Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = tar model compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3792 KiB  
Article
Experiment and Simulation of the Non-Catalytic Reforming of Biomass Gasification Producer Gas for Syngas Production
by Yongbin Wang, Guoqiang Cao, Zhongren Ba, Hao Cheng, Donghai Hu, Jonas Baltrusaitis, Chunyu Li, Jiantao Zhao and Yitian Fang
Energies 2025, 18(11), 2945; https://doi.org/10.3390/en18112945 - 3 Jun 2025
Viewed by 458
Abstract
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene [...] Read more.
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene (C10H8), toluene (C7H8), benzene (C6H6), and phenol (C6H5OH). The experiments were conducted using a high-temperature fixed-bed reactor under varying temperatures (1100–1500 °C) and equivalence ratios (ERs, 0.10–0.30). The results obtained from the experiment, namely the measured mole concentration of H2, CO, CH4, CO2, H2O, soot, and tar suggested that both reactor temperature and O2 content had an important effect. Increasing the temperature significantly promotes the formation of H2 and CO. At 1500 °C and a residence time of 0.01 s, the product gas achieved CO and H2 concentrations of 28.02% and 34.35%, respectively, while CH4, tar, and soot were almost entirely converted. Conversely, the addition of O2 reduces the concentrations of H2 and CO. Increasing ER from 0.10 to 0.20 could reduce CO from 22.25% to 16.11%, and H2 from 13.81% to 10.54%, respectively. Experimental results were used to derive a kinetic model to accurately describe the non-catalytic reforming of producer gas. Furthermore, the maximum of the Root Mean Square Error (RMSE) and the Relative Root Mean Square Error (RRMSE) between the model predictions and experimental data are 2.42% and 11.01%, respectively. In particular, according to the kinetic model, the temperature increases predominantly accelerated endothermic reactions, including the Boudouard reaction, water gas reaction, and CH4 steam reforming, thereby significantly enhancing CO and H2 production. Simultaneously, O2 content primarily influenced carbon monoxide oxidation, hydrogen oxidation, and partial carbon oxidation. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

18 pages, 6718 KiB  
Article
CO2 Reforming of Biomass Gasification Tar over Ni-Fe-Based Catalysts in a DBD Plasma Reactor
by Bianbian Gao, Guoqiang Cao, Yutong Feng, Yuting Jiao, Chunyu Li, Jiantao Zhao and Yitian Fang
Molecules 2025, 30(5), 1032; https://doi.org/10.3390/molecules30051032 - 24 Feb 2025
Cited by 1 | Viewed by 877
Abstract
The removal of tar and CO2 represents a critical challenge in the production of biomass gasification syngas, necessitating the development of advanced catalytic systems. In this study, plasma-enhanced catalytic CO2 reforming was employed to remove biomass tar, with toluene selected as [...] Read more.
The removal of tar and CO2 represents a critical challenge in the production of biomass gasification syngas, necessitating the development of advanced catalytic systems. In this study, plasma-enhanced catalytic CO2 reforming was employed to remove biomass tar, with toluene selected as a model compound for biomass tar. Supported Nix-Fey/Al2O3 catalysts, with varying Ni/Fe molar ratios (3:1, 2:1, 1:1, 1:2, and 1:3), were synthesized for the CO2 reforming of toluene in dielectric barrier discharge (DBD) non-thermal plasma reactors. The experiments were conducted at 250 °C and ambient pressure. The effects of various Ni/Fe molar ratios, discharge powers, and CO2 concentrations on DBD plasma-catalytic CO2 reforming of toluene to synthesis gas were analyzed. The results indicate that CO and H2 are the primary gaseous products of toluene decomposition, with the selectivity for these gaseous products increasing with the discharge power. Increasing discharge power leads to a higher selectivity for CO and H2 production. A CO2/C7H8 ratio of 1.5 was found to effectively enhance the catalytic performance of the system, leading to the highest toluene conversion and syngas selectivity. The selectivity of the Nix-Fey/Al2O3 catalysts for H2 and CO follows the following order: Ni3-Fe1/Al2O3 > Ni2-Fe1/Al2O3 > Ni1-Fe1/Al2O3 > Ni1-Fe2/Al2O3 > Ni1-Fe3/Al2O3. Notably, the Ni3-Fe1/Al2O3 catalyst exhibits a high CO2 adsorption capacity due to its strong basicity, demonstrating significant potential for both tar conversion and carbon resistance. Full article
Show Figures

