CO2 Reforming of Biomass Gasification Tar over Ni-Fe-Based Catalysts in a DBD Plasma Reactor
Abstract
:1. Introduction
2. Results
2.1. Crystalline Compositions and Texture Properties
2.2. Nix-Fey/Al2O3 Morphologies
2.3. Redox Properties and Basicity
2.4. Surface Chemical Properties
2.5. Plasma-Catalytic Acativity Evaluation
2.5.1. Effect of Discharge Power on CO2 Reforming of Toluene
2.5.2. Effect of CO2/C7H8 Ratio on CO2 Reforming of Toluene
2.5.3. Long-Term Stability Evaluation
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, T.; Liu, H.; Shi, P.; Chen, D.; Song, L.; He, H.; Frost, R.L. CO2 Reforming of Toluene as Model Compound of Biomass Tar on Ni/Palygorskite. Fuel 2013, 107, 699–705. [Google Scholar] [CrossRef]
- Guan, G.; Kaewpanha, M.; Hao, X.; Abudula, A. Catalytic Steam Reforming of Biomass Tar: Prospects and Challenges. Renew. Sustain. Energy Rev. 2016, 58, 450–461. [Google Scholar] [CrossRef]
- Li, C.; Suzuki, K. Tar Property, Analysis, Reforming Mechanism and Model for Biomass Gasification—An Overview. Renew. Sustain. Energy Rev. 2009, 13, 594–604. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, X.; Chen, X. Effect of Air Introduction on Filamentous Coke during CO2 Reforming of Tar with Core-Shell Catalysts. J. Anal. Appl. Pyrolysis 2022, 168, 105765. [Google Scholar] [CrossRef]
- Cao, G.; Xiao, Y.; Huang, W.-M.; Chen, C.-H.; Baltrusaitis, J. DBD Plasma-Assisted Ethanol Steam Reforming for Green H2 Production: Process Optimization through Response Surface Methodology (RSM). Int. J. Hydrog. Energy 2022, 48, 553–565. [Google Scholar] [CrossRef]
- Liu, S.; Mei, D.; Wang, L.; Tu, X. Steam Reforming of Toluene as Biomass Tar Model Compound in a Gliding Arc Discharge Reactor. Chem. Eng. J. 2017, 307, 793–802. [Google Scholar] [CrossRef]
- Chun, Y.N.; Kim, S.C.; Yoshikawa, K. Decomposition of Benzene as a Surrogate Tar in a Gliding Arc Plasma. Environ. Prog. Sustain. Energy 2013, 32, 837–845. [Google Scholar] [CrossRef]
- Xu, B.; Xie, J.; Wang, N.; Huang, Y.; Liu, H.; Yin, X.; Wu, C.; Tu, X. Plasma-Enabled Catalytic Steam Reforming of Toluene as a Biomass Tar Surrogate: Understanding the Synergistic Effect of Plasma Catalysis. Chem. Eng. J. 2023, 464, 142696. [Google Scholar] [CrossRef]
- Kawi, S.; Ashok, J.; Dewangan, N.; Pati, S.; Junmei, C. Recent Advances in Catalyst Technology for Biomass Tar Model Reforming: Thermal, Plasma and Membrane Reactors. Waste Biomass Valorization 2022, 13, 1–30. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Das, S.; Kawi, S. Reforming of Tar from Biomass Gasification in a Hybrid Catalysis-Plasma System: A Review. Appl. Catal. B Environ. 2019, 250, 250–272. [Google Scholar] [CrossRef]
