Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = tank cleaning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 674 KiB  
Article
Soybean Response to Saflufenacil Doses, Alone or Combined with Glyphosate, Simulating Tank Contamination
by Leandro Galon, Lucas Tedesco, Rodrigo José Tonin, Aline Diovana Ribeiro dos Anjos, Eduarda Batistelli Giacomolli, Otávio Augusto Dassoler, Felipe Bittencourt Ortiz and Gismael Francisco Perin
Agronomy 2025, 15(8), 1758; https://doi.org/10.3390/agronomy15081758 - 23 Jul 2025
Viewed by 283
Abstract
Some herbicides, such as saflufenacil, can persist as residues in sprayer tanks even after cleaning, causing phytotoxicity in sensitive crops. This study aimed to simulate potential injury caused by saflufenacil residues, applied alone or combined with glyphosate, on soybean. The field experiment was [...] Read more.
Some herbicides, such as saflufenacil, can persist as residues in sprayer tanks even after cleaning, causing phytotoxicity in sensitive crops. This study aimed to simulate potential injury caused by saflufenacil residues, applied alone or combined with glyphosate, on soybean. The field experiment was conducted using a randomized complete block design with four replicates. The treatments included glyphosate (1440 g ha−1), eight saflufenacil doses ranging from 1.09 to 70.00 g ha−1, each tested alone or combined with glyphosate, and a weed-free control, totaling 18 treatments. Phytotoxicity was assessed at 7, 14, 21, 28, and 35 days after treatment (DAT). Physiological variables were measured at 21 DAT, and grain yield components were evaluated at harvest. Saflufenacil caused increasing phytotoxicity at doses exceeding 4.38 g ha−1 when applied alone and above 2.17 g ha−1 when combined with glyphosate. The highest doses negatively affected soybean physiology and grain yield components. Soybean tolerated up to 2.17 g ha−1 saflufenacil alone and up to 1.09 g ha−1 combined with glyphosate without significant yield loss. These results highlight the importance of thorough and correct cleaning of the sprayer tank and suggest limit residue levels that avoid crop damage, helping to prevent unexpected damage to soybean in crop rotations. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Figure 1

17 pages, 6479 KiB  
Article
Operation of a Zero-Discharge Evapotranspiration Tank for Blackwater Disposal in a Rural Quilombola Household, Brazil
by Adivânia Cardoso da Silva, Adriana Duneya Diaz Carrillo and Paulo Sérgio Scalize
Water 2025, 17(14), 2098; https://doi.org/10.3390/w17142098 - 14 Jul 2025
Viewed by 453
Abstract
Decentralized sanitation in rural areas urgently requires accessible and nature-based solutions to achieve Sustainable Development Goal 6 (clean water and sanitation for all). However, monitoring studies of such ecotechnologies in disperse communities remain limited. This study evaluated the performance of an evapotranspiration tank [...] Read more.
Decentralized sanitation in rural areas urgently requires accessible and nature-based solutions to achieve Sustainable Development Goal 6 (clean water and sanitation for all). However, monitoring studies of such ecotechnologies in disperse communities remain limited. This study evaluated the performance of an evapotranspiration tank (TEvap), designed with community participation, for the treatment of domestic sewage in a rural Quilombola household in the Brazilian Cerrado. The system (total area of 8.1 m2, with about 1.0 m2 per inhabitant) was monitored for 218 days, covering the rainy season and the plants’ establishment phase. After 51 days, the TEvap reached operational equilibrium, maintaining a zero-discharge regime, and after 218 days, 92.3% of the total system inlet volumes (i.e., 37.47 in 40.58 m3) were removed through evapotranspiration and uptake by cultivated plants (Musa spp.). Statistical analyses revealed correlations that were moderate to strong, and weak between the blackwater level and relative humidity (Pearson correlation coefficient, r = 0.75), temperature (r = −0.66), and per capita blackwater contribution (r = 0.28), highlighting the influence of climatic conditions on system efficiency. These results confirm the TEvap as a promising, low-maintenance, and climate-resilient technology for decentralized domestic sewage treatment in vulnerable rural communities, with the potential to support sanitation policy goals and promote public health. Full article
Show Figures

