Microbiological and Molecular Characterization of Bacterial Communities in Domestic Water Sources in Nabuti Village, Mukono District, Central Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Plate Count
2.4. Isolation of Bacteria
2.5. Identification of Bacteria Isolates
2.6. Antibiotic Susceptibility Test
2.7. Extraction of Genomic DNA
2.8. Amplification of the 16S rRNA Gene
2.9. Sanger Sequencing of the 16S rRNA Gene Amplicons
2.10. Quinolone and Beta-Lactam Resistance Gene Detection
2.11. Analysis of the 16S rRNA Gene Sequences
2.12. Statistical Analysis
3. Results
3.1. Total Plate Count (TPC) of Bacteria from Water Samples
3.2. Total Coliform Counts (TCCs) of Bacteria from Water Samples
3.3. Bacterial Isolates Obtained from Water Samples
3.3.1. Gram Staining Results of Bacterial Isolates from Water Samples
3.3.2. Biochemical Test Results of Bacterial Isolates from Water Samples
3.4. Antibiotic Susceptibility Profiles of Bacterial Isolates
3.5. Amplification of the 16S rRNA Gene in Bacterial Isolates
3.6. Sanger Sequencing of the 16S rRNA Gene in Isolates from Water Samples
3.7. Prevalence of Quinolone and Beta-Lactam Resistant Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MTW | municipal tap water |
PCR | polymerase chain reaction |
STW | storage tank water |
TPC | total plate count |
TCC | total coliform count |
References
- Abu Hasan, H.; Muhammad, M.H.; Ismail, N.I. A Review of Biological Drinking Water Treatment Technologies for Contaminants Removal from Polluted Water Resources. J. Water Process Eng. 2020, 33, 101035. [Google Scholar] [CrossRef]
- Crouch, M.L.; Jacobs, H.E.; Speight, V.L. Defining Domestic Water Consumption Based on Personal Water Use Activities. J. Water Supply Res. Technol. Aqua. 2021, 70, 1002–1011. [Google Scholar] [CrossRef]
- Eludoyin, A.O.; Olanrewaju, O.E. Water Supply and Quality in the Sub-Saharan Africa. In Encyclopedia of the UN Sustainable Development Goals; Springer: Berlin/Heidelberg, Germany, 2022; pp. 897–913. [Google Scholar] [CrossRef]
- Manga, M.; Ngobi, T.G.; Okeny, L.; Acheng, P.; Namakula, H.; Kyaterekera, E.; Nansubuga, I.; Kibwami, N. The Effect of Household Storage Tanks/Vessels and User Practices on the Quality of Water: A Systematic Review of Literature. Environ. Syst. Res. 2021, 10, 26. [Google Scholar] [CrossRef]
- World Health Organization. Drinking Water, 13 September 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 21 March 2024).
- Irannezhad, M.; Ahmadi, B.; Liu, J.; Chen, D.; Matthews, J.H. Global Water Security: A Shining Star in the Dark Sky of Achieving the Sustainable Development Goals. Sustain. Horiz. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Gizachew, M.; Admasie, A.; Wegi, C.; Assefa, E. Bacteriological Contamination of Drinking Water Supply from Protected Water Sources to Point of Use and Water Handling Practices among Beneficiary Households of Boloso Sore Woreda, Wolaita Zone, Ethiopia. Int. J. Microbiol. 2020, 2020, 5340202. [Google Scholar] [CrossRef]
- Poulin, C.; Peletz, R.; Ercumen, A.; Pickering, A.J.; Marshall, K.; Boehm, A.B.; Khush, R.; Delaire, C. What Environmental Factors Influence the Concentration of Fecal Indicator Bacteria in Groundwater? Insights from Explanatory Modelling in Uganda and Bangladesh. Environ. Sci. Technol. 2020, 54, 13566–13578. [Google Scholar] [CrossRef]
