Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = tank inspection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 - 1 Aug 2025
Viewed by 298
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4557 KiB  
Article
Potential of LiDAR and Hyperspectral Sensing for Overcoming Challenges in Current Maritime Ballast Tank Corrosion Inspection
by Sergio Pallas Enguita, Jiajun Jiang, Chung-Hao Chen, Samuel Kovacic and Richard Lebel
Electronics 2025, 14(15), 3065; https://doi.org/10.3390/electronics14153065 - 31 Jul 2025
Viewed by 229
Abstract
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, [...] Read more.
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, especially under coatings. This paper critically examines these challenges and explores the potential of Light Detection and Ranging (LiDAR) and Hyperspectral Imaging (HSI) to form the basis of improved inspection approaches. We discuss LiDAR’s utility for accurate 3D mapping and providing a spatial framework and HSI’s potential for objective material identification and surface characterization based on spectral signatures along a wavelength range of 400-1000nm (visible and near infrared). Preliminary findings from laboratory tests are presented, demonstrating the basic feasibility of HSI for differentiating surface conditions (corrosion, coatings, bare metal) and relative coating thickness, alongside LiDAR’s capability for detailed geometric capture. Although these results do not represent a deployable system, they highlight how LiDAR and HSI could address key limitations of current practices and suggest promising directions for future research into integrated sensor-based corrosion assessment strategies. Full article
Show Figures

Figure 1

16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 300
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 11508 KiB  
Article
Non-Destructive Integrity Assessment of Austenitic Stainless-Steel Membranes via Magnetic Property Measurements
by Haeng Sung Heo, Jinheung Park, Jehyun You, Shin Hyung Rhee and Myoung-Gyu Lee
Materials 2025, 18(12), 2898; https://doi.org/10.3390/ma18122898 - 19 Jun 2025
Viewed by 438
Abstract
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic [...] Read more.
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic stainless steel (SUS304L), widely used in CCS membranes, quantifying magnetic permeability increase via a Feritscope to evaluate deformation history and damage. To analyze SUS304L SIMT behavior, uniaxial tensile (UT) and equi-biaxial tensile (EBT) tests were conducted, as these stress states predominate in CCS membranes. Microstructural evolution was examined using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), allowing a quantitative assessment of the transformed martensite volume fraction versus plastic strain. Subsequently, Feritscope measurements under the same conditions were calibrated against the XRD-measured martensite volume fraction for accuracy. Based on testing, this study introduces three complementary Feritscope approaches for evaluating CCS health: outlier detection, quantitative damaged area analysis, and time-series analysis. The methodology integrates data-driven quantitative assessment with conventional qualitative inspection, enhancing safety and maintenance efficiency. Full article
Show Figures

Figure 1

14 pages, 4313 KiB  
Article
Metal Thickness Measurement Using an Ultrasonic Probe with a Linear Actuator for a Magnet-Type Climbing Robot: Design and Development
by Yuki Nishimura, Cheng Wang and Wei Song
Actuators 2025, 14(6), 299; https://doi.org/10.3390/act14060299 - 18 Jun 2025
Viewed by 360
Abstract
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their [...] Read more.
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their capability in terms of metal thickness measurement has not been previously evaluated. During thickness inspections, ultrasonic thickness sensors require a probe to be pressed against target surfaces. To automate metal thickness measurements, this pressing motion of the probe needs to be performed by the robot. This study introduces a novel metal thickness measurement device comprising an ultrasonic probe, a linear actuator, a gel pump, and a pressure sensor designed for a magnet-type climbing robot. The linear actuator moves the probe to its initial position, the gel pump injects a coupling gel, and then the actuator moves the probe to the surface and back. Finally, our prototype of an ultrasonic probe with a linear actuator was installed on a magnet-type climbing robot to demonstrate its functionality in a practical application regarding an oil storage tank inspection system. The prototype achieved a measurement success rate of 65.9% and an average error of 0.7% compared to a reference thickness. This article details the design and development of the ultrasonic probe with a linear actuator to enable the probe to make contact with the surface. It then details the experimental results and evaluation of metal thickness measurement performed using the prototype and the climbing robot. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—3rd Edition)
Show Figures

Figure 1

19 pages, 15213 KiB  
Article
Derivation and Experimental Validation of Multi-Parameter Performance Optimization of Magnetic Adhesion Unit of Wall-Climbing Robot
by Helei Zhu, Haifeng Ji, Peixing Li and Leijie Lai
Actuators 2025, 14(6), 270; https://doi.org/10.3390/act14060270 - 29 May 2025
Cited by 1 | Viewed by 1057
Abstract
Wall-climbing robots have broad application potential in industrial equipment inspection, chemical storage tank maintenance, and high-altitude operations. However, their practical implementation is challenged by the robots’ adhesion requirements in complex wall environments. This study uses a systematic methodology integrating computational simulation and experimental [...] Read more.
Wall-climbing robots have broad application potential in industrial equipment inspection, chemical storage tank maintenance, and high-altitude operations. However, their practical implementation is challenged by the robots’ adhesion requirements in complex wall environments. This study uses a systematic methodology integrating computational simulation and experimental validation to design and optimize a magnetic adsorption system for wall-climbing robots. Firstly, an adjustable suspended magnetic adhesion unit is designed to achieve intelligent control of a wall-climbing robot’s adhesion force on a wall surface. The Maxwell software (AnsysEM21.1) is used to simulate and analyze the critical parameters of the magnetic adsorption unit, including the thickness of the magnet and yoke, as well as the distance and angle between the magnet and the wall surface. Then, a magnetic wheel is designed for the wall-climbing robot based on the optimization of the structure and parameters of the magnetic adhesion unit. The absorption and demagnetization of the magnetic wheels are achieved by rotating the magnetic absorption unit. Subsequently, the simulation results are verified on the experimental platform, and adhesion performance tests are conducted on both standard flat surfaces and inclined walls. The results show that the optimized single magnetic adhesion unit gives the wall-climbing robot an adhesion force of 2767 N under normal working conditions, with a simulation experiment error margin as low as 8.3%. These results both provide theoretical guidance and highlight practical methodologies for developing high-performance magnetic adsorption systems in complex operational environments. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

20 pages, 6060 KiB  
Article
FEA-Based Thermo-Structural Modeling of Cryogenic Storage Tanks in Liquid Propulsion Systems
by Salvador Orozco, Cynthia L. Ramirez Zamora, Md Amzad Hossain and Ahsan Choudhuri
Aerospace 2025, 12(6), 479; https://doi.org/10.3390/aerospace12060479 - 28 May 2025
Viewed by 445
Abstract
This investigation presents the comprehensive thermo-structural analysis of the propellant tanks utilized in the CROME propulsion system, focused on examining the structural effects caused by the storage of liquid nitrogen, liquid oxygen, and liquid methane. These fluids operate at extremely low temperatures and [...] Read more.
This investigation presents the comprehensive thermo-structural analysis of the propellant tanks utilized in the CROME propulsion system, focused on examining the structural effects caused by the storage of liquid nitrogen, liquid oxygen, and liquid methane. These fluids operate at extremely low temperatures and generate large thermal stress gradients in the tanks, significantly influencing their structural properties. For this reason, it is of vital importance to inspect the generation of mechanical and thermal stresses in the tanks to assess the risk of structural failure. To accomplish this effort, this analysis evaluates the tanks containing liquid nitrogen, liquid oxygen, and liquid methane at pressures of 200.0 psi and 400.0 psi. A coupled finite element analysis was performed in Star-CCM+ to compute the resulting Von Mises stresses under steady-state conditions. These stress results were used to determine the factor of safety in each case, enabling a quantitative assessment of structural integrity in the tanks while operating with cryogenic fluids under different pressure loadings. Full article
Show Figures

