.; Huang, W.; Dong, X. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, Y.; Yang, H.; Oh, J.H. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Compos. Part B Eng. 2021, 211, 108607. [Google Scholar] [CrossRef]
- Kim, S.; Cho, W.; Hwang, J.; Kim, J. Self-powered pressure sensor for detecting static and dynamic stimuli through electrochemical reactions. Nano Energy 2022, 107, 108109. [Google Scholar] [CrossRef]
- Kweon, O.Y.; Lee, S.J.; Oh, J.H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater. 2018, 10, 540–551. [Google Scholar] [CrossRef]
- Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z.L. Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Adv. Mater. 2017, 29, 1703700. [Google Scholar] [CrossRef]
- Shi, J.; Wang, L.; Dai, Z.; Zhao, L.; Du, M.; Li, H.; Fang, Y. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small 2018, 14, 1800819. [Google Scholar] [CrossRef]
- Song, Z.; Li, W.; Kong, H.; Chen, M.; Bao, Y.; Wang, N.; Wang, W.; Liu, Z.; Ma, Y.; He, Y.; et al. Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chem. Eng. J. 2022, 444, 136481. [Google Scholar] [CrossRef]
- Zhao, X.; Hua, Q.; Yu, R.; Zhang, Y.; Pan, C. Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Adv. Electron. Mater. 2015, 1, 1500142. [Google Scholar] [CrossRef]
- Masihi, S.; Panahi, M.; Maddipatla, D.; Hanson, A.J.; Bose, A.K.; Hajian, S.; Palaniappan, V.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. Highly Sensitive Porous PDMS-Based Capacitive Pressure Sensors Fabricated on Fabric Platform for Wearable Applications. ACS Sens. 2021, 6, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Lao, S.; Edher, H.; Saini, U.; Sixt, J.; Salehian, A. A Novel Capacitance-Based In-Situ Pressure Sensor for Wearable Compression Garments. Micromachines 2019, 10, 743. [Google Scholar] [CrossRef]
- Liang, A.; Stewart, R.; Bryan-Kinns, N. Analysis of Sensitivity, Linearity, Hysteresis, Responsiveness, and Fatigue of Textile Knit Stretch Sensors. Sensors 2019, 19, 3618. [Google Scholar] [CrossRef]
- Rinaldi, A.; Tamburrano, A.; Fortunato, M.; Sarto, M.S. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets. Sensors 2016, 16, 2148. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Shi, Y.; Wang, S.; Zhou, H.; Chen, Z.; Guo, W.; Yang, Y.; Ye, M. Merkel cell-inspired skin-like hybrid hydrogels for wearable health monitoring. Chem. Eng. J. 2022, 456, 140976. [Google Scholar] [CrossRef]
- Gassmann, E. Pressure-sensor fundamentals: Interpreting accuracy and error. Chem. Eng. Prog. 2014, 110, 37–45. [Google Scholar]
- Nie, Z.; Kwak, J.; Han, M.; Rogers, J. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors—A Review. Adv. Mater. 2024, 36, 2205609. [Google Scholar] [CrossRef]
- Kou, H.; Zhang, L.; Tan, Q.; Liu, G.; Dong, H.; Zhang, W.; Xiong, J. Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 2019, 9, 3916. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914. [Google Scholar] [CrossRef] [PubMed]
- Mannsfeld, S.C.B.; Tee, B.C.K.; Stoltenberg, R.M.; Chen, C.V.H.H.; Barman, S.; Muir, B.V.O.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, J.; Boyce, M.C. Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 1998, 46, 931–954. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Alimardani, M.; Gallo, L.D. Reliability Analysis of Complex NASA Systems with Model-Based Engineering. In Proceedings of the 2020 Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 27–30 January 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Park, Y.; Kwon, K.; Kwak, S.S.; Yang, D.S.; Kwak, J.W.; Luan, H.; Chung, T.S.; Chun, K.S.; Kim, J.U.; Jang, H.; et al. Wireless, skin-interfaced sensors for compression therapy. Sci. Adv. 2020, 6, eabe1655. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines 2018, 9, 580. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Cui, Y.; Li, W. Research progress of flexible wearable pressure sensors. Sens. Actuators Phys. 2021, 330, 112838. [Google Scholar] [CrossRef]