- Selvarajan, R.; Sibanda, T.; Pandian, J.; Mearns, K. Taxonomic and Functional Distribution of Bacterial Communities in Domestic and Hospital Wastewater System: Implications for Public and Environmental Health. Antibiotics 2021, 10, 1059. [Google Scholar] [CrossRef]
- Eurien, D.; Mirembe, B.B.; Musewa, A.; Kisaakye, E.; Kwesiga, B.; Ogole, F.; Ayen, D.O.; Kadobera, D.; Bulage, L.; Ario, A.R.; et al. Cholera Outbreak Caused by Drinking Unprotected Well Water Contaminated with Faeces from an Open Storm Water Drainage: Kampala City, Uganda, January 2019. BMC Infect. Dis. 2021, 21, 1281. [Google Scholar] [CrossRef]
- Onohuean, H.; Nwodo, U.U. Demographic Dynamics of Waterborne Disease and Perceived Associated WASH Factors in Bushenyi and Sheema Districts of South-Western Uganda. Environ. Monit. Assess. 2023, 195, 864. [Google Scholar] [CrossRef]
- Behera, D.K.; Mishra, S. The Burden of Diarrhea, Etiologies, and Risk Factors in India from 1990 to 2019: Evidence from the Global Burden of Disease Study. BMC Public Health 2022, 22, 92. [Google Scholar] [CrossRef]
- Amadu, I.; Seidu, A.A.; Agyemang, K.K.; Arthur-Holmes, F.; Duku, E.; Salifu, I.; Ahinkorah, B.O. Joint Effect of Water and Sanitation Practices on Childhood Diarrhoea in Sub-Saharan Africa. PLoS ONE 2023, 18, e0283826. [Google Scholar] [CrossRef] [PubMed]
- Odetoyin, B.; Ogundipe, O.; Onanuga, A. Prevalence, Diversity of Diarrhoeagenic Escherichia coli and Associated Risk Factors in Well Water in Ile-Ife, Southwestern Nigeria. One Health Outlook 2022, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Nantege, R.; Kajoba, D.; Ddamulira, C.; Ndoboli, F.; Ndungutse, D. Prevalence and Factors Associated with Diarrheal Diseases among Children below Five Years in Selected Slum Settlements in Entebbe Municipality, Wakiso District, Uganda. BMC Pediatr. 2022, 22, 394. [Google Scholar] [CrossRef]
- Omona, S.; Malinga, G.M.; Opoke, R.; Openy, G.; Opiro, R. Prevalence of Diarrhoea and Associated Risk Factors among Children under Five Years Old in Pader District, Northern Uganda. BMC Infect. Dis. 2020, 20, 37. [Google Scholar] [CrossRef]
- Magana-Arachchi, D.N.; Wanigatunge, R.P. Ubiquitous Waterborne Pathogens. In Waterborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–42. [Google Scholar] [CrossRef]
- Ritchie, H.; Spooner, F.; Roser, M. Clean Water, 2019. Our World in Data. Available online: https://ourworldindata.org/clean-water (accessed on 17 May 2024).
- Bwire, G.; Sack, D.A.; Kagirita, A.; Obala, T.; Debes, A.K.; Ram, M.; Komakech, H.; George, C.M.; Orach, C.G. The Quality of Drinking and Domestic Water from the Surface Water Sources (Lakes, Rivers, Irrigation Canals and Ponds) and Springs in Cholera Prone Communities of Uganda: An Analysis of Vital Physicochemical Parameters. BMC Public Health 2020, 20, 1128. [Google Scholar] [CrossRef]
- Singh, N.; Patidar, S.K. Status of Water Quality in Various Ponds and Lakes in India. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 417–425. [Google Scholar] [CrossRef]
- Shoaib, M.; Muzammil, I.; Hammad, M.; Bhutta, Z.A.; Yaseen, I. A Mini-Review on Commonly Used Biochemical Tests for Identification of Bacteria. Int. J. Res. Publ. 2020, 54, 1–7. [Google Scholar] [CrossRef]
- Olutiola, P.O.; Famurewa, O.; Sonntag, H.S. An Introduction to General Microbiology (A practical Approach). Meas. Microb. Growth 2000, 6, 101–111. [Google Scholar]
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef]