Graphical abstract

15 pages, 2543 KiB  
Article
Comprehensive Quantitative Analysis of Coal-Based Liquids by Mask R-CNN-Assisted Two-Dimensional Gas Chromatography
by Huan-Huan Fan, Xiang-Ling Wang, Jie Feng and Wen-Ying Li
Separations 2025, 12(2), 22; https://doi.org/10.3390/separations12020022 - 24 Jan 2025
Viewed by 622
Abstract
A comprehensive understanding of the compositions and physicochemical properties of coal-based liquids is conducive to the rapid development of multipurpose, high-performance, and high-value functional chemicals. However, because of their complex compositions, coal-based liquids generate two-dimensional gas chromatography (GC × GC) chromatograms that are [...] Read more.
A comprehensive understanding of the compositions and physicochemical properties of coal-based liquids is conducive to the rapid development of multipurpose, high-performance, and high-value functional chemicals. However, because of their complex compositions, coal-based liquids generate two-dimensional gas chromatography (GC × GC) chromatograms that are very complex and very time consuming to analyze. Therefore, the development of a method for accurately and rapidly analyzing chromatograms is crucial for understanding the chemical compositions and structures of coal-based liquids, such as direct coal liquefaction (DCL) oils and coal tar. In this study, DCL oils were distilled and qualitatively analyzed using GC × GC chromatograms. A deep-learning (DL) model was used to identify spectral features in GC × GC chromatograms and predominantly categorize the corresponding DCL oils as aliphatic alkanes, cycloalkanes, mono-, bi-, tri-, and tetracyclic aromatics. Regional labels associated with areas in the GC × GC chromatograms were fed into the mask-region-based convolutional neural network’s (Mask R-CNN’s) algorithm. The Mask R-CNN accurately and rapidly segmented the GC × GC chromatograms into regions representing different compounds, thereby automatically qualitatively classifying the compounds according to their spots in the chromatograms. Results show that the Mask R-CNN model’s accuracy, precision, recall, F1 value, and Intersection over Union (IoU) value were 93.71%, 96.99%, 96.27%, 0.95, and 0.93, respectively. DL is effective for visually comparing GC × GC chromatograms to analyze the compositions of chemical mixtures, accelerating GC × GC chromatogram interpretation and compound characterization and facilitating comparisons of the chemical compositions of multiple coal-based liquids produced in the coal and petroleum industry. Applying DL to analyze chromatograms improves analysis efficiency and provides a new method for analyzing GC × GC chromatograms, which is important for fast and accurate analysis. Full article
(This article belongs to the Section Chromatographic Separations)
Show Figures

Graphical abstract

16 pages, 848 KiB  
Article
Coal Tar Naphtha Refining: Phenol Alkylation with 1-Hexene and the Impact of Pyridine
by Yuhan Xia and Arno de Klerk
Processes 2025, 13(1), 194; https://doi.org/10.3390/pr13010194 - 12 Jan 2025
Viewed by 1038
Abstract
Coal tar naphtha is produced from coal carbonization, moving bed coal gasification, and thermal liquefaction of coal. The naphtha can contain up to 60% aromatics and 15% olefins, as well as nitrogen-, oxygen-, and sulfur-containing compounds. Usually only hydrotreating is considered, but when [...] Read more.
Coal tar naphtha is produced from coal carbonization, moving bed coal gasification, and thermal liquefaction of coal. The naphtha can contain up to 60% aromatics and 15% olefins, as well as nitrogen-, oxygen-, and sulfur-containing compounds. Usually only hydrotreating is considered, but when producing motor gasoline, olefin–aromatic alkylation could reduce the associated octane number loss due to olefin hydrogenation by converting olefins to alkylated phenols and aromatics. The plausibility of using acid-catalyzed alkylation with coal tar naphtha, which contains nitrogen bases, was investigated by studying a model system comprising phenol and 1-hexene in the absence and presence of pyridine. It was found that pyridine only inhibited conversion over a range of amorphous silica–alumina catalysts. The most effective catalyst was Siral 30 (30% silica, 70% alumina) and at 315 °C, 0.05 wt% pyridine caused a 35% inhibition of phenol conversion compared to conversion in the absence of pyridine. Catalyst activity could be restored by rejuvenating the catalyst with clean feed at a higher temperature. The results supported a description of phenol alkylation with olefins that took place by at least two pathways, one involving protonation of the olefin (typical for Friedel–Crafts alkylation) and one where the olefin is the nucleophile. Full article
(This article belongs to the Special Issue Synthesis, Catalysis and Applications of Organic Chemistry)
Show Figures