- Liu, R.; Xu, K.; Zhang, Y. Nanomaterial-based wearable pressure sensors: A minireview. Instrum. Sci. Technol. 2020, 48, 459–479. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, J.H. Recent Progress in Pressure Sensors for Wearable Electronics: From Design to Applications. Appl. Sci. 2020, 10, 6403. [Google Scholar] [CrossRef]
- Rasel, M.S.; Cho, H.O.; Kim, J.W.; Park, J.Y. A self-powered triboelectric sensor for wide-range pressure detection in wearable application. J. Phys. Conf. Ser. 2018, 1052, 012029. [Google Scholar] [CrossRef]
- Tan, Y.; Yang, K.; Wang, B.; Li, H.; Wang, L.; Wang, C. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res. 2021, 14, 3969–3976. [Google Scholar] [CrossRef]
- Xiong, X.; Liang, J.; Wu, W. Principle and recent progress of triboelectric pressure sensors for wearable applications. Nano Energy 2023, 113, 108542. [Google Scholar] [CrossRef]
- Latessa, G.; Brunetti, F.; Reale, A.; Saggio, G.; Di Carlo, A. Piezoresistive behaviour of flexible PEDOT:PSS based sensors. Sens. Actuators B Chem. 2009, 139, 304–309. [Google Scholar] [CrossRef]
- Schofield, J.S.; Evans, K.R.; Hebert, J.S.; Marasco, P.D.; Carey, J.P. The effect of biomechanical variables on force sensitive resistor error: Implications for calibration and improved accuracy. J. Biomech. 2016, 49, 786–792. [Google Scholar] [CrossRef]
- Paredes-Madrid, L.; Matute, A.; Peña, A. Framework for a Calibration-Less Operation of Force Sensing Resistors at Different Temperatures. IEEE Sens. J. 2017, 17, 4133–4142. [Google Scholar] [CrossRef]
- Chang, S.; Li, J.; He, Y.; Liu, H.; Cheng, B. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric. Sens. Actuators A Phys. 2019, 294, 45–53. [Google Scholar] [CrossRef]
- Vogt, D.M.; Park, Y.L.; Wood, R.J. Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels. IEEE Sens. J. 2013, 13, 4056–4064. [Google Scholar] [CrossRef]
- Zhang, M.; Fang, S.; Nie, J.; Fei, P.; Aliev, A.E.; Baughman, R.H.; Xu, M. Self-Powered, Electrochemical Carbon Nanotube Pressure Sensors for Wave Monitoring. Adv. Funct. Mater. 2020, 30, 2004564. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Liu, Z.; Fu, J.; Shan, T.; Yang, X.; Lei, Q.; Yang, Y.; Li, D. Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C 2022, 10, 1594–1605. [Google Scholar] [CrossRef]
- Ha, K.H.; Huh, H.; Li, Z.; Lu, N. Soft Capacitive Pressure Sensors: Trends, Challenges, and Perspectives. ACS Nano 2022, 16, 3442–3448. [Google Scholar] [CrossRef]
- Mishra, R.B.; El-Atab, N.; Hussain, A.M.; Hussain, M.M. Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Adv. Mater. Technol. 2021, 6, 2001023. [Google Scholar] [CrossRef]
- Agarwal, S.; Juneja, S. The effectiveness of compression garment in relieving muscular pain: A review. Int. J. Cloth. Sci. Technol. 2022, 35, 557–564. [Google Scholar] [CrossRef]
- Ferguson-Pell, M.; Hagisawa, S.; Bain, D. Evaluation of a sensor for low interface pressure applications. Med. Eng. Phys. 2000, 22, 657–663. [Google Scholar] [CrossRef]
- Shi, X.; Cheng, C.H.; Zheng, Y.; Wai, P. An EGaIn-based flexible piezoresistive shear and normal force sensor with hysteresis analysis in normal force direction. J. Micromech. Microeng. 2016, 26, 105020. [Google Scholar] [CrossRef]
- He, F.; You, X.; Wang, W.; Bai, T.; Xue, G.; Ye, M. Recent Progress in Flexible Microstructural Pressure Sensors toward Human–Machine Interaction and Healthcare Applications. Small Methods 2021, 5, 2001041. [Google Scholar] [CrossRef]
- Ha, M.; Lim, S.; Park, J.; Um, D.S.; Lee, Y.; Ko, H. Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins. Adv. Funct. Mater. 2015, 25, 2841–2849. [Google Scholar] [CrossRef]
- Iskandarani, Y.; Karimi, H.R. Pressure sensor development based on Dielectric Electro Active Polymers. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 530–535. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Zhang, H.; Xie, M.; Duan, X. PEDOT:PSS: From conductive polymers to sensors. Nanotechnol. Precis. Eng. 2021, 4, 045004. [Google Scholar] [CrossRef]