Graphical abstract

19 pages, 5383 KiB  
Article
Design and Hydrodynamic Performance Analysis of Airlift Sediment Removal Equipment for Seedling Fish Tanks
by Yufei Zhang, Andong Liu, Chenglin Zhang, Chongwu Guan and Haigeng Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1236; https://doi.org/10.3390/jmse13071236 - 26 Jun 2025
Viewed by 338
Abstract
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with [...] Read more.
This study innovatively proposes a pipeline-type pneumatic lift sediment removal device for cleaning pollutants at the bottom of fish breeding tanks and conducts hydrodynamic characteristic analysis on its core component, the pneumatic lift pipeline structure, which consists of a horizontal circular tube with multiple micro-orifices at the bottom and an upward-inclined circular tube. The pipeline has an inner diameter of 20 mm and a vertical length of 1.2 m, with the orifice at one end of the horizontal tube connected to the gas supply line. During operation, compressed gas enters the horizontal tube, generating negative liquid pressure that draws solid–liquid mixtures from the tank bottom into the pipeline, while buoyant forces propel the gas–liquid–solid mixture upward for discharge through the outlet. Under a constant gas flow rate, numerical simulations investigated efficiency variations through three operational scenarios: ① different pipeline orifice diameters, ② varying orifice quantities and spacings, and ③ adjustable pipeline bottom clearance heights. The results indicate that in scenario ①, an orifice diameter of 4 mm demonstrated optimal efficiency; in scenario ②, the eight-orifice configuration achieved peak efficiency; and scenario ③ showed that the proper adjustment of the bottom clearance height enhances pneumatic efficiency, with maximum efficiency observed at a clearance of 10 mm between sediment suction pipe and tank bottom. Full article
Show Figures

Figure 1

32 pages, 7008 KiB  
Article
Revealing the Roles of Heat Transfer, Thermal Dynamics, and Reaction Kinetics in Hydrogenation/Dehydrogenation Processes for Mg-Based Metal Hydride Hydrogen Storage
by Zhiqian Li, Min Zhang and Huijin Xu
Energies 2025, 18(11), 2924; https://doi.org/10.3390/en18112924 - 4 Jun 2025
Viewed by 606
Abstract
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to [...] Read more.
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to its high energy density, low operating pressure, and safety. In this work, the thermodynamic and kinetic characteristics of the hydrogenation and dehydrogenation processes are investigated and analyzed in detail, and the effects of initial conditions on the thermochemical hydrogen storage reactor are discussed. Multiphysics field modeling of the magnesium-based hydrogen storage tank was conducted to analyze the reaction processes. Distributions of temperature and reaction rate in the reactor and temperature and pressure during the hydrogen loading process were discussed. Radially, wall-adjacent regions rapidly dissipate heat with short reaction times, while the central area warms into a thermal plateau. Inward cooling propagation shortens the plateau, homogenizing temperatures—reflecting inward-to-outward thermal diffusion and exothermic attenuation, alongside a reaction rate peak migrating from edge to center. Axially, initial uniformity transitions to bottom-up thermal expansion after 60 min, with sustained high top temperatures showing nonlinear decay under t = 20 min intervals, where cooling rates monotonically accelerate. The greater the hydrogen pressure, the shorter the period of the temperature rise and the steeper the curve, while lower initial temperatures preserve local maxima but shorten plateaus and cooling time via enhanced thermal gradients. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Graphical abstract