Figure 1

19 pages, 1067 KiB  
Article
Dynamic Multi-Fault Diagnosis-Based Root Cause Tracing for Assembly Production Lines of Liquid Storage Tanks
by You Teng, Donghui Li, Hongkai Xue, Yunkai Zhou, Kefu Wang and Qi Wu
Electronics 2025, 14(8), 1546; https://doi.org/10.3390/electronics14081546 - 10 Apr 2025
Viewed by 387
Abstract
Tracing the root cause of defective products in liquid storage tank (LST) production poses a formidable challenge due to the complex dependencies between production and inspection processes. With associated coupling existing among multiple production processes, and the correspondence between the faults in production [...] Read more.
Tracing the root cause of defective products in liquid storage tank (LST) production poses a formidable challenge due to the complex dependencies between production and inspection processes. With associated coupling existing among multiple production processes, and the correspondence between the faults in production processes and inspection links being non-unique, these faults are usually difficult to be directly located via a single inspection process. In this paper, the problem of tracing the root cause of defective LST products, which is caused by process parameter deviations or human operation errors during production, is studied. A root cause tracing method that is based on the dynamic multi-fault diagnosis (DMFD) framework is proposed. First, a factorial hidden Markov model (FHMM) is established to depict the state transition process of the LST product, where its status changes over time and across production processes. This is achieved by considering the product state at each production process as a hidden state and the outcomes of each inspection process as an observation state. Then, the Viterbi algorithm is employed to solve the hidden state transition matrix and diagnostic matrix within the framework of the FHMM. Finally, experimental verification is carried out on a real LST assembly production line, and the influence of imperfect testing on the model accuracy is also considered. The experiment is carried out on an LST assembly line that encompasses three discrete links, including the welding of the upper and lower bodies, the installation of check valves, and the installation of sensors. Experimental results demonstrate that the proposed method achieves significantly more superior performance when compared to existing algorithms. Full article
Show Figures

Figure 1

16 pages, 2436 KiB  
Article
Assessment of the Status of Water, Sanitation and Hygiene (WASH) Services at Primary Schools in uMfolozi Local Municipality, Kwa-Zulu Natal, South Africa
by Lindokuhle C. Radebe, Matlou I. Mokgobu, Gomotsegang F. Molelekwa and Matodzi M. Mokoena
Int. J. Environ. Res. Public Health 2025, 22(3), 360; https://doi.org/10.3390/ijerph22030360 - 28 Feb 2025
Viewed by 1167
Abstract
This study assessed the status of water, sanitation, and hygiene (WASH) services at (49) selected primary schools in uMfolozi Local Municipality, which is situated in the province of Kwa-Zulu Natal in South Africa. Data were collected using an observational checklist tool and by [...] Read more.
This study assessed the status of water, sanitation, and hygiene (WASH) services at (49) selected primary schools in uMfolozi Local Municipality, which is situated in the province of Kwa-Zulu Natal in South Africa. Data were collected using an observational checklist tool and by conducting a walk-through survey to inspect the conditions of sanitary facilities, observe the hand-washing practices of the school learners, and analyse the accessibility to safe drinking water in school premises. The data were analysed with the Statistical Package for Social Science Version 29. This study revealed that there is easy access to safe drinking water in all but one school. The dependability of the water supply seemed to be one of the most urgent problems in every school, even though all of them have some kind of drinking water infrastructure on their grounds. Municipal water (n = 25, 36%) and rainwater (n = 25, 36%) were the most common type of water used in schools compared to borehole (n = 15, 22%) and tanker truck water (n = 4, 6%). Schools must have a reserved water supply because of the inconsistent supply of municipal water, and because rainwater is a seasonal harvest while borehole water may be affected by factors like load-shedding. The UNICEF-described ratio of one tap or disperser per fifty learners suggests that the water taps in the schoolyard were insufficient in some schools (n = 25, 36%). Rainwater is collected through a gutter system in the school building roofs and stored in 5000–10,000 Jojo tanks. Borehole water is pumped into Jojo tanks at an elevated position where it is stored, and learners receive the water through taps connected to the borehole tanks. During an emergency when there is no water supply from other sources, tanker trucks are hired to fill tanks that are also used to store rainwater. The borehole and rainwater quality appeared to be clear, but water treatment had not been performed, and the microbial quality was unknown. This shows that the Sustainable Development Goal (SGD) 6, clean water and sanitation, is still far from being met. According to national norms and standards for domestic water and sanitation services, people who do not use water treatment or purification techniques fall in the ‘no service’ category and contribute to the water backlog. Pit latrines (n = 46, 94%) and flush toilet (n = 3, 6%) were found to be the only convenient toilet systems used. The number of toilets is not sufficient according to the guidelines. There are (n = 46, 94%) of the schools in the study area using pit latrine due to insufficient or no water supply. In 89.8% of primary schools, sanitation facilities are in working condition in terms of repair and hygiene, while 10.2% are not usable in terms of hygiene, and these are mostly boy’s toilets. All schools (n = 46, 94%) that have flush toilets is because they received sponsorship from non-government stakeholders that funded them in achieving piped water systems that permit the functionality of flush toilets. For the purposes of this study, hygiene was evaluate based on the items found in toilets and handwashing practices. The hygiene aspects of toilets included tissues, cleanness, and toilet seat. For handwashing practices we looked the number of washing basins, the colour of water, and having soaps to use. In the schools that did provide handwashing facilities, some of the toilets were broken, there was no water, or there was no drainage system in place to allow them to function. However, according to the school act, the handwash basins should be inside the facilities. A total of (n = 7, 14%) of handwash basins were inside the toilets. Only (n = 2, 4%) of schools had handwashing facilities which were Jojo tanks with taps near toilets, which were outside of the toilet, with no soap provided. Additionally, (n = 40, 82%) of learners used drinking points for handwashing, which can possibly transmit microbes among them. The findings revealed that, in general, (n = 32, 64%) of school toilets were clean, while, in general, the girls’ toilets were cleaner than the boys’ toilets. In all the schools, the cleaning services were from the people who were involved in school nutrition. In conclusion, there were water sources available for access to water inside schools; however, the situation can be improved by increasing the number of water source points. Pit latrines were the main used toilets, which were in a majority of the schools, and did not have the necessary terms for hygiene such as handwashing basin, tissues, and others. The lack of the main aspect, i.e., access to water and sanitation items, results in an impact on hygiene to learners as they will fail to practice proper hygiene. However, improvement can still be made by keeping the boys’ toilets clean while increasing the number of handwashing basins inside the toilets, so that they do not use taps outside the toilets. Schools should work towards meeting the required number of handwashing basins to increase access to handwashing facilities. Full article
Show Figures