- Ahmed, A.; Singh, A.; Young, S.J.; Gupta, V.; Singh, M.; Arya, S. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review. Compos. Part A Appl. Sci. Manuf. 2022, 165, 107373. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Hu, D.; Yao, M.; Fan, Y.; Ma, C.; Fan, M.; Liu, M. Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy 2019, 55, 288–304. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, B.; Li, Y.; Nygaard, R.; Xiao, H. A Fluidic-Based High-Pressure Sensor Interrogated by Microwave Fabry–Perot Interferometry. IEEE Sens. J. 2017, 17, 4388–4393. [Google Scholar] [CrossRef]
- Zhou, R. Bladder Pressure Sensors. In Prevention of Pressure Sores; CRC Press: Boca Raton, FL, USA, 1991; p. 12. [Google Scholar]
- Riehmann, P.; Hanfler, M.; Froehlich, B. Interactive Sankey diagrams. In Proceedings of the IEEE Symposium on Information Visualization, 2005. INFOVIS 2005, Minneapolis, MN, USA, 23–25 October 2005; pp. 233–240. [Google Scholar] [CrossRef]
- Sadun, A.S.; Jalani, J.; Sukor, J.A. Force Sensing Resistor (FSR): A brief overview and the low-cost sensor for active compliance control. In Proceedings of the First International Workshop on Pattern Recognition, Tokyo, Japan, 11–13 May 2016; Volume 10011, pp. 222–226. [Google Scholar] [CrossRef]
Pressure Sensor Application | Eligible Publications |
---|---|
Medical | [9,10,22,24,25,26,27,32,33,34,35] |
HCI | [31,35,36,37,38,39,40,41,42,43] |
Sports and Athletics | [44] |
No reported application | [45,46,47,48] |
Total | 26 |
Reference | Sensing Mechanism | Structure | Loading | Measurement Range [kPa] | Linearity [R2] | Hysteresis | Sensitivity [kPa−1] | Drift | Accuracy | Cycle Testing |
---|---|---|---|---|---|---|---|---|---|---|
[26] | Piezoresistive Strain Gauge | 3D Buckling | On-body testing for up to 5 s | 0–180 | >0.99 | <0.02% | 2.2–3.1 × 10−5 | Negligible | 1000 cycles (mean delta 0.37%, SD 0.07%) | |
[45] | Capacitive | Sponges & Foams Dielectric Materials | Loading of 30 s | 0–13 | Good | Present but small | 0.001 | 0.18 pF | 400 Loading cycles | |
[10] | Piezoresistive, Strain Gauge | Conductive ink | 5 kPa for 20 min | 0–18 | 0.989 | <10% below 10 kPa; <20% above 10 kPa | <5% | 15% FSD | ||
[33] | Piezoresistive Strain Gauge Microchannel | Buckling 3D Geometry | 20 s duration | 0–10 | Negligible | |||||
[24] | Piezoresistive Strain Gauge | Conductive Ink | On a subject under a compression band for 25 s | 0–30 | ||||||
[47] | Piezoresistive Strain Gauge | Sponges & Foams Graphene | Quasi-static compression test | 0–70 | Non-linear monotonic | Presence of hysteresis loops | 0.23 | Negligible | ||
[41] | Piezoresistive Strain Gauge | Microtexturing Conductive Surface | Pressure sensor array for static pressure mapping | 0–25 | 0.998 | 1.2 | Stable over 1000 cycles | |||
[43] | Capacitive | Sponges & Foams | Loading of 15 s | 0–14 | 0.978 | 1450 | Stable over 1000 cycles | |||
[22] | Pneumatic | Fluidics, Bladder | ||||||||
[42] | Piezoresistive Strain Gauge Capacitive | Sponges & Foams PEDOT, Buckling Conductive Yarns | Consistent loading up to 350 kPa | 0.2–400 | Linear response from 0.2–400 kPa | 8.59 | ||||
[56] | Piezoresistive Strain Gauge | Buckling 3D Geometry | 0–13 | 0.992 | Negilible | Stable over 10,000 cycles at 120 kPa | ||||
[38] | Piezoresistive Electrochemical | Sponges & Foams Electrolyte | Static sensing of approximately 90 kPa was applied | 0–110 | 13% | 10 | 500 cycles at 10 kPa | |||
[40] | Piezoresistive Strain Gauge | Sponges & Foams Dielectric Materials | 3.5–15 | 14.4 | Stable over 1000 cycles | |||||
[32] | Piezoresistive Microchannel | Fluidics Conductive Inks | Current signal from static hand gestures | 0-60 | 0.999 | 0.0835 | ||||
[37] | Capacitive | Sponges & Foams Dielectric Composite | 10 s loading between 10–300 kPa | 0–400 | Nonlinear | Low | 0.18 | 10 cycles at 450 kPa | ||
