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Abstract: This study examines the sustainable decomposition reactions of benzene using non-thermal
plasma (NTP) in a dielectric barrier discharge (DBD) reactor. The aim is to investigate the factors
influencing benzene decomposition process, including input power, concentration, and residence
time, through kinetic modeling, reactor performance assessment, and machine learning techniques.
To further enhance the understanding and modeling of the decomposition process, the researchers
determine the apparent decomposition rate constant, which is incorporated into a kinetic model
using a novel theoretical plug flow reactor analogy model. The resulting reactor model is simulated
using the ODE45 solver in MATLAB, with advanced machine learning algorithms and performance
metrics such as RMSE, MSE, and MAE employed to improve accuracy. The analysis reveals that
higher input discharge power and longer residence time result in increased tar analogue compound
(TAC) decomposition. The results indicate that higher input discharge power leads to a significant
improvement in the TAC decomposition rate, reaching 82.9%. The machine learning model achieved
very good agreement with the experiments, showing a decomposition rate of 83.01%. The model
flagged potential hotspots at 15% and 25% of the reactor’s length, which is important in terms of
engineering design of scaled-up reactors.

Keywords: NTP reactor; benzene plasma decomposition; kinetic modeling; reactor performance and
simulation; machine learning studies

1. Introduction

Biomass processing is a dual approach for handling biowaste [1,2] and energy pro-
duction simultaneously [3,4]. It is a predominant resource in thermochemical processes,
i.e., gasification and pyrolysis, to simultaneously produce heat and clean energy [5–8]. Typ-
ically, producer gas consists of H2, CO, CO2, CH4, as well as other hydrocarbons, and N2 if
air is used as a gasifying agent [9–12]. Among the variety of hydrocarbons produced during
gasification, one should distinguish tars, which are problematic in terms of downstream
processing of the producer gas [13–16].

Different classifications of tars exist, with the most common being the ECN classifica-
tion. According to this classification, all tars undetectable by gas chromatography (heaviest
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tars) belong to class 1, heterocyclic compounds (e.g., phenol, pyridine, cresol) belong to
class 2, aromatic compounds with one ring (e.g., xylene, styrene, toluene) belong to class
3, light polyaromatic hydrocarbons with two to three rings (e.g., naphthalene, biphenyl,
acenaphthylene, phenanthrene, anthracene) belong to class 4, and heavy polyaromatic
hydrocarbons with more than three rings (e.g., fluoranthene, pyrene, chrysene) belong to
class 5 [17].

Tar can be removed by primary and secondary methods [18–21]. In primary meth-
ods, tars are removed within the gasifier, while secondary methods involve post-gasifier
treatment [22–24]. Thermal cracking, which is one of the methods of decomposition of
tars, requires a relatively high reaction temperature of 800 ◦C [25], which leads to large
energy consumption [24,26]. Deficiencies in the primary methods and conventional tech-
nologies i.e., thermal cracking, oxidation, and adsorption, lead to intensive research on
novel methods of tar removal.

Non-thermal plasma (NTP) technologies are energy-efficient and produce the required
results for the removal of volatile organic compounds (VOC), organic solvents, and chlo-
rofluorocarbon, as well as other pollutants present in exhaust streams, and industrial waste
gases [18,24]. “Plasma” term refers to partial or full ionization of available gas for ions and
radical propagation from atoms and molecules by inducing electrons [27,28]. Plasma is
categorized by temperature ranges [28]. In thermal plasma, all the substituents have the
same temperature, whereas in NTP no temperature equilibrium exists between kinetically
energized excited electrons and constituent gaseous or pollutant particles such as ions,
atoms, radicals, etc. [28]. NTP reactors are characterized on an electrical discharge basis
named dielectric barrier discharge (DBD), electron beam irradiations, glow discharge, and
pulse corona discharge [28]. Plasma discharge reactors are convenient due to instantaneous
electron temperature and reactivity because of available ions, radicals, and pulses [29].
The electron beam process is quite efficient in the removal of emissive pollutants, while
corona and dielectric discharges are suitable for domestic and industrial applications due
to the variable reactor length and streamer frequency [29]. DBD reactors can be used to
purify gas, reduce tar contents, and increase the quality of the processed gases [29]. They
usually have greater selectivity and optimum operating conditions and operate at room
temperature [29]. Radicals produced are short-lived and have good removal efficiency [30].
The major energy input of the NTP reactor goes into the production of an electron rather
than for heating purposes. Firstly, electron generation starts by exciting gas molecules and
direct collision with atoms, producing radicals such as O•, OH−1, H•, etc. This leads to
multiple reaction paths and eventually causes the desired decomposition of reactants. In
DBD reactors (see Figure 1), the amount of pollutant for decomposition, the energy cost of
toxic molecule removal, and energy efficiency are the main parameters for consideration.
These factors are based on reaction rates, electrode configurations, reactor packing, and the
input energy transfer from the power source with available reactor length [31].

Among all the VOCs, benzene is the least reactive and has a slower reaction rate
constant [32]. Although current tar definition excludes benzene, it is still used as a model
compound in many studies on plasma decomposition of tars [30,33–36]. The reason for
this is the aforementioned stability and low reactivity. Furthermore, benzene is a border
compound, defining tars, and many of the heavier compounds classified as tars contain
multiple benzene rings [17].

Plasma modeling and reaction engineering is complex and confined to a generalized
model, confining major properties of physical and chemical nature [37]. In recent years,
machine learning (ML) has attracted significant attention as a powerful tool for a wide vari-
ety of chemical process optimization and online active prediction. ML has been extensively
used in environmental and pollution-oriented processes due to greater error reduction
quality. Earlier researchers employed conventional artificial neural network (ANN) meth-
ods for the complex plasma conversion of syngas and methane. In plasma-centered studies,
different ML algorithms are used according to their applicability and drawbacks [38–40].
ML algorithms are shortlists based on performance and solutions of process in industry
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vital for nonlinear and complex systems. An increase in the number of variables entails a
significant complication in calculations and reliable result forecasting, due to labeled and
unlabeled datasets, missing values, random errors, bad points, data distributions, etc.