- Rohwer, F.; Breitbart, M.; Jara, J.; Azam, F.; Knowlton, N. Diversity of Bacteria Associated with the Caribbean Coral Montastraea Franksi. Coral Reefs 2001, 20, 85–91. [Google Scholar] [CrossRef]
- Chen, S.; Cui, S.; McDermott, P.F.; Zhao, S.; White, D.G.; Paulsen, I.; Meng, J. Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials. Antimicrob. Agents Chemother. 2006, 51, 535–542. [Google Scholar] [CrossRef]
- Khalifa, S.M.; Abd El-Aziz, A.M.; Hassan, R.; Abdelmegeed, E.S. β-Lactam Resistance Associated with β-Lactamase Production and Porin Alteration in Clinical Isolates of E. coli and K. pneumoniae. PLoS ONE 2021, 16, e0251594. [Google Scholar] [CrossRef] [PubMed]
- Alarakol, S.P.; Nakavuma, J.L.; Odong, P.; Byarugaba, D.K. Evaluation of Microbial Quality of Water in Kawempe Division, Kampala Suburb. East Afr. Med. J. 2017, 94, 976–985. [Google Scholar]
- Sakomoto, T.; Lutaaya, M.; Abraham, E. Managing Water Quality in Intermittent Supply Systems: The Case of Mukono Town, Uganda. Water 2020, 12, 806. [Google Scholar] [CrossRef]
- Schafer, C.A.; Mihelcic, J.R. Effect of Storage Tank Material and Maintenance on Household Water Quality. J. Am. Water Works Assoc. 2012, 104, E521–E529. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 14 June 2024).
- Calero Preciado, C.; Husband, S.; Boxall, J.; del Olmo, G.; Soria-Carrasco, V.; Maeng, S.K.; Douterelo, I. Intermittent Water Supply Impacts on Distribution System Biofilms and Water Quality. Water Res. 2021, 201, 117372. [Google Scholar] [CrossRef]
- Ferrante, M.; Rogers, D.; Mugabi, J.; Casinini, F. A Laboratory Investigation on the Effects of Intermittent Water Supply and Remedial Measures. Water Resour. Res. 2024, 60, e2023WR035282. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W.C. Gram Negative Bacteria. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538213/ (accessed on 14 June 2024).
- Falkinham, J.O. Living with Legionella and Other Waterborne Pathogens. Microorganisms 2020, 8, 2026. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; López, M.; Rojo-Bezares, B.; Carvalho, J.A.; Castro, A.P.; Sáenz, Y.; Igrejas, G.; Poeta, P. Antimicrobial Resistance, Genetic Lineages, and Biofilm Formation in Pseudomonas aeruginosa Isolated from Human Infections: An Emerging One Health Concern. Antibiotics 2023, 12, 1248. [Google Scholar] [CrossRef]
- LeChevallier, M.W.; Prosser, T.; Stevens, M. Opportunistic Pathogens in Drinking Water Distribution Systems—A Review. Microorganisms 2024, 12, 916. [Google Scholar] [CrossRef]
- Shayo, G.M.; Elimbinzi, E.; Shao, G.N.; Fabian, C. Severity of Waterborne Diseases in Developing Countries and the Effectiveness of Ceramic Filters for Improving Water Quality. Bull. Natl. Res. Cent. 2023, 47, 113. [Google Scholar] [CrossRef]
- Dettori, S.; Portunato, F.; Vena, A.; Giacobbe, D.R.; Bassetti, M. Severe Infections Caused by Difficult-to-Treat Gram-Negative Bacteria. Curr. Opin. Crit. Care 2023, 29, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Lu, J.; An, W.; Zhang, Y.; Yang, M. Removal Efficacy of Opportunistic Pathogen Gene Markers in Drinking Water Supply Systems: An In Situ and Large-Scale Molecular Investigation. Environ. Sci. Pollut. Res. 2021, 28, 54153–54160. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.H.; Friedman, H.; Sands, E.M. Bacillus cereus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459121/ (accessed on 14 June 2024).