[39] | Piezoresistive Strain Gauge Contact | Sponges & Foams PEDOT, Microtexturing Conductive Surface | Loading over 1, 3, 5 kPa | 0–30 | 13.5 | Stable over 10,000 cycles | ||||
[9] | Capacitive | Sponges & Foams PEDOT Dielectric Composite | Lower limit for 15 s | 0–400 | 0.995 | Negligible | 0.51 | Stable over 10,000 cycles at 167 kPa | ||
[44] | Capacitive | Sponges & Foams PEDOT, Conductive Ink | 5 s loading at 100 kPa | 0–1000 | 7.8% | 0.3 | ||||
[36] | Piezoresistive | Sponges & Foams, Graphene Coating Nanowire | 15 s durations | 0–27 | 0.99 (within 0–3.24 kPa) | Negligible | 0.042–0.152 | Stable over 9000 cycles | ||
[27] | Pneumatic | Fluidics Bladder | Consecutive loading and unloading periods | |||||||
Pneumatic | Fluidics Bladder | Consecutive loading and unloading periods | 0–27 | |||||||
Piezoresistive Strain Gauge | Fluidics Conductive Ink | Consecutive loading and unloading periods | 0–18 | |||||||
[35] | Piezoresistive Strain Gauge | 3D Buckling | 20-second durations | 0–13 | 0.992 | Negligible | Negligible variations in response over 1000 cycles under pressures of 50 mmHg | |||
[48] | Piezoresistive Capacitive | Buckling 3D Geometry Sponges & Foams Dielectric composites | Prolonged loading | 0–200 | Linear | 7.10% | 14.117 | Negligible variations over 4000 cycles | ||
[31] | Piezoresistive Strain Gauge | Microtexturing Nanoribbons | Negligible | |||||||
[25] | Pneumatic | Fluidics Bladder | Static pressures on a mannequin leg | 0-13 | 0.99 | 0.4 kPa | ||||
Pneumatic | Fluidics, Bladder | 0–27 | 0.99 | 0.4 kPa | ||||||
Pneumatic | Fluidics, Bladder | 0–40 | 0.99 | 0.13 kPa | ||||||
[46] | Piezoresistive Strain Gauge | Buckling Conductive Yarns | Samples were stretched and held for 3 min | 0.9825 | ||||||
[34] | Piezoresistive Strain Gauge | Fluidics Conductive Ink | 8 h static loading | 2.5–9 | Linear | 5% | Negligible | 94% | stable over 10 loading cycles |
Fabricated Form | Eligible Publications | |
---|---|---|
Buckling | 3D Geometry | [26,33,56] |
Conductive Yarns | [42,46,48] | |
Microtexturing | Nanowires and Ribbons | [31,36,43] |
Conductive Surfaces Alterations | [26,40,41,44,45,56] | |
Sponges and Foams | Dielectric Composites | [9,37,44,45] |
PEDOT | [9,39,42] | |
Graphene Coating | [36,47] | |
Electrolytes | [38] | |
Fluidics | Conductive Inks and Alloys | [10,24,27,32,34,35] |
Bladders | [22,25,27] |
Compression Garment Development Phase | Critical Requirements | Taxonomy Mapping |
---|---|---|
Physiology | High Sensitivity Low Drift High Accuracy High Resolution High Linearity | Piezoresistive∼strain gauges Buckling∼3D geometry |
Design | High Resolution High Repeatability High Reliability | Piezoresistive∼strain gauges Fluidic∼Conductive Inks Piezoresistive∼Microchannels Fluidic∼Conductive Inks |
System Verification | High Sensitivity High Accuracy High Linearity High Repeatability High Reliability | Piezoresistive∼strain gauges Buckling∼3D geometry Piezoresistive∼Microchannels Fluidic∼Conductive Inks Piezoresistive∼strain gauges Sponges and Foams∼PEDOT |
Operational Monitoring | Low Drift High Accuracy High Repeatability High Reliability | Mixed: Piezoresistive∼strain gauges Buckling∼3D Geometry Capacitive Sponges and Foams∼PEDOT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schauss, G.; Hayman, A.P.A. A Taxonomy of Pressure Sensors for Compression Garment Development. Sensors 2025, 25, 4445. https://doi.org/10.3390/s25144445
Schauss G, Hayman APA. A Taxonomy of Pressure Sensors for Compression Garment Development. Sensors. 2025; 25(14):4445. https://doi.org/10.3390/s25144445
Chicago/Turabian StyleSchauss, Gabriella, and Allison P. A. Hayman. 2025. "A Taxonomy of Pressure Sensors for Compression Garment Development" Sensors 25, no. 14: 4445. https://doi.org/10.3390/s25144445
APA StyleSchauss, G., & Hayman, A. P. A. (2025). A Taxonomy of Pressure Sensors for Compression Garment Development. Sensors, 25(14), 4445. https://doi.org/10.3390/s25144445