Figure 1

15 pages, 3179 KiB  
Article
Reactive Force Field Molecular Dynamics Investigation of NH3 Generation Mechanism during Protein Pyrolysis Process
by Shuai Guo, Yu Wang, Shujun Zhu, Hongwei Qu, Deng Zhao, Xingcan Li and Yan Zhao
Molecules 2024, 29(9), 2016; https://doi.org/10.3390/molecules29092016 - 27 Apr 2024
Cited by 1 | Viewed by 1519
Abstract
The mechanism of ammonia formation during the pyrolysis of proteins in biomass is currently unclear. To further investigate this issue, this study employed the AMS 2023.104 software to select proteins (actual proteins) as the model compounds and the amino acids contained within them [...] Read more.
The mechanism of ammonia formation during the pyrolysis of proteins in biomass is currently unclear. To further investigate this issue, this study employed the AMS 2023.104 software to select proteins (actual proteins) as the model compounds and the amino acids contained within them (assembled amino acids) as the comparative models. ReaxFF molecular dynamics simulations were conducted to explore the nitrogen transformation and NH3 generation mechanisms in three-phase products (char, tar, and gas) during protein pyrolysis. The research results revealed several key findings. Regardless of whether the model compounds are actual proteins or assembled amino acids, NH3 is the primary nitrogen-containing product during pyrolysis. However, as the temperature rises to higher levels, such as 2000 K and 2500 K, the amount of NH3 decreases significantly in the later stages of pyrolysis, indicating that it is being converted into other nitrogen-bearing species, such as HCN and N2. Simultaneously, we also observed significant differences between the pyrolysis processes of actual proteins and assembled amino acids. Notably, at 2000 K, the amount of NH3 generated from the pyrolysis of assembled amino acids was twice that of actual proteins. This discrepancy mainly stems from the inherent structural differences between proteins and amino acids. In proteins, nitrogen is predominantly present in a network-like structure (NH-N), which shields it from direct external exposure, thus requiring more energy for nitrogen to participate in pyrolysis reactions, making it more difficult for NH3 to form. Conversely, assembled amino acids can release NH3 through a simpler deamination process, leading to a significant increase in NH3 production during their pyrolysis. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass)
Show Figures

Figure 1

35 pages, 8883 KiB  
Review
Role of Experimental, Modeling, and Simulation Studies of Plasma in Sustainable Green Energy
by Muhammad Yousaf Arshad, Muhammad Azam Saeed, Muhammad Wasim Tahir, Ahsan Raza, Anam Suhail Ahmad, Fasiha Tahir, Bartłomiej Borkowski, Tadeusz Mączka and Lukasz Niedzwiecki
Sustainability 2023, 15(19), 14193; https://doi.org/10.3390/su151914193 - 26 Sep 2023
Cited by 9 | Viewed by 2248
Abstract
This comprehensive review paper offers a multifaceted examination of non-thermal plasma applications in addressing the complex challenge of tar removal within biomass-oriented technologies. It begins with a concise introduction to the research background, setting the context for our exploration. The research framework is [...] Read more.
This comprehensive review paper offers a multifaceted examination of non-thermal plasma applications in addressing the complex challenge of tar removal within biomass-oriented technologies. It begins with a concise introduction to the research background, setting the context for our exploration. The research framework is then unveiled, providing a structured foundation for understanding the intricate dynamics of plasma–tar interactions. As we delve deeper into the subject, we elucidate the reactivity of tar compounds and the transformation of alkali metals through plasma-based methodologies, essential factors in enhancing product gas quality. Through an array of empirical studies, we investigated the nuanced interactions between plasma and diverse materials, yielding crucial insights into plasma kinetics, modeling techniques, and the optimization of plasma reactors and processes. Our critical review also underscores the indispensable role of kinetic modeling and simulation in advancing sustainable green energy technologies. By harnessing these analytical tools, researchers can elevate system efficiency, reduce emissions, and diversify the spectrum of available renewable energy sources. Furthermore, we delve into the intricate realm of modeling plasma behavior and its intricate interplay with various constituents, illuminating a path toward innovative plasma-driven solutions. This comprehensive review highlights the significance of holistic research efforts that encompass empirical investigations and intricate theoretical modeling, collectively advancing the frontiers of plasma-based technologies within the dynamic landscape of sustainable energy. The insights gained from this review contribute to the overall understanding of plasma technologies and their role in achieving a greener energy landscape. Full article
Show Figures