23 pages, 5215 KiB  
Article
Experimental Evaluation of Hybrid Renewable and Thermal Energy Storage Systems for a Net-Zero Energy Greenhouse: A Case Study of Yeoju-Si
by Misbaudeen Aderemi Adesanya, Anis Rabiu, Qazeem Opeyemi Ogunlowo, Min-Hwi Kim, Timothy Denen Akpenpuun, Wook-Ho Na, Kuljeet Singh Grewal and Hyun-Woo Lee
Energies 2025, 18(10), 2635; https://doi.org/10.3390/en18102635 - 20 May 2025
Viewed by 585
Abstract
The implementation of renewable energy systems (RESs) in the agricultural sector has significant potential to mitigate the negative effects of fossil fuel-based products on the global climate, reduce operational costs, and enhance crop production. However, the intermittent nature of RESs poses a major [...] Read more.
The implementation of renewable energy systems (RESs) in the agricultural sector has significant potential to mitigate the negative effects of fossil fuel-based products on the global climate, reduce operational costs, and enhance crop production. However, the intermittent nature of RESs poses a major challenge to realizing these benefits. To address this, thermal energy storage (TES) and hybrid heat pump (HHP) systems are integrated with RESs to balance the mismatch between thermal energy production and demand. In pursuit of clean energy solutions in the agricultural sector, a 3942 m2 greenhouse in Yeoju-si, South Korea, is equipped with 231 solar thermal (ST) collectors, 117 photovoltaic thermal (PVT) collectors, four HHPs, two ground-source heat pumps (GSHPs), a 28,500 m3 borehole TES (BTES) unit, a 1040 m3 tank TES (TTES) unit, and three short-term TES units with capacities of 150 m3, 30 m3, and 30 m3. This study evaluates the long-term performance of the integrated hybrid renewable energy and thermal energy storage systems (HRETESSs) in meeting the greenhouse’s heating and cooling demands. Results indicate that the annual system performance efficiencies range from 25.3% to 68.5% for ST collectors and 31.9% to 72.2% for PVT collectors. The coefficient of performance (COP) during the heating season is 3.3 for GSHPs, 2.5 for HHPs using BTES as a source, and 3.6 for HHPs using TTES as a source. During the cooling season, the COP ranges from 5.3 to 5.7 for GSHPs and 1.84 to 2.83 for ASHPs. Notably, the HRETESS supplied 3.4% of its total heating energy directly from solar energy, 89.3% indirectly via heat pump utilization, and 7.3% is provided by auxiliary heating. This study provides valuable insights into the integration of HRETESSs to maximize greenhouse energy efficiency and supports the development of sustainable agricultural energy solutions, contributing to reduced greenhouse gas emissions and operational costs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 484 KiB  
Article
Microbiological and Molecular Characterization of Bacterial Communities in Domestic Water Sources in Nabuti Village, Mukono District, Central Uganda
by Catherine A. Najjembe, Oluwatoyin M. Aladejana, Jessica N. Uwanibe, Christian T. Happi and Onikepe A. Folarin
Microbiol. Res. 2025, 16(5), 99; https://doi.org/10.3390/microbiolres16050099 - 15 May 2025
Viewed by 602
Abstract
Access to clean and safe water is crucial for community well-being. Water samples from storage tank water (STW) and municipal tap water (MTW) were aseptically collected, and total bacterial and coliform counts were determined. Isolates were Gram-stained, and conventional biochemical tests were conducted. [...] Read more.
Access to clean and safe water is crucial for community well-being. Water samples from storage tank water (STW) and municipal tap water (MTW) were aseptically collected, and total bacterial and coliform counts were determined. Isolates were Gram-stained, and conventional biochemical tests were conducted. Antibiotic susceptibility testing was performed using Kirby–Bauer’s disk diffusion technique. Selected isolates were confirmed through Sanger sequencing of amplified 16S rRNA genes. Polymerase chain reaction and gel electrophoresis techniques were used to determine the presence of quinolone and beta-lactam resistance genes. A total of 50 water samples were analyzed. The mean total coliform counts (TCCs) were 5.75 for STW and 5.5 for MTW. In total, 43 and 13 bacterial isolates were recovered from STW and MTW, respectively, with Gram-negative bacteria being more prevalent 58.14% (25/43) in STW and 81.82% (9/11) in MTW. The isolates appeared to belong to seven different presumptive bacterial genera on biochemical tests. The 16S rRNA gene amplicon Sanger sequencing of 38 isolates revealed 15 different species. A total of 38 isolates tested for resistance genes revealed that 47.37%, 31.58%, 21.05%, 10.53%, 28.95%, and 13.16% harbored gyrB, parC, gyrA, parE, blaSHV, and blaTEM genes, respectively. Antibiotic susceptibility profiling revealed a predominance of multidrug-resistant (MDR) strains among the bacterial isolates from both water sources. Regular monitoring and enhanced water treatment are critical to protect the public health and reduce the spread of potential pathogenic and antibiotic-resistant bacterial strains in household water systems. Full article
Show Figures