- Li, L.; Song, Z.; Zhao, X.; Ma, C.; Kong, X.; Wang, F. Microwave-Induced Cracking and CO2 Reforming of Toluene on Biomass Derived Char. Chem. Eng. J. 2016, 284, 1308–1316. [Google Scholar] [CrossRef]
- Cao, G.; Handler, R.M.; Luyben, W.L.; Xiao, Y.; Chen, C.; Baltrusaitis, J. CO2 Conversion to Syngas via Electrification of Endothermal Reactors: Process Design and Environmental Impact Analysis. Energy Convers. Manag. 2022, 265, 115763. [Google Scholar] [CrossRef]
- Gao, B.; Cao, G.; Hu, D.; Guo, L.; Ba, Z.; Li, C.; Zhao, J.; Fang, Y. Insight into the Effect of Support Properties on DBD Plasma-Catalytic NH3 Synthesis over Ru-Co Bimetallic Catalysts. Fuel 2025, 382, 133802. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, Z.; Mathieu, S.; Bin, F.; Tu, X. Prediction and Evaluation of Plasma Arc Reforming of Naphthalene Using a Hybrid Machine Learning Model. J. Hazard. Mater. 2021, 404, 123965. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Watanabe, Y.; Kim, H.-H.; Yao, S.; Nozaki, T. Plasma-Enabled Mode-Selective Activation of CH4 for Dry Reforming: First Touch on the Kinetic Analysis. Chem. Eng. J. 2020, 399, 125751. [Google Scholar] [CrossRef]
- Deng, J.; Feng, Y.; Li, C.; Yuan, Z.; Shang, R.; Yuan, S. Highly Efficiency H2 Production for Real Coal Tar Steam Reforming over Ni-ca/H-Al Catalyst: Effects of Oxygen Vacancy, CaO Doping and Synthesis Methods. Appl. Energy 2024, 367, 123354. [Google Scholar] [CrossRef]
- Azancot, L.; González-Castaño, M.; Bobadilla, L.F.; Centeno, M.A.; Odriozola, J.A. Reforming of Biomass-Derived Producer Gas Using Toluene as Model Tar: Deactivation and Regeneration Studies in Ni and K-Ni Catalysts. Environ. Res. 2024, 247, 118210. [Google Scholar] [CrossRef]
- Ren, J.; Abbasi, Z.; Ullah, I.; Zeng, F. Dry Reforming of Toluene for Syngas Production over Ni-Based Perovskite-Type Oxides. Appl. Catal. B Environ. Energy 2025, 361, 124555. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, R.; Ananthanarasimhan, J.; Zheng, J.; Wan, J.; Wang, K.; Lan, B.; Yan, J.; Li, X. Destruction of Biomass Tar Model Compound in a Rotating Gliding Arc Plasma Catalytic System: Contribution of Typical Transition Metals in Ni-Based Bimetallic Catalyst. Fuel 2022, 323, 124385. [Google Scholar] [CrossRef]
- Gao, Y.; Dou, L.; Zhang, S.; Zong, L.; Pan, J.; Hu, X.; Sun, H.; Ostrikov, K.; Shao, T. Coupling Bimetallic Ni-Fe Catalysts and Nanosecond Pulsed Plasma for Synergistic Low-Temperature CO2 Methanation. Chem. Eng. J. 2021, 420, 127693. [Google Scholar] [CrossRef]
- Liang, S.; Guo, F.; Du, S.; Tian, B.; Dong, Y.; Jia, X.; Qian, L. Synthesis of Sargassum Char-Supported Ni-Fe Nanoparticles and Its Application in Tar Cracking during Biomass Pyrolysis. Fuel 2020, 275, 117923. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Cao, G.; Yi, N. The Role of Fe in Ni-Fe/TiO2 Catalysts for the Dry Reforming of Methane. Catalysts 2023, 13, 1171. [Google Scholar] [CrossRef]
- Zou, X.; Chen, T.; Zhang, P.; Chen, D.; He, J.; Dang, Y.; Ma, Z.; Chen, Y.; Toloueinia, P.; Zhu, C.; et al. High Catalytic Performance of Fe-Ni/Palygorskite in the Steam Reforming of Toluene for Hydrogen Production. Appl. Energy 2018, 226, 827–837. [Google Scholar] [CrossRef]
- Kathiraser, Y.; Ashok, J.; Kawi, S. Synthesis and Evaluation of Highly Dispersed SBA-15 Supported Ni–Fe Bimetallic Catalysts for Steam Reforming of Biomass Derived Tar Reaction. Catal. Sci. Technol. 2016, 6, 4327–4336. [Google Scholar] [CrossRef]
- Kwon, Y.; Eichler, J.E.; Mullins, C.B. NiAl2O4 as a Beneficial Precursor for Ni/Al2O3 Catalysts for the Dry Reforming of Methane. J. CO2 Util. 2022, 63, 102112. [Google Scholar] [CrossRef]
- Liu, Q.; Cai, N.; Peng, B.; Wu, C.; Hong, R.; Jiang, D.; Zhang, H. Investigating the Influences of Metal-Support Interaction in NiFe Catalysts on the Quality of Carbon Nanomaterials from Waste Polypropylene. Fuel Process. Technol. 2022, 236, 107428. [Google Scholar] [CrossRef]
- Huynh, H.L.; Zhu, J.; Zhang, G.; Shen, Y.; Tucho, W.M.; Ding, Y.; Yu, Z. Promoting Effect of Fe on Supported Ni Catalysts in CO2 Methanation by in Situ DRIFTS and DFT Study. J. Catal. 2020, 392, 266–277. [Google Scholar] [CrossRef]
- Li, Z.; Chen, G.-H.; Gong, X.-C.; Yao, J.-J.; Guo, J.-K.; Chen, L.; Peng, C.; Huang, X.-Y.; Hu, Q.; Xiong, J.; et al. Ni Supported on Al2O3-La2O3 Derived from Layered Double Hydroxides for Efficient Thermal Catalytic Decomposition of Ammonia to Hydrogen. Chem. Eng. Sci. 2025, 304, 121000. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, X.; Chen, X.; Zhang, C. Effect of Ni-Co Bimetallic Core-Shell Catalyst for Coke Resistance in CO2 Reforming of Biomass Tar. J. Anal. Appl. Pyrolysis 2022, 164, 105539. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, X.; Chen, X.; Zhang, C.; Li, J. The Study of Coke Resistance of Ni/ZrO2 by Core-Shell Structure Coupling with Cobalt Doping Modification in CO2 Reforming of Tar. Appl. Catal. A Gen. 2022, 643, 118797. [Google Scholar] [CrossRef]
- Kang, S.-H.; Ryu, J.-H.; Kim, J.-H.; Seo, S.-J.; Yoo, Y.-D.; Sai Prasad, P.S.; Lim, H.-J.; Byun, C.-D. Co-Methanation of CO and CO2 on the NiX-Fe1−X/Al2O3 Catalysts; Effect of Fe Contents. Korean J. Chem. Eng. 2011, 28, 2282–2286. [Google Scholar] [CrossRef]
- Voskoboinikov, T.V.; Chen, H.-Y.; Sachtler, W.M.H. On the Nature of Active Sites in Fe/ZSM-5 Catalysts for NOx Abatement. Appl. Catal. B Environ. 1998, 19, 279–287. [Google Scholar] [CrossRef]
- Huang, T.; Peng, Q.; Shi, W.; Xu, J.; Fan, Y. An Anionic Surfactant-Assisted Equilibrium Adsorption Method to Prepare Highly Dispersed Fe-Promoted Ni/Al2O3 Catalysts for Highly Selective Mercaptan Removal. Appl. Catal. B Environ. 2018, 230, 154–164. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Chowdhury, M.B.I.; Charpentier, P.A. Effect of Surface Acidity of Al2O3 Supported Metal Catalysts on Catalytic Activity and Carbon Deposition during SCWG of Glucose. Biomass Bioenergy 2019, 124, 142–150. [Google Scholar] [CrossRef]
- Aziz, M.A.A.; Jalil, A.A.; Wongsakulphasatch, S.; Vo, D.-V.N. Understanding the Role of Surface Basic Sites of Catalysts in CO2 Activation in Dry Reforming of Methane: A Short Review. Catal. Sci. Technol. 2020, 10, 35–45. [Google Scholar] [CrossRef]
- Liu, L.; Dai, J.; Das, S.; Wang, Y.; Yu, H.; Xi, S.; Zhang, Z.; Tu, X. Plasma-Catalytic CO2 Reforming of Toluene over Hydrotalcite-Derived NiFe/(Mg, Al)Ox Catalysts. JACS Au 2023, 3, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, D.; Moreno, M.V.; Ognier, S.; Motak, M.; Grzybek, T.; Da Costa, P.; Gálvez, M.E. Ni-Fe Layered Double Hydroxide Derived Catalysts for Non-Plasma and DBD Plasma-Assisted CO2 Methanation. Int. J. Hydrog. Energy 2020, 45, 10423–10432. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Liu, H.; You, C. Aluminum-yttrium Oxides Supported Iron for Effective Catalytic Reforming of Toluene: Promotion Roles of Yttrium. Fuel Process. Technol. 2022, 235, 107344. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Zhang, J.; Shan, S.; Yuan, C.; Weng, T.-C. Enhance the Proportion of Fe3+ in NiFe-Layered Double Hydroxides by Utilizing Citric Acid to Improve the Efficiency and Durability of the Oxygen Evolution Reaction. ChemSusChem 2024, 18, e202401582. [Google Scholar] [CrossRef]
- Mo, L.; Chen, G.; Wang, H. Degradation of Orange G Using PMS Triggered by NH2-MIL-101(Fe): An Amino-Functionalized Metal–Organic Framework. Molecules 2024, 29, 1488. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, T.; Ma, X.; Shen, Y.; Deng, Q.; Zhang, W.; Zhao, Y. Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 11007–11015. [Google Scholar] [CrossRef]
- Song, Z.; Wang, Q.; Guo, C.; Li, S.; Yan, W.; Jiao, W.; Qiu, L.; Yan, X.; Li, R. Improved Effect of Fe on the Stable NiFe/Al2O3 Catalyst in Low-Temperature Dry Reforming of Methane. Ind. Eng. Chem. Res. 2020, 59, 17250–17258. [Google Scholar] [CrossRef]
- Yuan, H.; Li, J.; Yang, W.; Zhuang, Z.; Zhao, Y.; He, L.; Xu, L.; Liao, X.; Zhu, R.; Mai, L. Oxygen Vacancy-Determined Highly Efficient Oxygen Reduction in NiCo2O4/Hollow Carbon Spheres. ACS Appl. Mater. Interfaces 2018, 10, 16410–16417. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Sang, Y.; Chen, H.; Li, Y. Depolymerization of Lignin into Cycloalkanes over a Hydrotalcite-Derived NiFe Alloy Catalyst. J. Mater. Chem. A 2025, 13, 3379–3391. [Google Scholar] [CrossRef]
- Cao, G.; Deskins, N.A.; Yi, N. Carbon Monoxide Oxidation over Copper and Nitrogen Modified Titanium Dioxide⋆. Appl. Catal. B Environ. 2021, 285, 119748. [Google Scholar] [CrossRef]