Figure 1

20 pages, 15927 KiB  
Article
Devolatilization of Polypropylene Particles in Fluidized Bed
by Armando Vitale, Alessandro Antonio Papa, Stefano Iannello, Erwin Ciro, Arda Hatunoglu, Valerio Corradetti, Nicola Rovelli, Pier Ugo Foscolo and Andrea Di Carlo
Energies 2023, 16(17), 6324; https://doi.org/10.3390/en16176324 - 31 Aug 2023
Cited by 12 | Viewed by 2310
Abstract
Gasification of plastic waste is an emerging technology of particular interest to the scientific world given the production of a hydrogen-rich gas from waste material. Devolatilization is a first step thermochemical decomposition process which is crucial in determining the quality of the gas [...] Read more.
Gasification of plastic waste is an emerging technology of particular interest to the scientific world given the production of a hydrogen-rich gas from waste material. Devolatilization is a first step thermochemical decomposition process which is crucial in determining the quality of the gas in the whole gasification process. The devolatilization of polypropylene (a key compound of plastic waste) has been investigated experimentally in a bench-scale fluidized bed reactor. Experimental tests were carried out by varying two key parameters of the process—the size of the polypropylene spheres (8–12 mm) and temperature (650–850 °C). Temperature shows the highest influence on the process. Greater molecular cracking results were more pronounced at higher temperatures, increasing the production of light hydrocarbons along with the formation of solid carbon residue and tar. The overall syngas output reduced, while the H2 content increased. Furthermore, a pseudo-first-order kinetic model was developed to describe the devolatilization process (Eapp = 11.8 kJ/mol, A1 = 0.55 s−1, ψ = 0.77). Full article
(This article belongs to the Special Issue The Role of Thermochemical Treatments in Biorefinery)
Show Figures

Figure 1

26 pages, 4479 KiB  
Article
Advancing Sustainable Decomposition of Biomass Tar Model Compound: Machine Learning, Kinetic Modeling, and Experimental Investigation in a Non-Thermal Plasma Dielectric Barrier Discharge Reactor
by Muhammad Yousaf Arshad, Muhammad Azam Saeed, Muhammad Wasim Tahir, Halina Pawlak-Kruczek, Anam Suhail Ahmad and Lukasz Niedzwiecki
Energies 2023, 16(15), 5835; https://doi.org/10.3390/en16155835 - 7 Aug 2023
Cited by 11 | Viewed by 2413
Abstract
This study examines the sustainable decomposition reactions of benzene using non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) reactor. The aim is to investigate the factors influencing benzene decomposition process, including input power, concentration, and residence time, through kinetic modeling, reactor performance [...] Read more.
This study examines the sustainable decomposition reactions of benzene using non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) reactor. The aim is to investigate the factors influencing benzene decomposition process, including input power, concentration, and residence time, through kinetic modeling, reactor performance assessment, and machine learning techniques. To further enhance the understanding and modeling of the decomposition process, the researchers determine the apparent decomposition rate constant, which is incorporated into a kinetic model using a novel theoretical plug flow reactor analogy model. The resulting reactor model is simulated using the ODE45 solver in MATLAB, with advanced machine learning algorithms and performance metrics such as RMSE, MSE, and MAE employed to improve accuracy. The analysis reveals that higher input discharge power and longer residence time result in increased tar analogue compound (TAC) decomposition. The results indicate that higher input discharge power leads to a significant improvement in the TAC decomposition rate, reaching 82.9%. The machine learning model achieved very good agreement with the experiments, showing a decomposition rate of 83.01%. The model flagged potential hotspots at 15% and 25% of the reactor’s length, which is important in terms of engineering design of scaled-up reactors. Full article
(This article belongs to the Special Issue Plasma Application in Fuel Conversion Processes)
Show Figures