- Pindi, P.K.; Yadav, P.R.; Shanker, A.S. Identification of Opportunistic Pathogenic Bacteria in Drinking Water Samples of Different Rural Health Centers and Their Clinical Impacts on Humans. Biomed. Res. Int. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Almasaudi, S.B. Acinetobacter spp. as Nosocomial Pathogens: Epidemiology and Resistance Features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef]
- Evison, L.; Sunna, N. Microbial Regrowth in Household Water Storage Tanks. J. Am. Water Works Assoc. 2001, 93, 85–94. [Google Scholar] [CrossRef]
- Lee, D.G.; Kim, S.J.; Park, S.J. Effect of Reservoirs on Microbiological Water Qualities in a Drinking Water Distribution System. J. Microbiol. Biotechnol. 2006, 16, 1060–1067. [Google Scholar]
- Atafu, B.; Desta, A.; Assefa, F. Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of Use Sites in Addis Ababa City, Ethiopia. Microb. Ecol. 2021, 84, 73–89. [Google Scholar] [CrossRef]
- Dhengesu, D.; Lemma, H.; Asefa, L.; Tilahun, D. Antimicrobial Resistance Profile of Enterobacteriaceae and Drinking Water Quality Among Households in Bule Hora Town, South Ethiopia. Risk Manag. Healthc. Policy 2022, 15, 1569–1580. [Google Scholar] [CrossRef]
- Qin, K.; Struewing, I.; Domingo, J.; Lytle, D.; Lu, J. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments. Pathogens 2017, 6, 54. [Google Scholar] [CrossRef]
- Kelly, J.J.; Minalt, N.; Culotti, A.; Pryor, M.; Packman, A. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes. PLoS ONE 2014, 9, e98542. [Google Scholar] [CrossRef]
- Potgieter, N.; van der Loo, C.; Barnard, T.G. Co-Existence of Free-Living Amoebae and Potential Human Pathogenic Bacteria Isolated from Rural Household Water Storage Containers. Biology 2021, 10, 1228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome Diversification in Globally Distributed Novel Marine Proteobacteria Is Linked to Environmental Adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.E.; Laurini, J.A.; Mizell, K.N. Kluyvera Infections in the Pediatric Population. Pediatr. Infect. Dis. J. 2008, 27, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Porcel, M.; de la Torre, J.; Molina-Henares, M.A.; Daddaoua, A.; Llamas, M.A.; Roca, A.; Carriel, V.; Garzón, I.; Ramos, J.L.; et al. Analysis of the Pathogenic Potential of Nosocomial Pseudomonas putida Strains. Front. Microbiol. 2015, 6, 871. [Google Scholar] [CrossRef]
- Farooq, S.; Farooq, R.; Nahvi, N. Comamonas testosteroni: Is It Still a Rare Human Pathogen? Case Rep. Gastroenterol. 2017, 11, 42–47. [Google Scholar] [CrossRef]
- Liu, Y.; Smith, C.D.; Li, H.; Wang, D. Source Water Microorganism Assessment in Three Cities in China: A Comparative Study. Front. Environ. Sci. 2022, 10, 990104. [Google Scholar] [CrossRef]
- Hoffmann, H.; Stindl, S.; Ludwig, W.; Stumpf, A.; Mehlen, A.; Monget, D.; Pierard, D.; Ziesing, S.; Heesemann, J.; Roggenkamp, A.; et al. Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., Three New Subspecies of Clinical Importance. J. Clin. Microbiol. 2005, 43, 3297–3303. [Google Scholar] [CrossRef]
- Tiwari, S.; Nanda, M. Bacteremia Caused by Comamonas testosteroni, an Unusual Pathogen. J. Lab. Physicians 2019, 11, 87. [Google Scholar] [CrossRef]