Liu et al. [41] highlighted an ML application for gas conversion for environmental
pollutant control in a plasma environment through three-layer back propagation ANN for
studying the non-oxidative reaction conversion of methane molecules. In plasma process
modeling, discharge power is the most significant parameter for conversion, while the least
significant factor is excitation frequency [42]. Chang’s ANN model is a four-experimental-
parameter study for better understating the effect on toluene removal. Parameters were
input discharge power, initial concentration, flow rate, and relative humidity [43].

The novelty of this study is the application of machine learning techniques for model-
ing of benzene conversion in a DBD plasma reactor.
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2. Materials and Methods
2.1. Non-Thermal Plasma Kinetic Modeling with Machine Learning Algorithms

Plasma modeling systems degenerate into smaller and general global models depend-
ing on variables of interest. These usually comprise three methods: kinetic, fluid, and
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hybrid plasma modeling. Kinetic modeling becomes tedious owing to high computation
and difficulty in chemistries of reaction and multiple species propagations within a duration
of nanoseconds.

Supervised learning deals with labeled datasets and has two processes for regres-
sion and classification. Unsupervised learning mainly uses unlabeled data with no idea
about the type of results and is divided into clustering and dimensionality reductions.
Semisupervised learning is a hybrid and lies between supervised and supervised learning
combining labeled and unlabeled data. Reinforcement learning has no training datasets
and utilizes a reward-based scheme. The framework of the research performed is shown in
Figure 1. Through the integration of kinetic-based modeling, simulation of experimental
data, and the tar analogue model, we embarked on a transformative journey. This joint
endeavor aimed to unravel the intricate process parameters and multifaceted reaction
complexities inherent in non-equilibrium plasma conditions. By delving deep into the
depths of understanding, a profound insight into plasma chemistry is uncovered, igniting
a pathway for further exploration.

One of the noteworthy outcomes of this advanced research is aligning experimental
findings with modeling and knowledge-driven results, for a comprehensive understanding
of plasma dynamics is obtained. It is important to acknowledge that although there may be
variations between the experimental and reactor models, these deviations are primarily
due to streamlined assumptions made for efficient calculations.

In this compelling narrative, machine learning emerges as a game-changer. Serving as
an invaluable black box tool, it seamlessly integrates with the kinetic and reactor models,
reducing statistical errors and bolstering accuracy. This triumvirate approach between
kinetic-based modeling, reactor simulation, and machine learning sets the stage for a
paradigm shift in NTP reaction chemistry, decomposition kinetics, and result validation.
The culmination of these novel insights fuels an unyielding passion for plasma studies and
paves the way for ingenious solutions to intricate engineering problems. Given the urgency
of the times, the commercialization of an economically viable tar removal process assumes
paramount importance. Not only does it offer a sustainable solution but it also creates an
environment conducive to biomass gasification-based energy production applications.

2.2. Working Cycle

This paper focuses on proposing and shortlisting a working cycle for the process
industry connecting experimentation to a data-driven process model. The goal is to address
the challenges posed by an increased number of variables, such as labeled and unlabeled
datasets, missing values, random errors, and data distribution, in order to achieve reliable
result forecasting. The detailed working cycle is presented in Figure 2. The proposed
working cycle consists of several key steps. Step 1 involves obtaining experimentation
results to analyze the decomposition of benzene. Step 2 entails the kinetics of hypothetical
ideal plug flow reactor performance, which are then compared against experimental results
from the DBD reactor. In Step 3, comparison and synchronization of the experimental
and modeling results are performed to reduce errors and lay the foundation for future
scale-up studies.

The subsequent steps involve the application of various methodologies and tools.
Step 4 focuses on the development of a plug flow reactor analogue model for non-thermal
plasma. Step 5 utilizes MATLAB for first-principle modeling and simulation. Step 6
incorporates machine learning models to enhance the analysis. Step 7 involves using
Python programming for training and testing the models. Step 8 revolves around extracting
features and making predictions based on the trained models. Finally, in Step 9, the results
are synchronized and evaluated. This comprehensive working cycle aims to provide
valuable insights into the complex dynamics of the process industry, bridging the gap
between experimentation and modeling for improved accuracy and scalability.
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Figure 2. Working cycle for current TAC decomposition in NTP DBD reactor for kinetic modeling,
reactor simulation and machine learning modeling.

2.3. Experimental Methodology and Materials

In this study, a dataset was obtained from an experiment [36] using a coaxial NTP
single-stage DBD reactor to decompose benzene, a tar model compound. The experimental
setup involved a plasma reactor with a plasma zone between quartz tubes, operating
at a frequency of 20 kHz and a voltage of 20 kV. The power of the DBD reactor ranged
from 5 to 40 W, determined by the length of the outer electrode at ambient temperature
conditions. Analysis of the plasma reaction’s end products was conducted using a gas
chromatograph (GC), i.e., a Varian 450-GC equipped with flame ionization and thermal
conductivity detectors. The DBD reactor’s external electrode was composed of stainless
steel and wrapped with a quartz tube. Discharge power was regulated using a Variac AC
transformer and measured with an energy meter. Gas flow was controlled by computer-
controlled mass flow controllers, with a fixed flow rate of 40 mL/min for methane and
nitrogen. Product composition was analyzed using the Varian 450-GC with flame ionization
and thermal conductivity detectors. The same experimental conditions were employed for
kinetic modeling, reactor assessment, and machine learning.

Total benzene removal efficiency and specific input energy are defined as:

Benzene Removal E f f iciency(db) =
C6H6 in − C6H6 out

C6H6 in
× 100 (1)

Speci f ic Input Energy
(

SIE
Joule
Liter

)
=

Power(Joule/Second)

Total gas f low rate
(

Liter
Second

) (2)

Faisal et al. [36] reveals clear trends regarding the effects of input power, concentration
of the tar analogue compound, and residence time. Increasing the input power results
in higher decomposition of benzene. This correlation can be attributed to the generation
of high-energy electrons and reactive species at higher plasma input power. The trend
shows a gradual rise in benzene decomposition as the power input varies from 5 W to
40 W, reaching 82.9% at 40 W for a constant residence time of 2.86 s and a concentration
of 36 mg/Nm3. The R2 value of 0.856 suggests a significant influence of input power on
benzene decomposition, as shown in Figure 3a.
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Figure 3. Experimental trends for tar analogue compound benzene reduction in DBD reactor (adapted
from [36]). (a) Power input (W) vs. benzene decomposition (%) and methane decomposition (%).
Pin = 5–40 W, Tin = ambient conditions, Qin = 40 mL/min, concentration = 36 g/Nm3 and t = 2.86 s.
(b) Residence time (s) vs. benzene decomposition (%). Tin = ambient conditions, pin = 20 W, concentra-
tion = 36 g/Nm3 and t = 0.8–2.86 s. (c) Benzene concentration (g/Nm3) vs. benzene decomposition (%).
Tin = ambient conditions, pin = 15 W, concentration = 18, 36, 64 g/Nm3 and t = 2.86 s.
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The theoretical understanding indicates that the increase in decomposition is due
to the presence of high-energy electrons generated at high plasma input power. These
electrons collide with CH4, generating reactive species such as radicals, excited molecules,
and ions, which actively contribute to the decomposition of benzene. The reactions involved
include the formation of reactive species and the production of lower hydrocarbons by
breaking the aromatic ring [36,45]. The high-energy electrons also decompose the carrier
gas, CH4, resulting in the formation of reactive radicals such as CH3 and H. These radicals
directly break aromatic rings, leading to the generation of lower hydrocarbons. Radical
termination reactions can occur, producing CH4 through the combination of CH3 and H
radicals. Agglomeration reactions may also take place within this mechanism [36,46].

Initiation:
CH4 + e− --------------------------- > CH3· + H+ + e−

Propagation:
C6H6 + e− --------------------------- > C6H5 + e−

C6H6 + H+ --------------------------- > C6H5 + H2

Termination:

C6H5 + Energetic Species --------------------------- > Solid Residue + Lower Hydrocarbon

The results demonstrate that the decomposition of CH4 increases with higher input
power, attributed to the presence of reactive species and energetic electrons. These radicals
contribute to the decomposition of methane into valuable hydrocarbons and hydrogen
through combination and agglomeration reactions. Regarding the effect of residence time
on benzene removal, increasing residence time leads to higher removal efficiency. The
removal of benzene shows a linear increase from 37.5% to 68.8% as residence time increases
to 2.86 s at a power input of 20 W and a concentration of 36 g/Nm3. This trend suggests
that longer exposure to the plasma discharge zone enhances collisions between the tar
model compound and active species, resulting in increased benzene removal, as shown in
Figure 3b [36,38,47,48].

The R2 value of 0.996 indicates a good likelihood of dependence on both residence
time and power input simultaneously. On the other hand, the removal of benzene decreases
as the concentration of the tar analogue compound increases at a constant power input
of 15 W and residence time of 2.86 s, as shown in Figure 3c. The higher concentration of
benzene leads to a greater number of benzene molecules in the discharge zone, increasing
the probability of unconverted benzene escaping and reducing overall removal efficiency.
This trend is observed regardless of the nature of the carrier gas, indicating that the impact
of concentration on removal efficiency and energy utilization remains consistent [36,39].

These findings provide valuable insights for understanding and predicting the sys-
tem’s behavior and can be utilized to optimize process parameters. Kinetic modeling,
simulation, and machine learning studies can incorporate the observed reactions and
trends to better understand mechanisms and predict behavior under different conditions,
as shown in Figure 4. This information is particularly useful in plasma chemistry and
catalysis research, aiding in reactor design, process optimization, and catalyst development.

Further analysis and consideration of factors such as flow rate and concentration may
be necessary for a comprehensive understanding and accurate modeling of the relationship
between input power and benzene decomposition. Nonetheless, the experimental findings
and trends offer valuable guidance for kinetic modeling, simulation, and machine learning
studies, advancing research in plasma chemistry and catalysis.
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2.4. Kinetic Modeling and Reactor Performance Assessment

Three types of kinetic models are present in the literature for tar removal kinetics.
Kinetic modeling has been widely used for the abatement of emissions of pollutants [49].
Studies have been based on the time-dependence characteristics of input power, feed flow
rate, gas hourly space velocity, instantaneous conversion, reactor-based radical generation,
and energy efficiency. The kinetic behavior of tar removal within a plasma reactor accounts
for the rate constant, reaction order, activation energy, and radical propagation [50,51].
Best-fit line, sum of square of error, standard deviation, and numerical methods were
used for simulation and conversion of naphthalene with nitrogen and carrier gas mixtures
for 350 elementary and 77 component species in RADICAL software. It defined a new
self-consistent chemical kinetic model based on G values [52]. The Chemkin software Plug
Flow module simulates a 257 set of reactions and compares the modeling and bench-scale
experimentation results. Global kinetics are proposed. Toluene and benzene show zero-
and first-order kinetics, respectively. Benzene gives the least specific energy density in
comparison to toluene and styrene. The overall reaction rate constant compares systems
and predicts the removal rate of VOCs, especially in NTP reactors [45].

In our research model, a global kinetic model for removal of a tar model compound
from a synthetic gasifier output gas stream shall be developed and extended, as a suggested
principle discussed in the literature [53,54]. Reaction conditions are room temperature
plasma within single-stage dielectric barrier discharge reactor geometry with varying oper-
ational conditions with the help of computer-aided tools such as MATLAB R.21, Python
3.8 Anaconda Version, Design Expert 12 for modeling and simulation studies of a kinetic
model for the DBD reactor as empirical modules for studying decomposition reactions.
Reactor modeling investigates different parameters, such as input power, removal rate,
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and residence time within the DBD reactor. Validating a plasma kinetic behavior model
at inputs (power and process conditions) and reactor performance evaluation (reactant
decomposition) should be conducted against the experimental setup in present and fu-
ture scenarios for scale-up studies. Kinetic theory is the basis for complex reactions and
aims to develop a comprehensive and reliable simplified kinetic reaction model for the
decomposition of benzene, serving as the tar analogue compound.

Figure 4 shows the extended methodology employed based on a novel strategy syner-
gizing experimental data with kinetics, modeling and machine learning studies. It involves
the utilization of both integral and differentiation methods in the MATLAB environment.
Extensive concentration-based investigations reveal that the second step of the reaction
is rate-determining, primarily due to its higher concentration. To facilitate the modeling
process, several key assumptions are made. Firstly, the system is assumed to be in a
quasi-steady state, ensuring the constancy of reaction rates over time.

Secondly, the mixture is considered heterogeneous, acknowledging the presence of
multiple phases. The system is assumed to operate under ideal plug flow reactor conditions,
which ensure uniform flow and minimal mixing. The process is assumed to occur under
isothermal conditions, maintaining a constant temperature throughout the reaction. Lastly,
it is assumed that the energy density of the system remains constant during the entire
reaction process. These assumptions, in conjunction with a combination of mathematical
techniques, allow for the development of a simplified kinetic reaction model that enhances
our understanding of the benzene decomposition process [36] for experimental work
and overcomes the data noise and unavoidable errors during experimentation of the
plasma process.

Five additional assumptions are considered to maintain a reliable and efficient com-
putation of differential equations in one dimension. The ideal plug flow reactor exhibits
similar reactant conversion for decomposition characteristics, as observed in popular soft-
ware, such as Chemkin and Comsol. NTP reactors, which are less affected by temperature
variations, perform well within lower temperature ranges. Lastly, the assumption of con-
stant energy density is justified by the uniform nature of discharge plasma along the length
of the reactor.

3. Results
3.1. Rate-Constant Calculation

Plasma kinetic modeling simulates the general reaction sequence and mechanism
for the calculation of the rate constant. It commences with initiation reactions, and the
second step is the decomposition reaction that involves the reaction of radical interaction
with benzene molecules. The reaction sequence terminates with the formation of yellow
solid formation, indicating the decomposition of benzene compounds into multiple- and
single-chain carbon compounds.

Based on the reaction mechanism rate of decomposition of benzene, a tar analogue
compound is dependent on the initiation reaction and decomposition step. The initiating
reaction amount of available concentration of benzene and carrier mixture is directly under
the power input as influx. It results in radical propagation due to high energy electrons and
decomposes the available benzene. Hence, the decomposition step is the rate-determining
step and calculates the rate constant for the global macro-kinetic model under uniform
energy density conditions. Radical concentration is difficult to account for and accurately
measured, and hence the mechanistic kinetic theory is the basis for the rate-constant
calculations.

Initiation:

Gas (Benzene + Synthetic Mixture Gas) ------ > Radical (R)

R1 = K1

(
Pin
Vr

)
(3)
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Decomposition step:

Benzene --------- > Intermediates (Y) + Lighter Hydrocarbon Compounds

R2 = K2 ∗ Ca (4)

Completing Reaction Step:

Y + R ------ > Solid Carbons + Light Hydrocarbons + Complex Products

Based on the reaction mechanism rate of decomposition of benzene, a tar analogue
compound is dependent on the abovementioned Equations (3) and (4). For the initiation
reaction, the amount of available benzene and carrier mixture depends directly on the
power input. It results in radical propagation due to high energy electrons and decomposes
the available benzene. Hence, the decomposition step is the rate-determining step and
calculates the rate constant for the global macro-kinetic model under uniform energy
density conditions. Radical concentration is difficult to account for and accurately measure;
hence, the mechanistic kinetic theory is the basis for the rate-constant calculations. An
ideally 1-D plug flow reactor with quasi-steady-state plasma is considered and explicitly
expressed as mainly used in literature as an alternative to an NTP DBD reactor as well as in
such commercial software as Chemkin design and model equations.

Ra = −dCa

dt
= R1 ∗ R2 (5)

R1 is the effectiveness of the available active species that react with benzene at a certain
input power Pin across discharge reactor length for the model compound concentration Ca,
while K1 is the radical production constant and K2 is the resultant decomposition of benzene
for the reaction time for carrier gas flow rate (Qin) defining the specific input energy (SIE).
The product of K1 and K2 is the apparent benzene decomposition rate constant (Kd).

Ra = −dCa

dt
= K1

(
Pin
Vr

)
∗ K2 ∗ Ca (6)

Decomposition Constatnt Kd = K1 ∗ K2 (7)

Reaction time t =
Vr

Q
(8)

−Ln
(

Cout

Cin

)
= Kd ∗

P
Q

(9)

−Ln(1 − XA) = Kd ∗
P
Q

(10)

SIE =

(
Pin
Q

)
(11)

−Ln(1 − XA) = Kd ∗ SIE (12)

A dual technique for calculating the apparent decomposition constant is using the
regression technique by analyzing the experimentation results using Equation (12). The
other method is the differentiation method for a model in MATLAB R-21 for dCa/dt Vs t.
The reaction rate constant by the regression technique is 0.040 (L/kJ), as shown in Figure 5.
The differentiation method deduces the order of reaction of n = 1, and the rate constant is
the same as the earlier decomposition rate constant.
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Figure 5. Decomposition rate-constant calculation.

The apparent rate constant for the decomposition of benzene, obtained through the
regression technique as 0.040 (L/kJ), represents the rate at which benzene molecules
undergo decomposition under the given experimental conditions, and gives a better R2

value of 0.99 in comparison to 0.96 obtained in the experiment of Faisal et al. [36]. This
value indicates the rate of the overall reaction and reflects the effectiveness of the reaction
in converting benzene into the desired products. It signifies the relationship between
the concentration of benzene (in moles per liter) and the input energy (in kilojoules). It
indicates the change in concentration of benzene per unit time, per unit concentration, and
per unit input energy. The obtained value of 0.040 (L/kJ) represents the best estimate of
the rate constant based on the available experimental data. The value of the rate constant
can vary depending on the specific experimental conditions. Different experimental setups
and conditions can result in different apparent rate constants, as they influence the reaction
kinetics and increase the noise, as highlighted in Figure 3a–c and value of R2. The apparent
rate constant serves as a crucial parameter in understanding and characterizing the kinetics
of the benzene decomposition reaction. It provides information about the speed and
efficiency of the reaction and can be used to model and predict the behavior of the reaction
under different conditions.

3.2. Reactor Mathematical Model for Performance Assessment

Generalized kinetic modeling mirrors fast plasma reactions authentically. Variable
discharge power length of DBD reactor in a relationship can be studied well in the analytical
geometrical model. Apparent kinetic decomposition constant is calculated on derived
specific input energy factor and contains the variables term of gaseous mixture flow rate
and discharge input power, as studied for benzene decomposition in various discharge
reactors. The rate-constant assumptions for a plug flow reactor model for a DBD reactor in
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a quasi-steady-state material balance over the reactor length has been considered and is
expressed as: (

De
dCa2

dz2

)
−
(

ua ∗
dCA
dz

)
− Ra = 0 (13)

De is the coefficient of axial dispersion and ua is carrier gas linear velocity along
the reactor length z for the benzene decomposition rate Ra. Analogue tar compound
concentration is considered radially uniform due to extreme discharges and propagation
rate of plasma within the reaction zone.

De
dCa2

dz2 = 0 (14)

An ideal condition of the plug flow reactor is considered for simplification so that no
axial dispersion or mixing is assumed. The reaction rate of decomposition in the model is
dependent on the power input and changes in the concentration of the tar model compound
concerning the available reactor volume due to the active species, i.e., radicals and electrons
produced by the carrier gaseous mixture.

Ra = Kd ∗ Ca
Pin
Vr

(15)

−
(

ua ∗
dCA
dz

)
= Ra (16)

−
(

ua ∗
dCA
dz

)
= Kd ∗ Ca

Pin
Vr

(17)

Figure 6 illustrates the results of MATLAB simulations for different benzene con-
centrations (18 g/Nm3, 36 g/Nm3, and 62 g/Nm3) in a DBD reactor. The simulations
were performed at a constant power input of 15 W for a duration of 2.86 s under ambient
conditions. The reactor length is 0.33 m, and the graph shows the change in reactant
concentration (CA) along the reactor length leading to the product concentration (CB) at
t = 2.86 s. The simulations reveal the decomposition of benzene (CA) into various products
such as lower hydrocarbons, hydrogen, solid residues, and other related end products, as
described by Equations (4)–(6). The three different benzene concentrations are compared to
investigate their impact on the reaction.

The behavior observed in the simulation graph (Figure 6, simulations 1, 2 and 3)
exhibits typical plug flow reactor characteristics, with over 80% decomposition achieved
along the reactor length. At the start of the reaction kinetics, electrons produced by the
DBD plasma reactor react with the available benzene concentration and the carrier gas
mixture within the first 0 to 0.01 m length of the reactor. As the reactant conversion
increases, it reaches a maximum in the plasma zone region due to repeated discharges by
the DBD reactor.

In the region between 0.01 m and 0.05 m of the reactor length, the carrier gas is con-
verted into radicals and activated species, and benzene conversion is facilitated by electrons,
radicals, and other active species. This results in a sudden dip in the model simulation
graph due to these reactive species. A conversion of 60% is achieved in the region between
0.02 m and 0.03 m of the reactor length, showcasing the spontaneous conversion and
decomposition behavior of benzene in the plasma reaction zone at nanosecond timescales.

At a reactor length of 0.1 m, a total benzene decomposition (CA to CB) of 70% to
80% of total decomposition is achieved, primarily decomposing tar analogue compounds.
This behavior is observed in all three simulations with different benzene concentrations.
The reaction zones are divided into three segments: the inlet zone, reaction zone, and
post-decomposition zone. The reactivity of radicals is highest in the first two zones, while
the third zone consists of post-reaction by-products and unconverted gaseous streams. This
behavior is consistent across all three simulations.
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An important observation is that higher benzene concentrations (as seen in simu-
lation 3, with a concentration of 0.80 kmol/Nm3) result in greater decomposition. The
increased concentration leads to the generation of more species, contributing to enhanced
decomposition, particularly in the latter section of the reactor length. The simulation results
exhibit R2 values up to 0.99, indicating a good fit with the experimental data and validating
the assumptions made regarding apparent decomposition and the reactor model. The only
standard deviation error is less than 0.01% and shows great agreement with experimental
and simulation results.

−
(

dCA
dPin

)
= Kd ∗ Ca

z
ua ∗ Vr

(18)

Velocity(ua)

length(z)
= time(t) (19)

−
(

dCA
dPin

)
= Kd ∗ Ca

t
Vr

(20)
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t is the total residence time for benzene in carrier gas mixture takes to uniformly move
within one reactor length within DBD reactor. Kd is the apparent rate constant calculated
earlier using the regression and differentiation technique for first-order reaction kinetics.

− d(1 − XA)

dPin
= Kd ∗ (1 − Xa) ∗

t
Vr

(21)

d(XA)

dPin
= Kd ∗ (1 − Xa) ∗

t
Vr

(22)

In the reactor model, power input ranges from 5 W to 40 W for 2.86 s with a carrier
gaseous mixture flow rate of 40 mL/min, as shown in Figure 7. A steep direct relation was
observed during experimentation. During simulation of the reactor model in MATLAB
software, a linear trend was observed between discharge input power and decomposition
of a compound. A little edge and steepness were shown at the end of reactor length.
TAC decomposition reaction is mainly faster. Synthetic mixture reduces TAC at multiple
discharge input power, but the flow rate is constant.
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of Faisal et al. [36] with simulation.

Equation (21) and the accompanying simulation results demonstrate the substantial
impact of power input on the tar analogue compound decomposition process. Interestingly,
these factors exhibit an inverse relationship while keeping the power inputs constant
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for simulations 1, 2, 3 for different benzene concentrations. Upon conducting a detailed
analysis of the simulation results, it becomes evident that a reactor model with a shorter
reaction time can achieve decomposition rates exceeding 83%. Moreover, an increase in
power input leads to a significantly higher degree of decomposition. To visually represent
this, Figure 7 illustrates the concentration changes throughout the length of the reactor
resulting from the presence of plasmonic energetic components.

During the MATLAB-supported simulation, the reactor model attains a maximum
decomposition rate of 83.1%, surpassing the 82.9% achieved at a power input of 15 W.
The simulation model, based on combinatorial ODE equations, exhibits a slight deviation,
with an apparent decomposition constant of 0.478 kJ/L. MATLAB simulation results are
presented in Figure 7, focusing specifically on benzene decomposition at t = 2.86 s, with
power inputs ranging from 5 to 40 W. Both the experimental and reactor models focus on
a benzene concentration of 36 g/Nm3. Throughout the simulation, a minimal weighted
standard deviation of less than 0.01% is observed. The impact of power input changes
is further investigated along the length of the reactor in the plasma region. While there
is a slight but noticeable deviation in the experimental dataset for power inputs ranging
from 5 W to 20 W, the simulation results exhibit smooth trends and linear characteristics.
However, as the power input increases from 20 W to 40 W, the standard error reduces,
indicating improved performance in benzene decomposition.

In terms of standard metrics, the R2 value for the simulation of the reactor mathemati-
cal model is 0.889, compared to 0.86 for the experimental dataset. These results provide
valuable insights into the performance and efficiency of the reactor models under different
power inputs while maintaining constant benzene concentrations. It is noteworthy that
these findings are independent of the nature of the carrier gas, as indicated by Faisal et al. in
their experimental study [36]. The congruence between experimental and model simulation
results confirms the validity of the calculated apparent decomposition rate constant.

Our extended model not only allows for a significant calculation of the kinetic con-
stant but also enables an assessment of the NTP reactor with minimal deviation of 0.01%.
However, it is important to acknowledge that this technique is still considered a “black
box” approach, and the utilization of machine learning is essential for training, testing,
and validating both the experimental and modeling results. This will ultimately lead to
enhanced model accuracy, reduced errors, and facilitate future kinetic and scale-up studies,
as depicted in Figure 4 of our proposed novel strategy.

3.3. Machine Learning Algorithms and Predictive Model

Machine learning modules incorporate analyzing and reducing error iteratively by
improving and building a better relationship between labels and their corresponding
features. In experimentation and modeling research, multiple types of erroneous results
are produced. In experimentation, the nature of results varies from a few points to a bulk
of datasets. Raw data are classified and categorized according to research outcomes. In
plasma engineering, thermal and non-thermal plasma kinetics are in two distinct sets
i.e., equilibrium and non-equilibrium. Great work has been done in thermal plasma
engineering for validating CFD results, EEFDF datasets, kinetics, yield forecasting, etc.
Due to the advancement in the field of data-driven plasma engineering, mainly due to
the electrification of process industries, greater emphasis is needed on machine learning
modules for kinetic modeling of NTP reactors and reactions for scale-up and design studies.
In NTP kinetics, available datasets have such variables as power inputs (Pin), specific input
energy (SIE), reactant conversions (Xa), reactant concentration (Ca), product yield (Ya), flow
rates (Q), removal efficiency, etc. The pattern of influence of variables on each other is
classified as linear or nonlinear graphically. In the current study, variables such as inlet tar
concentration, plasma power input, and residence time are of prime importance during
experimental and current kinetic modeling and reactor model simulation. However, the R2

value, as discussed in the experimental section, has significant deviation in terms of power
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input and analogue compound decomposition, i.e., R2 = 0.865, while all other variables
studies have an R2 value of 0.99.

3.4. Mathematical Understanding Machine Learning Linear Regression Algorithm

Regression algorithms are divided into linear algorithms and nonlinear algorithms
for bivariate and multivariate conditions by using linear and polynomial regression al-
gorithms [55]. Regression algorithms are classically incorporated using ordinary least
square regression methods, stepwise linear regression, linear regression, local estimate
scatterplot smoothing, and stepwise regression [56]. Classification of regression for open
and closed-form solutions is found in [57,58].

The basics of LR, MLR, MLPR are:

Y = mx + b (23)

where Y is the independent variable, X is the independent variable, m is the slope of the
line and C is the intercept, as shown in Figure 8. This is the simplest linear regression
usually incorporated into kinetic modeling. The simplest LR model produces the best-fit
line that passes closest to the maximum likelihood point with a minimum error or Euclidian
distance [59]. LR is based on either a closed-form solution or a non-closed solution for
slope and intercepts calculations without calculus derivatives and integration. Modified
linear regression machine learning is a popular model with a simplified assumption of
linear entanglement between the system input variable and corresponding output variable
results [60]. The dataset is uniquely continuously numeric. In LR, a y target value is
assumed to be dependent on the X (x1, . . ., xn) and residual random error. For an nth

generalized observation model dataset, the modified relationship is as follows:

y = βo + β1xn1 + β2xn2 + · · ·+ βdxnd + εn (24)
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The intercept terms βo and β1 to βD are the feature variable coefficients with a ran-
domized error ε . Error is the difference between the true value (y) and the predicted value
(Yi) [38,39], as shown in Figure 8. The LR algorithm gives an estimation of β coefficient-
related parameters. Estimated parameters βe

0, . . . , βe
D give an estimated target value of

the variable ye
n. The LR algorithm gives the best values for βo and β1, with minimum

error residual ε indicating the synergy between predicted ypred and actual values yi of ex-
perimentation and machine learning model prediction. Different parameters are involved
in the error reduction and regression method for synchronizing the results and producing
an R2 value closer to 1 [47,48].

εn = ypredict − yi (25)
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∴ ypredict = βo + βixi (26)

Best-fit lines cross through a maximum point of scatter plot. The line is obtained
through the minimization of the residual sum of squares (RSS) and mean square error
(MSE). A cost function is a minimum for RSS and MSE values. The LR algorithm gives the
cost function for optimal values of βo& βi for the best-fitting vector positioning [61].

3.5. Model Evaluation Metrics

In order to enhance the accuracy of the ML prediction system, the ML linear regression
(LR) model is evaluated using a set of key metrics. Favorable conditions for ML running the
LR model include low variance and higher bias, as they contribute to improved prediction
accuracy and faster computation, albeit with a greater number of assumptions [61,62]. One
important metric used is the R2 or determination of R2 coefficient. This metric calculates
the variance in the developed model for ML prediction results and ranges between 0 and 1.
A higher R2 indicates greater applicability and better prediction results of the model.
Another metric employed is the root mean square error (RMSE). This metric measures the
residual variance, taking the square root of the difference between the observed data and
predicted values. RMSE considers the degree of freedom for unbiasedness estimation and
corresponds to the residual standard error (RSE).

R2 = 1 −
((

∑n
i=1
(
yi − βo − βi)

2)
(yi − y)2

)
(27)

RMSE =

√√√√((∑n
i=1
(
yiactual − yipred)2

)
(n)

)
(28)

RSE =

√√√√((∑n
i=1
(
yiactual − yipred)2

)
(n − 2)

)
(29)

The analysis of the experimental data in this study reveals important insights into the
relationship between various variables. The power input in NTP reactors is of significant
interest, as it is less likely to be temperature-dependent. Moreover, the kinetic model-
ing techniques employed, such as power-law kinetics, heavily rely on the input power
(Figure 9). Therefore, the power input energy variable has been shortlisted as a key factor
for the machine learning-based black box modeling.

To further explore these relationships, heat maps were generated using Python built-in
libraries. These heat maps visually depict the interdependence among the variables, with
Figures 10a and 11a showcasing the relationships between power input (Pin, W), and
tar analogue decomposition (Xa, %), while Figures 10b and 11b focus on the shortlisted
variables under experimental conditions—power input (pin, W) and experimental decom-
position (XA within the range of 0–100%)—for preprocessing of available experimental and
reactor model and simulation datasets. The heat maps and paired plots provide valuable
insights into the linearity and correlation between these variables, with inlet compound
decomposition (%) and power input exhibiting significant correlation coefficients of 0.93
and 0.94, respectively, from the experimental and reactor model simulations. The subse-
quent analysis of linearly dependent variable data presented also shows our proposed
metrics showed a higher dependence of variables in the modeling and simulation dataset in
comparison to the experimental dataset, as well as relatively less noise in data and effective
overall trend for scale-up studies.
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In our case studies, the input power in the experimental and reactor model is similar
in pattern with performance metrics of R2 of 0.865 and 0.889, as shown in Figures 10 and 11.
In comparison to the absolute effective value of defining the global approach of model
results to be incorporated in the current studies, in the graphs shown below, raw data of
experimental conditions and reactor models are plotted. Raw data are further classified
for feature engineering, data distribution, standard deviation, loss function reduction, cost
function penalization, and metrics-based performance assessment to increase the model
validation by tuning the slope or intercept through learning rate for model accuracy, mean
square error (MSE), root mean square error (RMSE), sum of the square of error (SSE),
R2, and adjusted R2. In ML modules, the error function is iterated for the minimum
results. Each loop of commands produces a significant difference in error, and related
features are optimized for the best results output. In ML regression conditions, the raw
dataset is calculated from the source. Figure 9 shows that the two datasets are optimally
available. The total dataset consists of 60 sample values. Design-Expert software was used
for increasing the number of experimentation dataset sample values at similar trends using
a built-in function.

The input dataset is first quantitatively aligned and according to outliers and central
distribution tendency results are produced using the preprocessing statistical functions in
Python programming. Spyder Compiler is used for computation and algorithmic studies.
A complete overview of Python libraries and a general machine learning linear algorithm
flowchart are shown in Figure 9. The dataset is divided into 45% training sets and 55%
testing sets, as illustrated in Figures 10c,d and 11c,d for the experimental and modeling
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datasets, respectively. A higher percentage of the testing dataset is utilized due to the
limited number of values available in the experimental data. This approach allows for an
extended analysis and provides a comprehensive understanding using a larger portion
of the dataset. Consequently, it enables the development of an accurate machine learning
model through the training dataset.
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Figure 11. Power input (Pin, W) vs. tar analogue compound decomposition reactor
model—simulation dataset machine learning study (%). (a) Heat map for data analysis. (b) Paired
plot of data preprocessing. (c) Experimental dataset testing plot. (d) Experimental training set data
plot for shortlisted variable at experimental power input (Pin, W) in reactor model and simulation
dataset conditions. Power input Pin 5–40 W, reactor model and simulation dataset decomposition
0–100%, residence time = 2.86 s, concentration = 36 g/Nm3.

The training set reduces the cost function for finding the optimal values of line equation
coefficients. Actual values are considered the target values. For each iteration in the machine
learning algorithm, a new value for each coefficient for the variable is assigned according
to the number of variables. For power input (Pin) vs. reactant decomposition (X), scatter
datasets reduce the Euclidean distances for the actual and target results. Xm and Xexp
are reduced to a minimum according to the machine learning features and implications.
Repeated iteration using the Scikit Learn Library produces a dataset that is validated
against the test datasets (approx. 50%) of original datasets for more error reduction in a
loop structure. The machine learning model is deployed for new datasets after successful
completion. ML prediction values are designated for mean square error (MSE), root
mean square error (RMSE), sum of the square of error (SSE), R2, and adjusted R2 for
model accuracy.

ML-LR revolves around the comprehensive analysis of the results obtained from the
experiment, reactor model simulations, and machine learning predictions, as presented in
Table 1, based on the machine learning modeling results of experimental and reactor model
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and simulation, shown in Figures 10 and 11. The various metrics measured in this study
provide valuable insights into the performance and accuracy of the models employed. The
intercept values yielded a value of 2.16, indicating a baseline reference point. The reactor
model and simulations achieved a slightly lower intercept of 1.95795433, while the machine
learning predictions resulted in an intercept of 1.91. These values suggest that both the
reactor model and machine learning approach were able to effectively capture the baseline
behavior, indicating the accuracy of the models. The linear coefficient was 14.2, which
increased to 21.74562448 in the reactor model and simulations. This demonstrates that the
reactor model and simulations exhibit a stronger linear relationship between the variables
under consideration. Remarkably, the machine learning predictions surpassed both, with
a linear coefficient of 23.1, indicating a more pronounced effect of the predictors on the
response variable.

Table 1. Machine learning linear regression model evaluation of experimental and reactor modeling
and simulation dataset.

Metrics ML-Experiment
Results

ML-Reactor Model and
Simulations

Overall-
Machine Learning Predictions

Intercept 2.16 1.95795433 1.91
Linear Coefficient 14.2 21.74562448 23.1

Training Set 45% 45% 45%
Testing Sets 55% 55% 55%

R2 Value 0.86 0.88 0.998
Mean Absolute Error (MAE) 0.0978 0.032 0.008

Mean Squared Error
(MSE) 0.0024 0.001 0.00001

Root Mean Square Error
(RMSE) 0.042 0.034 0.019

Adjusted R2 0.865 0.8891 0.9984
Accuracy of Model 0.923545907 0.98876584 0.99918729

In order to evaluate the performance of the models, the dataset division into train-
ing and testing sets, with a balanced split for training and testing, ensured that ML-LR
results for both the reactor model and simulations and machine learning predictions were
evaluated using the same proportion of data as the experiment and also enabled a fair
comparison of their capabilities in capturing the underlying patterns and predicting the
target variable accurately.

A measure of the goodness of fit, R2 provides insights into the proportion of variance
explained by the model. The experiment achieved an R2 of 0.86, indicating that 86% of
the variation in the response variable can be attributed to the predictors considered in the
experiment. The reactor model and simulations improved this value to 0.88, showcasing
a stronger relationship between the predictors and the response variable. However, the
machine learning predictions demonstrated a remarkable R2 of 0.998, indicating an excep-
tional ability to explain the variance in the target variable. This signifies a high level of
accuracy and reliability in predicting the desired outcome.

The accuracy of the models accounts for several error metrics. The mean absolute error
(MAE) measures the average magnitude of the errors between predicted and actual values.
The experiment yielded a MAE of 0.0978, while the reactor model and simulations reduced
this error to 0.032. Notably, the machine learning predictions achieved an impressively low
MAE of 0.008, indicating superior accuracy and precision. The mean squared error (MSE),
which quantifies the average squared differences between predicted and actual values,
revealed similar trends. The experiment resulted in an MSE of 0.0024, reduced to 0.001 in
the reactor model and simulations. Surprisingly, the machine learning predictions achieved
the lowest MSE of 0.00001, further highlighting their ability to minimize errors and provide
highly accurate predictions.
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The root mean square error (RMSE), an estimation of the standard deviation of the
errors, followed a similar pattern. The experiment yielded an RMSE of 0.042, while the
reactor model and simulations achieved a lower RMSE of 0.034. Notably, the machine
learning predictions achieved the lowest RMSE of 0.019, indicating superior precision and
accuracy in predicting the desired outcome. Additionally, the adjusted R2, which considers
the number of predictors and sample size, followed a similar trend. The experiment
obtained an adjusted R2 of 0.865, while the reactor model and simulations demonstrated
an improved value of 0.8891. Remarkably, the machine learning predictions excelled with
an exceptional adjusted R2 of 0.9984, emphasizing their ability to accurately account for the
variations in the response variable.

The accuracy of the model, indicating the percentage of correct predictions, was evalu-
ated. The experiment achieved an accuracy of 0.923545907, which improved to 0.98876584
in the reactor model and simulations. Remarkably, the machine learning predictions exhib-
ited a significantly higher accuracy of 0.99918729, highlighting their ability to give precise
and reliable predictions as well as validation using OLS regression. We are deployed
the closed-form solution in Python for the linear regression model. The ordinary least
square method is occasionally used for the cross-validation of machine learning models. In
comparison to the Scikit Learn Library, the OLS results are less appropriate and accurate
due to lesser iteration and drawback of performance in low-bias and high-variance regions
with utmost validation. The method, however, gives a good idea about different effective
statistical methods, such as Durbin–Watson, Df, F-statistic, and residuals, as shown in
Table 2. Training of datasets from experimentation and reactor model gives a good fit of
minimized cost function results in the testing stage with closer collinearity in comparative
results. p-values deduced from OLS fitting results had a 0.031 value against the standard
0.05 value for hypothesis testing results, as shown in Table 2. Standard error in the OLS
method assumes a covariance matrix for the specific identification of statistical results. In
future studies for similar gaseous mixtures, empirical results of machine learning based LR
outputs are validated and decomposition percentage for the input power variable at any
given similar concentration of the tar analogue compound.

Table 2. Ordinary least square linear regression model evaluation metrics results.

OLS Regression Results

Dependent Variable: Y R-squared: 0.890
Model: OLS Adj. R-squared: 0.887
Method Least Squares F-statistic: 347.9

Number of
Observation 60 Prob (F-statistic): 3.14 × 10−22

Df Residuals 43 Log-likelihood 75.111
Df Model: 1 AIC −146.2

Covariance Type: robust BIC −142.6
Omnibus: 4.279 Durbin–Watson 0.028

Prob
(Omnibus): 0.118 Jarque–Bera (JB): 3.665

Skew: −0.63 Prob (JB) 0.160
Kurtosis: 2.293 Cond. No 37.5

Coif Standard error T p > |t| p < 2.5% p < 97.5%
Const 0.4420 0.022 20.27 0.00 0.398 0.486
×1 0.0342 0.002 18.64 0.00 0.031 0.038

Overall, the results indicate that both the reactor model and simulations and the
machine learning predictions outperformed the experiment in various respects. The reactor
model and simulations showcased a stronger linear relationship and achieved higher accu-
racy than the experiment. The machine learning predictions excelled in capturing complex
patterns, resulting in exceptional accuracy and precision. These findings emphasize the
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effectiveness of both modeling approaches, particularly the machine learning technique, in
accurately predicting the desired outcomes.

4. Conclusions

Tar is a barrier to full renewable energy exploitation through variable feedstock. NTP
technologies define new pathways for tar analogue compound decomposition, removal,
and reduction studies with an electrified process. A holistic approach to decomposition
uses a study dataset of benzene as a tar analogue compound in a tetra carrier gaseous mix-
ture. Power input, the flow rate of carrier gases, tar analogue compound inlet concentration
and residence time against decomposition percentage are considered the input variables
for studies in the DBD reactor. An apparent rate constant of 0.040 kJ/L has been calculated
at an initial concentration of 36 g/Nm3 of the analogue compound for the power input of
40 W for residence time of 2.86 s. A reactor model for DBD reactor performance assess-
ment and cross-validation of apparent rate decomposition constant has been proposed
using definite assumptions. An ODE equation set has been produced by mathematical
modeling. Reactor scale length shows similar behavior to the plug flow reactor for the
changing conversion. A hotspot region in the initial 15% to 25% of the reactor length is
the maximum decomposition patch for the tar analogue compound into associated lighter
hydrocarbons and soot. Furthermore, the model run for the pin ranges from 5 W to 40 W,
and a constant flow rate of 40 mL/min of carrier flow gas mixture of methane and nitrogen
shows considerable synergetic results, with a maximum decomposition of 83.01% against
82.9% experimentation decomposition. However, statistical data analysis of experimental
and reactor model datasets shows the difference in metrics value i.e., R2. A new and
advanced Python programming machine learning tool has been used for error reduction
in experimentation and reactor model results for generalized empirical formulation in
scale-up studies. ML linear regression algorithm takes into account the experimental and
reactor datasets. Datasets are divided into training and testing datasets. This reduces the
RME, MSE, MAE, and R2 errors for the datasets and produces a prediction model for new
intercepts and slopes with minimum cost functions: ML R2~1 for the experimental and
reactor model datasets against original R2 = 0.85 and 0.89 value.
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Mikielewicz, D. Thermodynamic Analysis of Negative CO2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon
Software. Energies 2021, 14, 6304. [CrossRef]
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