- Chen, H.; Meng, J.; Tang, J.; Wang, X.; Liu, Y.; Bu, C.; Zhang, J.; Liu, C.; Xie, H.; Piao, G. Overcoming Carbon Deposition in Non-Thermal Plasma Catalyzed Biomass Tar Reforming: Innovative Strategies Employed by GPPC Systems. Fuel 2025, 381, 133649. [Google Scholar] [CrossRef]
- Xu, B.; Xie, J.; Liu, H.; Yang, W.; Yin, X.; Wu, C. Experimental and Kinetic Modeling Study of Tar Partial Oxidative Reforming by Dielectric Barrier Discharge Plasma Using Toluene as a Model Compound. Chem. Eng. J. 2024, 479, 147533. [Google Scholar] [CrossRef]
- Xu, B.; Xie, J.; Zhan, H.; Yin, X.; Wu, C.; Liu, H. Removal of Toluene as a Biomass Tar Surrogate in a Catalytic Nonthermal Plasma Process. Energy Fuels 2018, 32, 10709–10719. [Google Scholar] [CrossRef]
- Mei, D.; Wang, Y.; Liu, S.; Alliati, M.; Yang, H.; Tu, X. Plasma Reforming of Biomass Gasification Tars Using Mixed Naphthalene and Toluene as Model Compounds. Energy Convers. Manag. 2019, 195, 409–419. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, J.; Liang, X.; Long, C. Plasma-Catalytic Removal of Toluene over the Supported Manganese Oxides in DBD Reactor: Effect of the Structure of Zeolites Support. Chemosphere 2018, 208, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Mei, D.; Wang, Y.; Ma, Y.; Tu, X. Plasma Reforming of Toluene as a Model Tar Compound from Biomass Gasification: Effect of CO2 and Steam. Waste Dispos. Sustain. Energy 2019, 1, 133–141. [Google Scholar] [CrossRef]
- Cheng, Y.; Thow, Z.; Wang, C.-H. Biomass Gasification with CO2 in a Fluidized Bed. Powder Technol. 2016, 296, 87–101. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, G.; Liu, X.; Phan, A.N.; Luo, K. A Study on CO2 Decomposition to CO and O2 by the Combination of Catalysis and Dielectric-Barrier Discharges at Low Temperatures and Ambient Pressure. Ind. Eng. Chem. Res. 2017, 56, 3204–3216. [Google Scholar] [CrossRef]
- Li, S.; Yu, X.; Dang, X.; Guo, H.; Liu, P.; Qin, C. Using Non-Thermal Plasma for Decomposition of Toluene Adsorbed on γ-Al2O3 and ZSM-5: Configuration and Optimization of a Double Dielectric Barrier Discharge Reactor. Chem. Eng. J. 2019, 375, 122027. [Google Scholar] [CrossRef]
- Xiao, K.; Li, X.; Santoso, J.; Wang, H.; Zhang, K.; Wu, J.; Zhang, D. Synergistic Effect of Dielectric Barrier Discharge Plasma and Mn Catalyst on CO2 Reforming of Toluene. Fuel 2021, 285, 119057. [Google Scholar] [CrossRef]
- Saleem, F.; Zhang, K.; Harvey, A. Role of CO2 in the Conversion of Toluene as a Tar Surrogate in a Nonthermal Plasma Dielectric Barrier Discharge Reactor. Energy Fuels 2018, 32, 5164–5170. [Google Scholar] [CrossRef]