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An Increasing Threat to Public Health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1. [Google Scholar] [CrossRef]
- Kollimuttathuillam, S.; Bethel, N.; Shaaban, H. A Case of Acinetobacter junii Cavitary Pneumonia with Bacteremia in a Patient with Systemic Lupus Erythematosus. Cureus 2021, 13, e19711. [Google Scholar] [CrossRef]
- Endo, G.; Kanai, S.; Nishio, H.; Hashimoto, H.; Higurashi, Y.; Nomura, Y.; Nakai, Y.; Fujishiro, M. Kluyvera georgiana Bacteremia Due to Acute Cholangitis: A Report of the First Known Case and a Literature Review. Intern. Med. 2024, 63, 2689–2693. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.M.; Deutschmann, A.; Weitzer, C.; Joainig, M.; Zechner, E.; Hogenauer, C.; Hauer, A.C. Antibiotic-Associated Hemorrhagic Colitis Caused by Cytotoxin-Producing Klebsiella oxytoca. Pediatrics 2010, 125, e960–e963. [Google Scholar] [CrossRef] [PubMed]
- Dancer, S.J. Cleaning and Decontamination of the Healthcare Environment. In Decontam. Hospitals and Healthcare; Woodhead Publishing: New Delhi, India, 2014; pp. 370–397. [Google Scholar] [CrossRef]
- Wilcox, I.M.; Sokari, T.G.; Akani, N.P.; Amadi, N. Antimicrobial Profiling of Resistant Genes in Bacteria Isolated from Drinking Water Sources in Bonny Island, Rivers State, Nigeria. J. Adv. Microbiol. 2023, 23, 146–157. [Google Scholar] [CrossRef]
- El Aila, N.A.; Al Laham, N.A.; Ayesh, B.M. Prevalence of Extended Spectrum Beta Lactamase and Molecular Detection of blaTEM, blaSHV, and blaCTX-M Genotypes among Gram Negative Bacilli Isolates from Pediatric Patient Population in Gaza Strip. BMC Infect. Dis. 2023, 23, 99. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-X.; Zhang, J.-F.; Sun, Y.-H.; Li, R.; Lin, X.; Yang, L.; Webber, M.A.; Jiang, H. Contribution of Different Mechanisms to Ciprofloxacin Resistance in Salmonella spp. Front. Microbiol. 2021, 12, 663731. [Google Scholar] [CrossRef]
- Andrzejczuk, S.; Kosikowska, U.; Chwiejczak, E.; Stępień-Pyśniak, D.; Malm, A. Prevalence of Resistance to β-Lactam Antibiotics and bla Genes among Commensal Haemophilus parainfluenzae Isolates from Respiratory Microbiota in Poland. Microorganisms 2019, 7, 427. [Google Scholar] [CrossRef]
- Wamyil, J.F.; Nkemakonam, O.C.; Adewale, O.S.; Nabona, J.; Ntulume, I.; Wamyil, F.B. Microbiological Quality of Water Samples Obtained from Water Sources in Ishaka, Uganda. SAGE Open Med. 2023, 11, 20503121231194239. [Google Scholar] [CrossRef]
- Abaasa, C.N.; Ayesiga, S.; Lejju, J.B.; Andama, M.; Tamwesigire, I.K.; Bazira, J.; Byarugaba, F. Assessing the Quality of Drinking Water from Selected Water Sources in Mbarara City, South-Western Uganda. PLoS ONE 2024, 19, e0297794. [Google Scholar] [CrossRef]
- Lin, W.; Yu, Z.; Zhang, H.; Thompson, I.P. Diversity and Dynamics of Microbial Communities at Each Step of Treatment Plant for Potable Water Generation. Water Res. 2014, 52, 218–230. [Google Scholar] [CrossRef]
- Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Ubiquitous and Persistent Proteobacteria and Other Gram-Negative Bacteria in Drinking Water. Sci. Total Environ. 2017, 586, 1141–1149. [Google Scholar] [CrossRef]
- Jiang, R.; Li, Z.; Li, Q.; Liu, Y.; Zhu, Y.; Chen, Z.; Liu, P.; Jia, S.; Ren, H.; Zhang, X.-X. Metagenomic Insights into the Variation of Bacterial Communities and Potential Pathogenic Bacteria in Drinking Water Treatment and Distribution Systems. Natl. Sci. Open 2022, 1, 20220015. [Google Scholar] [CrossRef]