Figure 1

30 pages, 13413 KiB  
Article
Experimental Study on Peak Shaving with Self-Preheating Combustion Equipped with a Novel Compact Fluidized Modification Device
by Hongliang Ding, Shuyun Li, Ziqu Ouyang, Shujun Zhu, Xiongwei Zeng, Haoyang Zhou, Kun Su, Hongshuai Wang and Jicheng Hui
Energies 2025, 18(10), 2555; https://doi.org/10.3390/en18102555 - 15 May 2025
Viewed by 374
Abstract
Under the strategic objectives of carbon peaking and carbon neutrality, it is inevitable for large-scale integration of renewable energy into thermal power units. Nevertheless, improving the capacity of these units for flexible peak shaving is necessary on account of the intermittent and instability [...] Read more.
Under the strategic objectives of carbon peaking and carbon neutrality, it is inevitable for large-scale integration of renewable energy into thermal power units. Nevertheless, improving the capacity of these units for flexible peak shaving is necessary on account of the intermittent and instability of renewable energy. As a novel combustion technology, self-preheating combustion technology offers enormous merits in this aspect, with increasing combustion efficiency (η) and controlling NOx emissions simultaneously. Considering production and operation cost, installation difficulty and environmental pollution, this study innovatively proposed a compact fluidized modification device (FMD) on the basis of this technology and explored the influences of buffer tank and operation load on operation stability, fuel modification, combustion characteristics and NOx emissions on an MW grade pilot-scale test platform. Afterwards, the comparative analysis on performance disparities was further launched between FMD and traditional self-preheating burner (TSB). Adding the buffer tank enhanced operation stability of FMD and improved its modification conditions, and thus promoted NOx emission control. Optimal modification efficiency was realized at medium and high loads, respectively, for high-volatile and low-volatile coals. As load increased, η increased for high-volatile coal, but with NOx emissions increasing. In comparison, this condition reduced NOx emissions with high η for low-volatile coal. Compared to TSB, FMD demonstrated more conspicuous advantages in stable operation and fuel modification. Simultaneously, FMD was more conducive to realizing clean and efficient combustion at high temperatures. In industrial applications, appropriate FMD or TSB should be picked out grounded in diverse application requirements. By optimizing burner structure and operational parameters, original NOx emissions decreased to a minimum of 77.93 mg/m3 with high η of 98.59% at low load of 30%. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

35 pages, 3367 KiB  
Article
Optimization of Tank Cleaning Station Locations and Task Assignments in Inland Waterway Networks: A Multi-Period MIP Approach
by Yanmeng Tao, Ying Yang, Haoran Li and Shuaian Wang
Mathematics 2025, 13(10), 1598; https://doi.org/10.3390/math13101598 - 13 May 2025
Viewed by 350
Abstract
Inland waterway transportation is critical for the movement of hazardous liquid cargoes. To prevent contamination when transporting different types of liquids, certain shipments necessitate tank cleaning at designated stations between tasks. This process often requires detours, which can decrease operational efficiency. This study [...] Read more.
Inland waterway transportation is critical for the movement of hazardous liquid cargoes. To prevent contamination when transporting different types of liquids, certain shipments necessitate tank cleaning at designated stations between tasks. This process often requires detours, which can decrease operational efficiency. This study addresses the Tank Cleaning Station Location and Cleaning Task Assignment (TCSL-CTA) problem, with the objective of minimizing total system costs, including the construction and operational costs of tank cleaning stations, as well as the detour costs incurred by ships visiting these stations. We formulate the problem as a mixed-integer programming (MIP) model and prove that it can be reformulated into a partially relaxed MIP model, preserving optimality while enhancing computational efficiency. We further analyze key mathematical properties, showing that the assignment constraint matrix is totally unimodular, enabling efficient relaxation, and that the objective function exhibits submodularity, reflecting diminishing returns in facility investment. A case study on the Yangtze River confirms the model’s effectiveness, where the optimized plan resulted in detour costs accounting for only 5.2% of the total CNY 4.23 billion system cost and achieved an 89.1% average station utilization. Managerial insights reveal that early construction and balanced capacity allocation significantly reduce detour costs. This study provides a practical framework for long-term tank cleaning infrastructure planning, contributing to cost-effective and sustainable inland waterway logistics. Full article
Show Figures