Figure 1

16 pages, 3719 KiB  
Article
Removal of Organic Sulfur Pollutants from Gasification Gases at Intermediate Temperature by Means of a Zinc–Nickel-Oxide Sorbent for Integration in Biofuel Production
by Josemaria Sánchez-Hervás, Isabel Ortiz, Veronica Martí and Alberto Andray
Catalysts 2023, 13(7), 1089; https://doi.org/10.3390/catal13071089 - 11 Jul 2023
Cited by 8 | Viewed by 3198
Abstract
Production of renewable fuels from gasification is based on catalytic processes. Deep desulfurization is required to avoid the poisoning of the catalysts. It means the removal of H2S but also of organic sulfur species. Conventional cleaning consists of a several-step complex [...] Read more.
Production of renewable fuels from gasification is based on catalytic processes. Deep desulfurization is required to avoid the poisoning of the catalysts. It means the removal of H2S but also of organic sulfur species. Conventional cleaning consists of a several-step complex approach comprising catalytic hydro-treating followed by H2S removal. In this work, a single-stage process using a zinc and nickel oxide sorbent has been investigated for the removal of organic sulfur species present in syngas. The process is called reactive adsorption and comes from the refinery industry. The challenge investigated by CIEMAT was to prove for the first time that the concept is also valid for syngas. We have studied the process at a lab scale. Thiophene and benzothiophene, two of the main syngas organic sulfur compounds, were selected as target species to remove. The experimental study comprised the analysis of the effect of temperature (250–450 °C), pressure (1–10 bar), space velocity (2000–3500 h−1), tar components (toluene), sulfur species (H2S), and syngas components (H2, CO, and full syngas CO/CO2/CH4/H2). Operating conditions for removal of thiophene and benzothiophene were determined. Increasing pressure and temperature had a positive effect, and full conversion was achieved at 450 °C, 10 bar and 3500 h−1, accompanied by simultaneous hydrogen sulfide capture by the sorbent in accordance with the reactive adsorption desulfurization (RADS) process. Space velocity and hydrogen content in the syngas had little effect on desulfurization. Thiophene conversions from 39% to 75% were obtained when feeding synthetic syngas mimicking different compositions, spanning from air to steam-oxygen-blown gasification. Toluene, as a model tar component present in syngas, did not strongly affect the removal of thiophene and benzothiophene. H2S inhibited their conversion, falling, respectively, to 2% and 69% at 350 °C and 30% and 80% at 400 °C under full syngas blends. Full article
(This article belongs to the Special Issue Designing Catalytic Desulfurization Processes to Prepare Clean Fuels)
Show Figures

Figure 1

13 pages, 2463 KiB  
Article
Numerical Analysis of Tar and Syngas Formation during the Steam Gasification of Biomass in a Fluidized Bed
by Abolhasan Hashemisohi, Lijun Wang and Abolghasem Shahbazi
Energies 2023, 16(14), 5283; https://doi.org/10.3390/en16145283 - 10 Jul 2023
Cited by 5 | Viewed by 1566
Abstract
A sequential modular hydrodynamic model integrated with detailed reaction kinetics (SMHM-RK) was developed and validated to predict tar and syngas components produced by the steam gasification of biomass in a fluidized bed gasifier. The simulations showed that the prediction accuracy is sensitive to [...] Read more.
A sequential modular hydrodynamic model integrated with detailed reaction kinetics (SMHM-RK) was developed and validated to predict tar and syngas components produced by the steam gasification of biomass in a fluidized bed gasifier. The simulations showed that the prediction accuracy is sensitive to both models for hydrodynamics and reaction kinetics. The simulations showed that the tar composition predicted by the SMHM-RK was more close to the measured values than those predicted by the well-mixed hydrodynamic model integrated with the same reaction kinetics (WMHM-RK). The predictions showed that the total tar decreased, but the polycyclic aromatic tar compounds increased with the increase in gasification temperature. There was an optimum steam-to-biomass ratio (SBR) for minimizing tar formation. The simulations found that the contents of total tar and heavy tar compounds decreased by increasing the SBR from 0.3 to 0.9, and then increased by further increasing the SBR. The injection of a small amount of oxygen in steam gasification cannot reduce tar formation. The injection of oxygen in steam gasification changed the reaction pathways of naphthalene to produce more naphthalene in the syngas. The de-volatilization rate affects pyrolytic volatile compositions and subsequent tar formation. Therefore, biomass devolatilization and homogeneous gas reactions should be solved simultaneously to accurately predict the syngas and tar composition. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