- Saleem, F.; Mustafa, A.; Kori, J.A.; Hussain, M.S.; Azim, M.K. Metagenomic Characterization of Bacterial Communities in Drinking Water Supply System of a Mega City. Microb. Ecol. 2018, 76, 899–910. [Google Scholar] [CrossRef] [PubMed]
Antibiotic Type | Resistance Gene | Primer Sequence (5′-3′) | Reference |
---|---|---|---|
Quinolones | QnrA | ATTTCTCACGCCAGGATTTG | [25] |
GATCGGCAAAGGTTAGGTCA | |||
GyrA | ACGTATTGGGCAATGACTGG | ||
GGAGTCGCCGTCAATAGAAC | |||
GyrB | CAAACTGGCGACTGTCAGG | ||
AGCCCAGCGCGGTGATCAGC | |||
ParC | CGTCTATGCGATGTCAGAGC | ||
TAACAGCAGCTCGGCGTATT | |||
ParE | GTCAATGTGCGGCATTTGTT | ||
ATCCCCTTCCACAAGGAACA | |||
Beta-lactams | blaTEM | ATCAGCAATAAACCAGC | [26] |
CCCCGAAGAACGTTTTC | |||
blaSHV | AGGATTGACTGCCTTTTTG | ||
ATTTGCTGATTTCGCTCG |
Water Supplies | Number of Samples (N) | Mean | Mdn. | Min. | Max. | SD. | 95% CI |
---|---|---|---|---|---|---|---|
Storage Tanks | 30 | 54.6 | 15.5 | 1 | 446 | 97.439 | 18.216, 90.984 |
Municipal water Taps | 20 | 10.35 | 3 | 0 | 60 | 16.168 | 2.783, 17.917 |
Water Supplies | Number of Samples (N) | Mean | Mdn. | Min. | Max. | SD. | 95% CI |
---|---|---|---|---|---|---|---|
Storage Tanks | 30 | 5.5 | 0 | 0 | 32 | 9.439 | 1.976, 9.024 |
Municipal water taps | 20 | 5.75 | 0 | 0 | 70 | 15.824 | −1.656, 13.156 |
Isolate Code | Organism | Family | NCBI % Similarity | Gram Stain and Cell Shape |
---|---|---|---|---|
HIA | Klebsiella oxytoca | Enterobacteriaceae | 100% | Gram-negative (short rods) |
H16A | Kluyvera georgiana | Enterobacteriaceae | 99% | Gram-negative (short rods) |
H1B | Klebsiella oxytoca | Enterobacteriaceae | 100% | Gram-negative (short rods) |
T6 | Comamonas testosteroni | Comamonadaceae | 98.89% | Gram-negative (Short rods) |
T3 | Pseudomonas sp. | Pseudomonadaceae | 99.82% | Gram-negative (Short rods) |
H10H | Klebsiella pneumoniae | Enterobacteriaceae | 97.69% | Gram-negative (short rods) |
H3H2 | Bacillus altitudinis | Bacillaceae | 99.67% | Gram-positive (Short rods) |
H42A | Acinetobacter junii | Moraxellaceae | 98.50% | Gram-negative (coccobacilli) |
T7A | Kluyvera georgiana | Enterobacteriaceae | 99.21% | Gram-negative (short rods) |
H52A | Acinetobacter pittii | Moraxellaceae | 98.89% | Gram-negative (coccobacilli) |
H59 | Aquitalea magnusonii | Chromobacteriaceae | 99.51% | Gram-negative (short rods) |
H40 | Bacillus cereus | Bacillaceae | 99.84% | Gram-positive (Long rods) |
H3I1 | Bacillus altitudinis | Bacillaceae | 98.84% | Gram-positive (short rods) |
H34 | Bacillus subtilis | Bacillaceae | 99.51% | Gram-positive (Short rods) |
H46 | Stenotrophomonas sp. | Xanthomonadaceae | 98.06% | Gram-negative (Short rods) |
T12A | Comamonas testosteroni | Comamonadaceae | 98.53% | Gram-negative (short rods) |
T9A | Pseudomonas sp. | Pseudomonadaceae | 100% | Gram-negative (Long rods) |
T12B | Comamonas testosteroni | Comamonadaceae | 98.89% | Gram-negative (short rods) |
H13B | Pseudomonas putida | Pseudomonadaceae | 98.70% | Gram-negative (Short rods) |
H9A | Acinetobacter parvus | Moraxellaceae | 99.00% | Gram-negative (coccobacilli) |
H30 | Bacillus cereus | Bacillaceae | 99.84% | Gram-positive (Long rods) |
H13A | Comamonas testosteroni | Comamonadaceae | 99.54% | Gram-negative (Short rods) |
H3B | Bacillus altitudinis | Bacillaceae | 99.68% | Gram-positive (Long rods) |
H19 | Pseudomonas sp. | Pseudomonadaceae | 99.17% | Gram-negative (short rods) |
T1 | Pseudomonas sp. | Pseudomonadaceae | 99.49% | Gram-negative (Long rods) |
H10-7 | Enterobacter hormaechei | Enterobacteriaceae | 99.66% | Gram-negative (short rods) |
H49 | Bacillus cereus | Bacillaceae | 100% | Gram-positive (Long rods) |
H8 | Bacillus cereus | Bacillaceae | 99.52% | Gram-positive (short rods) |
Isolate Code | Bacterium | Quinolone Resistance Genes Present | Beta-Lactam Resistance Genes Present |
---|---|---|---|
T6 | Comamonas testosterone | ParC | blaSHV |
H14A | Bacillus cereus | parC, parE | blaSHV |
T12A | Comamonas testosterone | ParC | blaSHV |
H5B | Unclassified isolate | parC, parE, gyrA, gyrB | blaSHV |
H46 | Stenotrophomonas sp. | parC, gyrB | blaSHV |
T7F | Unclassified isolate | ParC | blaSHV |
H49 | Bacillus cereus | GyrB | |
H13A | Comamonas testosterone | ParC | blaSHV |
H2B | Unclassified isolate | ParC | blaSHV |
H13B | Pseudomonas putida | GyrB | |
H1A | Klebsiella oxytoca | gyrB, gyrA | |
T7A | Kluyvera georgiana | gyrB, parC, gyrA | |
H19A | Unclassified isolate | GyrB | |
T14A | Unclassified isolate | gyrB, parE | blaSHV |
H30 | Bacillus cereus | GyrB | |
H42A | Acinetobacter junii | GyrB | |
T16A | Unclassified isolate | gyrB, gyrA | |
H5A | Unclassified isolate | gyrB, parE | |
H59 | Aquitalea magnusonii | parC, qnrA | blaSHV |
H40 | Bacillus cereus | GyrB | |
H1B | Klebsiella oxytoca | gyrB, gyrA | |
H10-7 | Enterobacter hormaechei | gyrB, gyrA | blaTEM |
T13 | Unclassified isolate | gyrB, parC | |
H16A | Kluyvera georgiana | gyrB, gyrA | |
H10H | Klebsiella pneumoniae | gyrB, gyrA | |
H9A | Acinetobacter modestus | ParC | |
T3 | Pseudomonas sp. | blaTEM | |
T9A | Pseudomonas sp. | blaSHV, blaTEM | |
H19 | Pseudomonas sp. | blaTEM | |
T1 | Pseudomonas sp. | blaTEM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najjembe, C.A.; Aladejana, O.M.; Uwanibe, J.N.; Happi, C.T.; Folarin, O.A. Microbiological and Molecular Characterization of Bacterial Communities in Domestic Water Sources in Nabuti Village, Mukono District, Central Uganda. Microbiol. Res. 2025, 16, 99. https://doi.org/10.3390/microbiolres16050099
Najjembe CA, Aladejana OM, Uwanibe JN, Happi CT, Folarin OA. Microbiological and Molecular Characterization of Bacterial Communities in Domestic Water Sources in Nabuti Village, Mukono District, Central Uganda. Microbiology Research. 2025; 16(5):99. https://doi.org/10.3390/microbiolres16050099
Chicago/Turabian StyleNajjembe, Catherine A., Oluwatoyin M. Aladejana, Jessica N. Uwanibe, Christian T. Happi, and Onikepe A. Folarin. 2025. "Microbiological and Molecular Characterization of Bacterial Communities in Domestic Water Sources in Nabuti Village, Mukono District, Central Uganda" Microbiology Research 16, no. 5: 99. https://doi.org/10.3390/microbiolres16050099
APA StyleNajjembe, C. A., Aladejana, O. M., Uwanibe, J. N., Happi, C. T., & Folarin, O. A. (2025). Microbiological and Molecular Characterization of Bacterial Communities in Domestic Water Sources in Nabuti Village, Mukono District, Central Uganda. Microbiology Research, 16(5), 99. https://doi.org/10.3390/microbiolres16050099