Figure 1

15 pages, 1552 KiB  
Article
Recovery of Effective Acid from Waste Generated in the Anodic Oxidation Polishing Process
by Haiyang Li, Kangping Cui and Wenming Wu
Water 2025, 17(9), 1322; https://doi.org/10.3390/w17091322 - 28 Apr 2025
Viewed by 441
Abstract
The high treatment costs associated with wastewater and waste solutions produced by the anodic oxidation polishing section significantly limit industry development. To address this challenge, the present study investigates the characteristics of polishing wastewater and waste solutions, employing extraction and ion exchange combined [...] Read more.
The high treatment costs associated with wastewater and waste solutions produced by the anodic oxidation polishing section significantly limit industry development. To address this challenge, the present study investigates the characteristics of polishing wastewater and waste solutions, employing extraction and ion exchange combined with diffusion dialysis to recover effective acids. For waste tank solutions, single and dual solvent extraction experiments were conducted to determine the optimal extraction system. Electrostatic potential and interaction region indicator (IRI) analyses were performed to provide theoretical justification. Regarding cleaning wastewater, resin adsorption was applied to selectively remove aluminium ions from waste acid solutions, facilitating effective acid recovery. Static and dynamic adsorption–desorption experiments were initially performed to identify suitable resins. Subsequently, optimised parameters—including adsorption and desorption concentrations, volumes, and flow rates—were systematically established through conditional experiments, and diffusion dialysis was applied to recover acids from the desorbed solutions. The experimental results indicate that tributyl phosphate (TBP) emerged as the optimal single extractant, achieving an effective acid extraction rate of 88.67% under a solvent ratio of 4:1 at a room temperature of 28 °C. A binary solvent system, composed of TBP with 20% sulfonated kerosene, demonstrated superior engineering feasibility due to its reduced viscosity and satisfactory extraction rate of 82.19%. Moreover, adsorption–desorption tests confirmed that the resin-based method effectively recovered acids from cleaning wastewater. Specifically, under optimal operational conditions—downstream adsorption at 0.3–0.5 bed volumes (BV) and 1.0 BV/h, coupled with counter-current desorption at 2 BV and 2.4 BV/h—the acid recovery rate reached ≥95% while removing ≥90% of aluminium ions. Additionally, employing 20% sulfuric acid solution for desorption in diffusion dialysis enabled cyclic desorption. Consequently, this study successfully achieved acid reuse and substantially lowered wastewater treatment costs, representing a promising advancement for anodic oxidation polishing processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 1009 KiB  
Article
Permeation Investigation of Carbon Fibre Reinforced Polymer Material for LH2 Storage Thermally Shocked and Mechanically Cycled at Cryogenic Temperature
by Giacomo Dreossi and Andrej Bernard Horvat
Aerospace 2025, 12(4), 342; https://doi.org/10.3390/aerospace12040342 - 14 Apr 2025
Cited by 1 | Viewed by 676
Abstract
To achieve the sustainability goals set for the European aviation sector, hydrogen-powered solutions are currently being investigated. Storage solutions are of particular interest, with liquid hydrogen tanks posing numerous challenges with regard to the structural integrity of materials at cryogenic temperatures, as well [...] Read more.
To achieve the sustainability goals set for the European aviation sector, hydrogen-powered solutions are currently being investigated. Storage solutions are of particular interest, with liquid hydrogen tanks posing numerous challenges with regard to the structural integrity of materials at cryogenic temperatures, as well as safety issues because of the high flammability of hydrogen. In this context and in the scope of the Horizon 2020 Clean Aviation Joint Undertaking (CAJU) project H2ELIOS, the gas permeability behavior of prepreg tape carbon fibre reinforced polymer (CFRP) material was studied. Investigations were performed after thermal shock to 20 K (liquid hydrogen immersion) as well as after a uniaxial stress application at 77 K to identify the shift from Fickian behavior after diverse aging conditions. Helium gas permeation was tested at room temperature (RT), and its representativeness to hydrogen permeation in a range of temperatures was considered in the study. The material’s permeation behavior was compared to ideal Fickian diffusion as a means of identifying related permeation barrier function degradation. Finally, it was possible to identify Fickian, near-Fickian, and non-Fickian behaviors and correlate them with the material’s preconditioning. Full article
Show Figures