23 pages, 4735 KiB  
Article
Gas-Phase Deoxygenation of Biomass Pyrolysis Tar Catalyzed by Rare Earth Metal Loaded Hβ Zeolite
by Ali A. Jazie, Juma Haydary, Suhad A. Abed and Jakub Husár
Catalysts 2023, 13(6), 1016; https://doi.org/10.3390/catal13061016 - 17 Jun 2023
Cited by 2 | Viewed by 1992
Abstract
Biomass pyrolysis tar (BPT) with a higher heating value of 24.23 MJ/kg was used as raw feed for the catalytic gas-phase deoxygenation (GDO) process using Hβ zeolite loaded with different amounts of active elements (Ce, La, and Nd). Acetone molecule was chosen as [...] Read more.
Biomass pyrolysis tar (BPT) with a higher heating value of 24.23 MJ/kg was used as raw feed for the catalytic gas-phase deoxygenation (GDO) process using Hβ zeolite loaded with different amounts of active elements (Ce, La, and Nd). Acetone molecule was chosen as a model compound to test the activity of pure Hβ zeolite, 1 wt% Ce/Hβ zeolite, 5 wt% Ce/Hβ zeolite, 1 wt% La/Hβ zeolite, 5 wt% La/Hβ zeolite, 1 wt% Nd/Hβ zeolite, and 5 wt% Nd/Hβ zeolite at 400 °C and process time of 3 h. BPT characterization showed a wide range of oxygenated compounds with the main components including water: 0.71%, furfural: 5.85%, 4-ethylguaiacol: 2.14%, phenol: 13.63%, methylethyl ketone: 5.34%, cyclohexanone: 3.23%, isopropanol: 4.78%, ethanol: 3.67%, methanol: 3.13%, acetic acid: 41.06%, and acetone: 16.46%. BPT conversion using 1 wt% Ce/Hβ zeolite catalyst showed the highest values of degree of deoxygenation (DOD) (68%) and conversion (16% for phenol, 88% for acetic acid, and 38% for 4-ethlyguaiacol). Yields of water, liquid phase, and gas phase in the GDO reaction using 1%Ce/Hβ zeolite were 18.33%, 47.42%, and 34.25%, respectively. Alkyl-substituted phenols and aromatic hydrocarbons achieved the highest yields of 37.34% and 35.56%, respectively. The main interaction pathways for BPT-GDO are also proposed. Full article
Show Figures

Figure 1

14 pages, 4611 KiB  
Article
Hydrogen Production from Catalytic Pyrolysis of Phenol as Tar Model Compound in Magnetic Field
by Yalong Li, Baofeng Zhao, Haibin Guan, Suxiang Liu, Di Zhu, Angang Song, Huan Li and Laizhi Sun
Energies 2023, 16(10), 4140; https://doi.org/10.3390/en16104140 - 17 May 2023
Cited by 2 | Viewed by 1718
Abstract
Tar conversion during biomass pyrolysis is essential for hydrogen production. In this study, phenol and 10 wt.% Ni/CaO-Ca12Al14O33 were used as the tar model compound and catalyst, respectively. The purpose of the present investigation was to analyze the [...] Read more.
Tar conversion during biomass pyrolysis is essential for hydrogen production. In this study, phenol and 10 wt.% Ni/CaO-Ca12Al14O33 were used as the tar model compound and catalyst, respectively. The purpose of the present investigation was to analyze the influence of varying magnetic field strength (ranging from 0 to 80 mT), reaction temperature (ranging from 550 to 700 °C), and carrier gas velocity (ranging from 20 to 30 mL/min) on the catalytic pyrolysis outcomes obtained from phenol. The findings indicated that the conversion rate of phenol and H2 output exhibited an increase with an escalation in magnetic field strength and reaction temperature but demonstrated a decrease with an upsurge in the carrier gas velocity. The ideal conditions for achieving the maximum phenol conversion (91%) and H2 yield (458.5 mL/g) were realized by adjusting the temperature to 650 °C, retaining the carrier gas velocity at 20 mL/min, and elevating the magnetic field intensity to 80 mT. These conditions resulted in a considerable increase in phenol conversion and H2 yield by 22.2% and 28.2%, respectively, compared with those achieved without magnetism. According to the kinetic calculations, it was indicated that the inclusion of a magnetic force had a beneficial effect on the catalytic efficacy of 10 wt.% CaO-Ca12Al14O33. Additionally, this magnetic field was observed to lower the activation energy required for the production of H2 when compared with the activation energy required during phenol catalytic pyrolysis. This consequently resulted in an enhancement of the overall efficiency of H2 production. Full article
(This article belongs to the Special Issue Pyrolysis and Gasification of Biomass and Waste II)
Show Figures