- Lu, Y.; Ye, T.-N.; Li, J.; Li, Z.; Guan, H.; Sasase, M.; Niwa, Y.; Abe, H.; Li, Q.; Pan, F.; et al. Approach to Chemically Durable Nickel and Cobalt Lanthanum-Nitride-Based Catalysts for Ammonia Synthesis. Angew. Chem. Int. Ed. 2022, 61, e202211759. [Google Scholar] [CrossRef] [PubMed]
Samples | SBET a (m2·g−1) | Total Pore Volume a (cm3·g−1) | Average Pore Size a (nm) |
---|---|---|---|
Ni3-Fe1/Al2O3 | 160.1 ± 0.2 | 0.24 ± 0.03 | 4.8 ± 0.2 |
Ni2-Fe1/Al2O3 | 149.1 ± 0.1 | 0.22 ± 0.04 | 4.8 ± 0.3 |
Ni1-Fe1/Al2O3 | 152.9 ± 0.2 | 0.24 ± 0.02 | 4.9 ± 0.1 |
Ni1-Fe2/Al2O3 | 148.8 ± 0.3 | 0.24 ± 0.03 | 5.1 ± 0.4 |
Ni1-Fe3/Al2O3 | 147.5 ± 0.1 | 0.25 ± 0.05 | 5.4 ± 0.2 |
Catalysts | Surface Nickel Species | Surface Iron Species | Surface Oxygen Species | ||||
---|---|---|---|---|---|---|---|
Ni2+ | Ni2+(NiAl2O4) | Fe2+ | Fe3+ | OL | OV | OA | |
Area (%) | Area (%) | Area (%) | Area (%) | Area (%) | Area (%) | Area (%) | |
Ni3-Fe1/Al2O3 | 50.4 | 49.6 | 59.9 | 40.1 | 37.8 | 35.4 | 26.8 |
Ni2-Fe1/Al2O3 | 60.2 | 39.8 | 49.8 | 50.2 | 49.1 | 34.6 | 16.3 |
Ni1-Fe1/Al2O3 | 58.0 | 42.0 | 48.2 | 51.8 | 41.6 | 33.3 | 25.1 |
Ni1-Fe2/Al2O3 | 73.4 | 26.6 | 55.6 | 44.4 | 51.8 | 28.7 | 19.5 |
Ni1-Fe3/Al2O3 | 72.2 | 27.8 | 44.2 | 55.8 | 46.2 | 27.0 | 26.8 |
Chemical Reaction | Serial Number |
---|---|
Ar + e → Ar* + e | (R1) |
CO2 + e/Ar* → CO + O· + e/Ar* | (R2) |
C6H5CH3 + e/Ar* → C6H5· + CH3· + e/Ar* | (R3) |
C6H5CH3 + e/Ar* → C6H5CH2· + H· + e/Ar* | (R4) |
C6H5CH3 + O· → CO + H2 + LHC | (R5) |
CO2 + H2 → CO + H2O | (R6) |
C6H5· + O· → C6H5O· | (R7) |
C6H5O· + H· → C6H5OH | (R8) |
Samples | Precursor Concentration (mol/L) | ||||
---|---|---|---|---|---|
Ni3-Fe1/Al2O3 | Ni2-Fe1/Al2O3 | Ni1-Fe1/Al2O3 | Ni1-Fe2/Al2O3 | Ni1-Fe3/Al2O3 | |
Ni(NO3)2·6H2O | 0.287 | 0.256 | 0.194 | 0.130 | 0.098 |
Fe(NO3)3·9H2O | 0.096 | 0.128 | 0.194 | 0.261 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Cao, G.; Feng, Y.; Jiao, Y.; Li, C.; Zhao, J.; Fang, Y. CO2 Reforming of Biomass Gasification Tar over Ni-Fe-Based Catalysts in a DBD Plasma Reactor. Molecules 2025, 30, 1032. https://doi.org/10.3390/molecules30051032
Gao B, Cao G, Feng Y, Jiao Y, Li C, Zhao J, Fang Y. CO2 Reforming of Biomass Gasification Tar over Ni-Fe-Based Catalysts in a DBD Plasma Reactor. Molecules. 2025; 30(5):1032. https://doi.org/10.3390/molecules30051032
Chicago/Turabian StyleGao, Bianbian, Guoqiang Cao, Yutong Feng, Yuting Jiao, Chunyu Li, Jiantao Zhao, and Yitian Fang. 2025. "CO2 Reforming of Biomass Gasification Tar over Ni-Fe-Based Catalysts in a DBD Plasma Reactor" Molecules 30, no. 5: 1032. https://doi.org/10.3390/molecules30051032
APA StyleGao, B., Cao, G., Feng, Y., Jiao, Y., Li, C., Zhao, J., & Fang, Y. (2025). CO2 Reforming of Biomass Gasification Tar over Ni-Fe-Based Catalysts in a DBD Plasma Reactor. Molecules, 30(5), 1032. https://doi.org/10.3390/molecules30051032