Figure 1

23 pages, 3482 KiB  
Article
Eco-Friendly Biosurfactant: Tackling Oil Pollution in Terrestrial and Aquatic Ecosystems
by Kaio Wêdann Oliveira, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Gleice Paula Araújo, Attilio Converti, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Fermentation 2025, 11(4), 199; https://doi.org/10.3390/fermentation11040199 - 8 Apr 2025
Viewed by 1177
Abstract
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of [...] Read more.
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of affected environments. The use of biosurfactants is an effective option for the cleaning of storage tanks and the remediation of contaminated soils and effluents. The scope of this work was to assess the production and application of a Starmerella bombicola ATCC 22214 biosurfactant to remediate marine and terrestrial environment polluted by oil. The production of the biosurfactant was optimized in terms of carbon/nitrogen sources and culture conditions using flasks. The performance of the biosurfactant was tested in clayey soil, silty soil, and standard sand, as well as smooth surfaces and industrial effluents contaminated with oils (fuel oils B1 for thermal power generation, diesel, and motor oil). The ideal culture medium for the production of the biosurfactant contained 2% glucose and 5% glycerol, with agitation at 200 rpm, fermentation for 180 h and a 5% inoculum, resulting in a yield of 1.5 g/L. The biosurfactant had high emulsification indices (86.6% for motor oil and 51.7% for diesel) and exhibited good stability under different pH values, temperatures and concentrations of NaCl. The critical micelle concentration was 0.4 g/L, with a surface tension of 26.85 mN/m. In remediation tests, the biosurfactant enabled the removal of no less than 99% of motor oil from different types of soil. The results showed that the biosurfactant produced by Starmerella bombicola is a promising agent for the remediation of environments contaminated by oil derivatives, especially in industrial environments and for the treatment of oily effluents. Full article
Show Figures

Figure 1

5 pages, 532 KiB  
Case Report
Control of Neobenedenia sp. Infestations in the Ocean Tank at Gran Acuario Mazatlán
by Francisco Neptalí Morales-Serna, Dania López-Moreno, José Antonio Velázquez Garay and Luis Antonio Rendón-Martínez
Parasitologia 2025, 5(2), 16; https://doi.org/10.3390/parasitologia5020016 - 2 Apr 2025
Viewed by 903
Abstract
The Gran Acuario Mazatlán (GAM), Mexico’s largest aquarium, is located at the entrance of the Gulf of California. In April 2023, fish in the Ocean Tank (OT) began exhibiting disease symptoms, followed by significant mortality, primarily affecting Caranx caninus, Chaetodipterus zonatus, [...] Read more.
The Gran Acuario Mazatlán (GAM), Mexico’s largest aquarium, is located at the entrance of the Gulf of California. In April 2023, fish in the Ocean Tank (OT) began exhibiting disease symptoms, followed by significant mortality, primarily affecting Caranx caninus, Chaetodipterus zonatus, and Lutjanus colorado. Parasitological examinations identified heavy infestations of Neobenedenia sp. (Monogenea: Capsalidae), with parasites extensively covering body surfaces and gills of some individuals. To control the outbreak, an environmental management strategy was implemented, involving a gradual reduction in water temperature (from 26 °C to 22 °C) and salinity (from 35 ppt to 26 ppt), increased cleaning frequency, and parasite egg abundance monitoring. Over time, egg abundance declined, and by July, fish behavior and feeding rates had returned to normal, with parasite-associated mortality dropping below 2%. Preventive measures, including strict quarantine protocols for new fish, have been implemented to maintain optimal conditions in the OT. This case highlights the challenges of managing parasite outbreaks in large, multi-species aquaria and underscores the importance of environmental control strategies in marine animal care. Full article
Show Figures