Figure 1

24 pages, 11996 KiB  
Article
Municipal Sewage Sludge as a Source for Obtaining Efficient Biosorbents: Analysis of Pyrolysis Products and Adsorption Tests
by Krzysztof Mazurek, Sebastian Drużyński, Urszula Kiełkowska, Adam Węgrzynowicz, Anna K. Nowak, Zbigniew Wzorek and Adriana Wróbel-Kaszanek
Materials 2023, 16(7), 2648; https://doi.org/10.3390/ma16072648 - 27 Mar 2023
Cited by 8 | Viewed by 2204
Abstract
In the 21st century, the development of industry and population growth have significantly increased the amount of sewage sludge produced. It is a by-product of wastewater treatment, which requires appropriate management due to biological and chemical hazards, as well as several legal regulations. [...] Read more.
In the 21st century, the development of industry and population growth have significantly increased the amount of sewage sludge produced. It is a by-product of wastewater treatment, which requires appropriate management due to biological and chemical hazards, as well as several legal regulations. The pyrolysis of sewage sludge to biochar can become an effective way to neutralise and use waste. Tests were carried out to determine the effect of pyrolysis conditions, such as time and temperature, on the properties and composition of the products obtained and the sorption capacity of the generated biochar. Fourier transform infrared analysis (FTIR) showed that the main components of the produced gas phase were CO2, CO, CH4 and to a lesser extent volatile organic compounds. In tar, compounds of mainly anthropogenic origin were identified using gas chromatography mass spectrometry (GC-MS). The efficiency of obtaining biochars ranged from 44% to 50%. An increase in the pyrolysis temperature resulted in a decreased amount of biochar produced while improving its physicochemical properties. The biochar obtained at high temperatures showed the good adsorption capacity of Cu2+ (26 mg·g−1) and Zn2+ (21 mg·g−1) cations, which indicates that it can compete with similar sorbents. Adsorption of Cu2+ and Zn2+ proceeded according to the pseudo-second-order kinetic model and the Langmuir isotherm model. The biosorbent obtained from sewage sludge can be successfully used for the separation of metal cations from water and technological wastewater or be the basis for producing modified and mixed carbon sorbents. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

18 pages, 5751 KiB  
Article
The Efficiency of Carbon Conversion and Hydrogen Production from Tar Steam Reforming of Biomass Using Ni-Based Catalysts with Alkaline Earth Promoters
by Afizah Alir, Tuan Amran Tuan Abdullah, Anwar Johari, Mohamed Yusuf Mohamud, Melissa Low Phey Phey, Walid Nabgan, Francisco Medina and Muhammad Ikram
Catalysts 2023, 13(3), 472; https://doi.org/10.3390/catal13030472 - 23 Feb 2023
Cited by 9 | Viewed by 3435
Abstract
H2 production can be used as a clean and renewable energy source for various applications, including fuel cells, internal combustion engines, and chemical production. Using nickel-based catalysts for steam reforming biomass tar presents challenges related to catalyst deactivation, poisoning, heterogeneous composition, high [...] Read more.
H2 production can be used as a clean and renewable energy source for various applications, including fuel cells, internal combustion engines, and chemical production. Using nickel-based catalysts for steam reforming biomass tar presents challenges related to catalyst deactivation, poisoning, heterogeneous composition, high process temperatures, and gas impurities. To overcome these challenges, adopting a nickel-based catalyst with selected oxide support and MgO and CaO promoter is a promising approach for improving the efficiency and sustainability of steam reforming for hydrogen production. The majority of studies conducted to date have focused on the steam reforming of particular tar compounds, most commonly benzene, phenol, toluene, or naphthalene, over a range of support catalysts. However, the actual biomass tar composition is complex, and each component impacts how well steam reforming works. In this research, a multi-compound biomass tar model including phenol, toluene, naphthalene, and pyrene underwent a steam reforming process. Various types with 10 wt.% of nickel-based catalysts were generated by the co-impregnation technique, which included 90 wt.% different oxide supports (Al2O3, La2O3, and ZrO2) and 10 wt.% of combination alkaline oxide earth promoters (MgO and CaO). Thermogravimetric analysis, Brunauer–Emmett–Teller (BET) method, N2 physisorption, temperature-programmed reduction (H2-TPR), temperature-programmed desorption (CO2-TPD), and X-ray diffraction (XRD) of ni-based catalyst characterized physiochemical properties of the prepared catalyst. The reaction temperature used for steam reforming was 800 °C, an S/C ratio of 1, and a GHSV of 13,500 h−1. Ni/La2O3/MgO/CaO (NiLaMgCa) produced the most carbon to-gas conversion (86.27 mol%) and H2 yield (51.58 mol%) after 5 h of reaction compared to other catalysts tested in this study. Additionally, the filamentous carbon coke deposited on the spent catalyst of NiLaMgCa does not impact the catalyst activity. NiLaMgCa was the best catalyst compared to other catalysts investigated, exhibiting a stable and high catalytic performance in the steam reforming of gasified biomass tar. In conclusion, this study presents a novel approach by adding a combination of MgO and CaO promoters to a ni-based catalyst with various oxide supports, strengthening the metal-support interaction and improving the acid-base balance of the catalyst surface. The mesoporous structure and active phase (metallic Ni) were successfully developed. This can lead to an increase in the conversion of tar to H2 yield gas and a decrease in the production of undesired byproducts, such as CH4 and CO. Full article
Show Figures

Figure 1

14 pages, 3779 KiB  
Article
Clean Syngas and Hydrogen Co-Production by Gasification and Chemical Looping Hydrogen Process Using MgO-Doped Fe2O3 as Redox Material
by Maria Paola Bracciale, Martina Damizia, Paolo De Filippis and Benedetta de Caprariis
Catalysts 2022, 12(10), 1273; https://doi.org/10.3390/catal12101273 - 19 Oct 2022
Cited by 7 | Viewed by 2807
Abstract
Gasification converts biomass into syngas; however, severe cleaning processes are necessary due to the presence of tars, particulates and contaminants. The aim of this work is to propose a cleaning method system based on tar physical adsorption coupled with the production of pure [...] Read more.
Gasification converts biomass into syngas; however, severe cleaning processes are necessary due to the presence of tars, particulates and contaminants. The aim of this work is to propose a cleaning method system based on tar physical adsorption coupled with the production of pure H2 via a chemical looping process. Three fixed-bed reactors with a double-layer bed (NiO/Al2O3 and Fe-based particles) working in three different steps were used. First, NiO/Al2O3 is used to adsorb tar from syngas (300 °C); then, the adsorbed tar undergoes partial oxidization by NiO/Al2O3 to produce CO and H2 used for iron oxide reduction. In the third step, the reduced iron is oxidized with steam to produce pure H2 and to restore iron oxides. A double-layer fixed-bed reactor was fed alternatively by guaiacol and as tar model compounds, air and water were used. High-thermal-stability particles 60 wt% Fe2O3/40 wt% MgO synthetized by the coprecipitation method were used as Fe-based particles in six cycle tests. The adsorption efficiency of the NiO/Al2O3 bed is 98% and the gas phase formed is able to partially reduce iron, favoring the reduction kinetics. The efficiency of the process related to the H2 production after the first cycle is 35% and the amount of CO is less than 10 ppm. Full article
Show Figures

Figure 1

Back to TopTop