Figure 1

21 pages, 4980 KiB  
Review
Current Methods and Technologies for Storage Tank Condition Assessment: A Comprehensive Review
by Alexandru-Adrian Stoicescu, Razvan George Ripeanu, Maria Tănase and Liviu Toader
Materials 2025, 18(5), 1074; https://doi.org/10.3390/ma18051074 - 27 Feb 2025
Cited by 1 | Viewed by 1626
Abstract
This study investigates the current industry practices for storage tank assessment and the possibilities for improving inspection methods using the latest technologies on the market. This article presents the main methods and technologies for non-destructive testing (NDT), along with new methods that make [...] Read more.
This study investigates the current industry practices for storage tank assessment and the possibilities for improving inspection methods using the latest technologies on the market. This article presents the main methods and technologies for non-destructive testing (NDT), along with new methods that make them more efficient and economical. To further analyze the state of a tank and determine its lifetime expectancy, analysis methods are presented based on NDT results. The key aspects that can be improved and made more efficient are NDT procedures using robots/drones and autonomous devices; automated inspection procedures, like remote video inspection combined with local thickness measurement or 3D scanning of the tank elements for deformations; advanced analysis methods using the input from the NDT and inspection data collected using analytical calculations according to applicable standards; Finite Element Analysis (FEA); and digitalized models of equipment (Digital Twin) accompanied by artificial intelligence for data processing. The best way to make the process more efficient is to develop and use dedicated standardized software for tank condition assessment. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

23 pages, 15527 KiB  
Article
Foundations for Teleoperation and Motion Planning Towards Robot-Assisted Aircraft Fuel Tank Inspection
by Adrián Ricárdez Ortigosa, Marc Bestmann, Florian Heilemann, Johannes Halbe, Lewe Christiansen, Rebecca Rodeck and Gerko Wende
Aerospace 2025, 12(2), 156; https://doi.org/10.3390/aerospace12020156 - 18 Feb 2025
Cited by 2 | Viewed by 1315
Abstract
The aviation industry relies on continuous inspections to ensure infrastructure safety, particularly in confined spaces like aircraft fuel tanks, where human inspections are labor-intensive, risky, and expose workers to hazardous exposures. Robotic systems present a promising alternative to these manual processes but face [...] Read more.
The aviation industry relies on continuous inspections to ensure infrastructure safety, particularly in confined spaces like aircraft fuel tanks, where human inspections are labor-intensive, risky, and expose workers to hazardous exposures. Robotic systems present a promising alternative to these manual processes but face significant technical and operational challenges, including technological limitations, retraining requirements, and economic constraints. Additionally, existing prototypes often lack open-source documentation, which restricts researchers and developers from replicating setups and building on existing work. This study addresses some of these challenges by proposing a modular, open-source framework for robotic inspection systems that prioritizes simplicity and scalability. The design incorporates a robotic arm and an end-effector equipped with three RGB-D cameras to enhance the inspection process. The primary contribution lies in the development of decentralized software modules that facilitate integration and future advancements, including interfaces for teleoperation and motion planning. Preliminary results indicate that the system offers an intuitive user experience, while also enabling effective 3D reconstruction for visualization. However, improvements in incremental obstacle avoidance and path planning inside the tank interior are still necessary. Nonetheless, the proposed robotic system promises to streamline development efforts, potentially reducing both time and resources for future robotic inspection systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 8220 KiB  
Article
Network Congestion Control Algorithm for Image Transmission—HRI and Visual Light Communications of an Autonomous Underwater Vehicle for Intervention
by Salvador López-Barajas, Pedro J. Sanz, Raúl Marín-Prades, Juan Echagüe and Sebastian Realpe
Future Internet 2025, 17(1), 10; https://doi.org/10.3390/fi17010010 - 1 Jan 2025
Cited by 2 | Viewed by 1110
Abstract
In this study, the challenge of teleoperating robots in harsh environments such as underwater or in tunnels is addressed. In these environments, wireless communication networks are prone to congestion, leading to potential mission failures. Our approach integrates a Human–Robot Interface (HRI) with a [...] Read more.
In this study, the challenge of teleoperating robots in harsh environments such as underwater or in tunnels is addressed. In these environments, wireless communication networks are prone to congestion, leading to potential mission failures. Our approach integrates a Human–Robot Interface (HRI) with a network congestion control algorithm at the application level for conservative transmission of images using the Robot Operating System (ROS) framework. The system was designed to avoid network congestion by adjusting the image compression parameters and the transmission rate depending on the real-time network conditions. To evaluate its performance, the algorithm was tested in two wireless underwater use cases: pipe inspection and an intervention task. An Autonomous Underwater Vehicle for Intervention (I-AUV) equipped with a Visual Light Communication (VLC) modem was used. Characterization of the VLC network was performed while the robot performed trajectories in the tank. The results demonstrate that our approach allows an operator to perform wireless missions where teleoperation requires images and the network conditions are variable. This solution provides a robust framework for image transmission and network control in the application layer, which allows for integration with any ROS-based system. Full article
Show Figures

Figure 1

17 pages, 1061 KiB  
Review
A Review of Emerging Sensor Technologies for Tank Inspection: A Focus on LiDAR and Hyperspectral Imaging and Their Automation and Deployment
by Sergio Pallas Enguita, Chung-Hao Chen and Samuel Kovacic
Electronics 2024, 13(23), 4850; https://doi.org/10.3390/electronics13234850 - 9 Dec 2024
Cited by 1 | Viewed by 1835
Abstract
This paper reviews various sensor technologies for tank inspection, focusing on Light Detection and Ranging (LiDAR) and Hyperspectral Imaging (HSI) as advanced solutions for corrosion detection. These technologies are evaluated alongside traditional methods such as ultrasonic, electromagnetic, and thermographic inspections. This review highlights [...] Read more.
This paper reviews various sensor technologies for tank inspection, focusing on Light Detection and Ranging (LiDAR) and Hyperspectral Imaging (HSI) as advanced solutions for corrosion detection. These technologies are evaluated alongside traditional methods such as ultrasonic, electromagnetic, and thermographic inspections. This review highlights their potential to enhance inspection accuracy, reduce the limitations of manual inspection, and support integrated data analysis for comprehensive asset management. Additionally, this paper proposes a pathway for automating these techniques to streamline inspection processes and improve implementation in practical applications. Full article
(This article belongs to the Special Issue Feature Review Papers in Electronics)
Show Figures

Figure 1

17 pages, 4755 KiB  
Article
Comparison of Immersion and Portable Ultrasonic Housing to Quantify the Adhesive Bond Thickness and Sizing of Foreign Objects
by Nathaniel J. Blackman, Benjamin M. Blandford and David A. Jack
Materials 2024, 17(20), 5111; https://doi.org/10.3390/ma17205111 - 19 Oct 2024
Viewed by 1031
Abstract
High-performance materials, such as carbon fiber laminates, are costly to manufacture and are often used in demanding environments requiring the use of high-resolution non-destructive testing (NDT) methods to confirm the integrity of the parts. One NDT method that has shown promise for qualifying [...] Read more.
High-performance materials, such as carbon fiber laminates, are costly to manufacture and are often used in demanding environments requiring the use of high-resolution non-destructive testing (NDT) methods to confirm the integrity of the parts. One NDT method that has shown promise for qualifying carbon fiber laminates is the use of immersion ultrasound with spherically focused probes. However, many parts may not be submersible in an immersion tank due to size or material constraints. These parts must be scanned with contact transducers with inferior resolutions or with expensive and messy systems such as bubblers. This research presents the use of a novel housing system that allows for the use of focused immersion transducers in an out-of-tank portable ultrasonic scanning application. This work presents a comparison between scans taken using a custom high-resolution immersion system and scans taken using the presented housing. There are a wide variety of potential inspection applications for this novel system, and the present work focused on two specific applications: the quantification of the spatially varying adhesive thickness in bonded carbon fiber laminates and the quantification of foreign object inclusions in carbon fiber laminates. The results presented show that scans using the portable housing are comparable in quality to scans performed using an immersion system. Specifically, both inspection approaches had an average error of 0.04 mm when quantifying the adhesive thickness of a bonded composite, and for the foreign object detection, the error in quantifying the dimensions of the embedded foreign object was 0.1 mm and 0.2 mm for the immersion system and the portable inspection system, respectively. The demonstration was performed in a laboratory setting, but a discussion is provided for the necessary improvements needed to extend the system for use in field applications. Full article
(This article belongs to the Special Issue Non-Destructive Testing (NDT) of Advanced Composites and Structures)
Show Figures

Figure 1

21 pages, 7997 KiB  
Article
Spatial Localization of Transformer Inspection Robot Based on Adaptive Denoising and SCOT-β Generalized Cross-Correlation
by Hongxin Ji, Chao Zheng, Zijian Tang, Xinghua Liu and Liqing Liu
Sensors 2024, 24(15), 4937; https://doi.org/10.3390/s24154937 - 30 Jul 2024
Cited by 4 | Viewed by 1393
Abstract
In the detection process of the internal defects of large oil-immersed transformers, due to the huge size of large transformers and metal-enclosed structures, the positional localization of miniature inspection robots inside the transformer faces great difficulties. To address this problem, this paper proposes [...] Read more.
In the detection process of the internal defects of large oil-immersed transformers, due to the huge size of large transformers and metal-enclosed structures, the positional localization of miniature inspection robots inside the transformer faces great difficulties. To address this problem, this paper proposes a three-dimensional positional localization method based on adaptive denoising and the SCOT weighting function with the addition of the exponent β (SCOT-β) generalized cross-correlation for L-type ultrasonic arrays of transformer internal inspection robots. Aiming at the strong noise interference in the field, the original signal is decomposed by an improved Empirical Mode Decomposition (EMD) method, and the optimal center frequency and bandwidth of each mode are adaptively searched. By extracting the modes in the frequency band of the positional localization signal, suppressing the modes in the noise frequency band, and reconstructing the Intrinsic Mode Function (IMF) of the independently selected superior modal components, a signal with a high signal-to-noise ratio is obtained. In addition, for the traditional mutual correlation algorithm with a large delay estimation error at a low signal-to-noise ratio, this paper adopts an improved generalized joint weighting function, SCOT-β, which improves the anti-jamming ability of the generalized mutual correlation method at a low signal-to-noise ratio by adding an exponential function to the denominator term of the SCOT weighting function’s generalized cross-correlation. Finally, the accurate positional localization of the transformer internal inspection robot is realized based on the quadratic L-array and search-based maximum likelihood estimation method. Simulation and experimental results show the following: the improved EMD denoising method better improves the signal-to-noise ratio of the positional localization signal with a lower distortion rate; in the transformer test tank, which is 120 cm in length, 100 cm in width, and 100 cm in height, based on the positional localization method in this paper, the average relative positional localization error of the transformer internal inspection robot in three-dimensional space is 2.27%, and the maximum positional localization error is less than 2 cm, which meets the requirements of engineering positional localization. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

Back to TopTop