Figure 1

22 pages, 1406 KiB  
Article
Comparative Analysis of Kalman-Based Approaches for Fault Detection in a Clean-In-Place System Model
by Ayman E. O. Hassan and Askin Demirkol
Processes 2025, 13(4), 936; https://doi.org/10.3390/pr13040936 - 21 Mar 2025
Viewed by 541
Abstract
The most appropriate operating conditions are necessary in industrial manufacturing to maintain product quality and consistency. In this respect, Clean-In-Place (CIP) is a widely adopted method in the food, beverage, pharmaceutical, and chemical industries, which ensures equipment cleanliness without dismantling. A detailed analysis [...] Read more.
The most appropriate operating conditions are necessary in industrial manufacturing to maintain product quality and consistency. In this respect, Clean-In-Place (CIP) is a widely adopted method in the food, beverage, pharmaceutical, and chemical industries, which ensures equipment cleanliness without dismantling. A detailed analysis and simulation for the assessment of accuracy, computational efficiency, and adaptability in fault detection, such as valve malfunction, pump failure, and sensor error, are necessary for the CIP system. Advanced fault detection methods within a five-tank CIP model are investigated in this paper, comparing the extended Kalman filter (EKF) with the unscented Kalman filter (UKF). Both techniques have their merits for fault detection in complex systems. The results indicate that the UKF mostly performs better than the EKF in treating the nonlinearities of the given CIP system with the chosen system characteristics and fault type. This approach helps improve the reliability and efficiency of the CIP process, thus providing insights into enhancing fault detection strategies in industrial applications. Full article
(This article belongs to the Special Issue Fault Diagnosis of Equipment in the Process Industry)
Show Figures

Figure 1

16 pages, 2436 KiB  
Article
Assessment of the Status of Water, Sanitation and Hygiene (WASH) Services at Primary Schools in uMfolozi Local Municipality, Kwa-Zulu Natal, South Africa
by Lindokuhle C. Radebe, Matlou I. Mokgobu, Gomotsegang F. Molelekwa and Matodzi M. Mokoena
Int. J. Environ. Res. Public Health 2025, 22(3), 360; https://doi.org/10.3390/ijerph22030360 - 28 Feb 2025
Viewed by 1167
Abstract
This study assessed the status of water, sanitation, and hygiene (WASH) services at (49) selected primary schools in uMfolozi Local Municipality, which is situated in the province of Kwa-Zulu Natal in South Africa. Data were collected using an observational checklist tool and by [...] Read more.
This study assessed the status of water, sanitation, and hygiene (WASH) services at (49) selected primary schools in uMfolozi Local Municipality, which is situated in the province of Kwa-Zulu Natal in South Africa. Data were collected using an observational checklist tool and by conducting a walk-through survey to inspect the conditions of sanitary facilities, observe the hand-washing practices of the school learners, and analyse the accessibility to safe drinking water in school premises. The data were analysed with the Statistical Package for Social Science Version 29. This study revealed that there is easy access to safe drinking water in all but one school. The dependability of the water supply seemed to be one of the most urgent problems in every school, even though all of them have some kind of drinking water infrastructure on their grounds. Municipal water (n = 25, 36%) and rainwater (n = 25, 36%) were the most common type of water used in schools compared to borehole (n = 15, 22%) and tanker truck water (n = 4, 6%). Schools must have a reserved water supply because of the inconsistent supply of municipal water, and because rainwater is a seasonal harvest while borehole water may be affected by factors like load-shedding. The UNICEF-described ratio of one tap or disperser per fifty learners suggests that the water taps in the schoolyard were insufficient in some schools (n = 25, 36%). Rainwater is collected through a gutter system in the school building roofs and stored in 5000–10,000 Jojo tanks. Borehole water is pumped into Jojo tanks at an elevated position where it is stored, and learners receive the water through taps connected to the borehole tanks. During an emergency when there is no water supply from other sources, tanker trucks are hired to fill tanks that are also used to store rainwater. The borehole and rainwater quality appeared to be clear, but water treatment had not been performed, and the microbial quality was unknown. This shows that the Sustainable Development Goal (SGD) 6, clean water and sanitation, is still far from being met. According to national norms and standards for domestic water and sanitation services, people who do not use water treatment or purification techniques fall in the ‘no service’ category and contribute to the water backlog. Pit latrines (n = 46, 94%) and flush toilet (n = 3, 6%) were found to be the only convenient toilet systems used. The number of toilets is not sufficient according to the guidelines. There are (n = 46, 94%) of the schools in the study area using pit latrine due to insufficient or no water supply. In 89.8% of primary schools, sanitation facilities are in working condition in terms of repair and hygiene, while 10.2% are not usable in terms of hygiene, and these are mostly boy’s toilets. All schools (n = 46, 94%) that have flush toilets is because they received sponsorship from non-government stakeholders that funded them in achieving piped water systems that permit the functionality of flush toilets. For the purposes of this study, hygiene was evaluate based on the items found in toilets and handwashing practices. The hygiene aspects of toilets included tissues, cleanness, and toilet seat. For handwashing practices we looked the number of washing basins, the colour of water, and having soaps to use. In the schools that did provide handwashing facilities, some of the toilets were broken, there was no water, or there was no drainage system in place to allow them to function. However, according to the school act, the handwash basins should be inside the facilities. A total of (n = 7, 14%) of handwash basins were inside the toilets. Only (n = 2, 4%) of schools had handwashing facilities which were Jojo tanks with taps near toilets, which were outside of the toilet, with no soap provided. Additionally, (n = 40, 82%) of learners used drinking points for handwashing, which can possibly transmit microbes among them. The findings revealed that, in general, (n = 32, 64%) of school toilets were clean, while, in general, the girls’ toilets were cleaner than the boys’ toilets. In all the schools, the cleaning services were from the people who were involved in school nutrition. In conclusion, there were water sources available for access to water inside schools; however, the situation can be improved by increasing the number of water source points. Pit latrines were the main used toilets, which were in a majority of the schools, and did not have the necessary terms for hygiene such as handwashing basin, tissues, and others. The lack of the main aspect, i.e., access to water and sanitation items, results in an impact on hygiene to learners as they will fail to practice proper hygiene. However, improvement can still be made by keeping the boys’ toilets clean while increasing the number of handwashing basins inside the toilets, so that they do not use taps outside the toilets. Schools should work towards meeting the required number of handwashing basins to increase access to handwashing facilities. Full article
Show Figures

Figure 1

19 pages, 12391 KiB  
Article
Investigation into Enhancing Ultrasonic Cleaning Efficiency Through Symmetrical Transducer Configuration
by Lei Wei, Sheng Liu and Fang Dong
Symmetry 2025, 17(3), 348; https://doi.org/10.3390/sym17030348 - 25 Feb 2025
Viewed by 958
Abstract
This paper investigates the symmetrical layout effect in ultrasonic cleaning via acoustic solid coupling simulation, with emphasis on how the symmetrical arrangement of transducers influences sound pressure distribution. Two specific transducer layout methods are examined: uniform arrangement at the bottom and symmetrical arrangement [...] Read more.
This paper investigates the symmetrical layout effect in ultrasonic cleaning via acoustic solid coupling simulation, with emphasis on how the symmetrical arrangement of transducers influences sound pressure distribution. Two specific transducer layout methods are examined: uniform arrangement at the bottom and symmetrical arrangement along the sides. The findings indicate that when the tank length is an integer multiple of one-quarter of the acoustic wavelength, the symmetrical side arrangement markedly enhances the sound pressure level within the tank and optimizes the propagation and reflection of acoustic waves. In megasonic cleaning, focusing is achieved through a 7 × 7 transducer array by precisely controlling the phase, and the symmetrical arrangement ensures uniform sound pressure distribution. By integrating 1 MHz megasonic sources from both focused and unfocused configurations, the overall sound pressure distribution and peak sound pressure at the focal point are calculated using multi-physics field coupling simulations. A comparative analysis of the sound fields generated by focused and unfocused sources reveals that the focused source can produce significantly higher sound pressure in specific regions. Leveraging the enhanced cleaning capability of the focused acoustic wave in targeted areas while maintaining broad coverage with the unfocused acoustic wave significantly improves the overall cleaning efficiency. Ultrasonic cleaning finds extensive applications in industries such as electronic component manufacturing, medical device sterilization, and automotive parts cleaning. Its efficiency and environmental friendliness make it highly significant for both daily life and industrial production. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop