Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (43,232)

Search Parameters:
Keywords = systemic disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1564 KiB  
Review
COPD and Comorbid Mental Health: Addressing Anxiety, and Depression, and Their Clinical Management
by Rayan A. Siraj
Medicina 2025, 61(8), 1426; https://doi.org/10.3390/medicina61081426 (registering DOI) - 7 Aug 2025
Abstract
Anxiety and depression are common comorbidities in patients with chronic obstructive pulmonary disease (COPD), which can contribute to increased morbidity, reduced quality of life, and worse clinical outcomes. Nevertheless, these psychological conditions remain largely overlooked. This narrative review includes studies published between 1983 [...] Read more.
Anxiety and depression are common comorbidities in patients with chronic obstructive pulmonary disease (COPD), which can contribute to increased morbidity, reduced quality of life, and worse clinical outcomes. Nevertheless, these psychological conditions remain largely overlooked. This narrative review includes studies published between 1983 and 2025 to synthesise the current evidence on the risk factors, clinical impacts, and therapeutic strategies for these comorbidities. While the exact mechanisms leading to their increased prevalence are not fully understood, growing evidence implicates a combination of biological (e.g., systemic inflammation), social (e.g., isolation and stigma), and behavioural (e.g., smoking and inactivity) factors. Despite current guidelines recommending the identification and management of these comorbidities in COPD, they are not currently included in COPD assessments. Undetected and unmanaged anxiety and depression have serious consequences, including poor self-management, non-adherence to medications, increased risk of exacerbation and hospitalisations, and even mortality; thus, there is a need to incorporate screening as part of COPD assessments. There is robust evidence showing that pulmonary rehabilitation, a core non-pharmacological intervention, can improve mood symptoms, enhance functional capacity, and foster psychosocial resilience. Psychological therapies such as cognitive behavioural therapy (CBT), mindfulness-based approaches, and supportive counselling have also demonstrated value in reducing emotional distress and improving coping mechanisms. Pharmacological therapies, particularly selective serotonin reuptake inhibitors (SSRIs) and serotonin–norepinephrine reuptake inhibitors (SNRIs), are commonly prescribed in moderate to severe cases or when non-pharmacological approaches prove inadequate. However, the evidence for their efficacy in COPD populations is mixed, with concerns about adverse respiratory outcomes and high discontinuation rates due to side effects. There are also barriers to optimal care, including underdiagnosis, a lack of screening protocols, limited provider training, stigma, and fragmented multidisciplinary coordination. A multidisciplinary, biopsychosocial approach is essential to ensure early identification, integrated care, and improved outcomes for patients with COPD. Full article
(This article belongs to the Special Issue Latest Advances in Asthma and COPD)
Show Figures

Figure 1

15 pages, 3221 KiB  
Article
Development of a Deer Tick Virus Infection Model in C3H/HeJ Mice to Mimic Human Clinical Outcomes
by Dakota N. Paine, Erin S. Reynolds, Charles E. Hart, Jessica Crooker and Saravanan Thangamani
Viruses 2025, 17(8), 1092; https://doi.org/10.3390/v17081092 (registering DOI) - 7 Aug 2025
Abstract
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human [...] Read more.
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human infection with DTV can result in acute febrile illness followed by central nervous system complications, such as encephalitis and meningoencephalitis. Currently, there are mouse models established for investigating the pathogenesis and clinical outcomes of DTV that mimic human infections, but the strains of mice utilized are refractory to infection with B. burgdorferi s.l. Here, we describe the pathogenesis and clinical outcomes of DTV infection in C3H/HeJ mice. Neurological clinical signs, mortality, and weight loss were observed in all DTV-infected mice during the investigation. Infected animals demonstrated consistent viral infection in their organs. Additionally, neuropathology of brain sections indicated the presence of meningoencephalitis throughout the brain. This data, along with the clinical outcomes for the mice, indicates successful infection and showcases the neuroinvasive nature of the virus. This is the first study to identify C3H/HeJ mice as an appropriate model for DTV infection. As C3H/HeJ mice are already an established model for B. burgdorferi s.l. infection, this model could serve as an ideal system for investigating disease progression and pathogenesis of co-infections. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

26 pages, 1432 KiB  
Article
Multi-Model Identification of Rice Leaf Diseases Based on CEL-DL-Bagging
by Zhenghua Zhang, Rufeng Wang and Siqi Huang
AgriEngineering 2025, 7(8), 255; https://doi.org/10.3390/agriengineering7080255 (registering DOI) - 7 Aug 2025
Abstract
This study proposes CEL-DL-Bagging (Cross-Entropy Loss-optimized Deep Learning Bagging), a multi-model fusion framework that integrates cross-entropy loss-weighted voting with Bootstrap Aggregating (Bagging). First, we develop a lightweight recognition architecture by embedding a salient position attention (SPA) mechanism into four base networks (YOLOv5s-cls, EfficientNet-B0, [...] Read more.
This study proposes CEL-DL-Bagging (Cross-Entropy Loss-optimized Deep Learning Bagging), a multi-model fusion framework that integrates cross-entropy loss-weighted voting with Bootstrap Aggregating (Bagging). First, we develop a lightweight recognition architecture by embedding a salient position attention (SPA) mechanism into four base networks (YOLOv5s-cls, EfficientNet-B0, MobileNetV3, and ShuffleNetV2), significantly enhancing discriminative feature extraction for disease patterns. Our experiments show that these SPA-enhanced models achieve consistent accuracy gains of 0.8–1.7 percentage points, peaking at 97.86%. Building on this, we introduce DB-CEWSV—an ensemble framework combining Deep Bootstrap Aggregating (DB) with adaptive Cross-Entropy Weighted Soft Voting (CEWSV). The system dynamically optimizes model weights based on their cross-entropy performance, using SPA-augmented networks as base learners. The final integrated model attains 98.33% accuracy, outperforming the strongest individual base learner by 0.48 percentage points. Compared with single models, the ensemble learning algorithm proposed in this study led to better generalization and robustness of the ensemble learning model and better identification of rice diseases in the natural background. It provides a technical reference for applying rice disease identification in practical engineering. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
17 pages, 4768 KiB  
Article
New Functional Food for the Treatment of Gastric Ulcer Based on Bioadhesive Microparticles Containing Sage Extract: Anti-Ulcerogenic, Anti-Helicobacter pylori, and H+/K+-ATPase-Inhibiting Activity Enhancement
by Yacine Nait Bachir, Ryma Nait Bachir, Meriem Medjkane, Nouara Boudjema and Roberta Foligni
Foods 2025, 14(15), 2757; https://doi.org/10.3390/foods14152757 (registering DOI) - 7 Aug 2025
Abstract
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was [...] Read more.
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was proposed to increase the therapeutic effect of this plant. Salvia officinalis ethanolic extract was prepared and analyzed by HPLC/UV-DAD and encapsulated in a matrix based on gelatin and pectin using an emulsion–coacervation process. The prepared microcapsules were analyzed by laser particle size, optical microscopy, in vitro dissolution kinetics, and ex vivo bioadhesion. In order to determine the action mechanism of Salvia officinalis extract, in the treatment of gastric ulcer, the in vivo anti-ulcerogenic activity in rats, using the ulcer model induced by ethanol; the in vivo anti-Helicobacter pylori activity; and in vitro inhibitory activity of H+/K+-ATPase were carried out. These three biological activities were evaluated for ethanolic extract and microcapsules to determine the effect of formulation on biological activities. Ethanolic extract of Salvia officinalis was mainly composed of polyphenols (chlorogenic acid 7.43%, rutin 21.74%, rosmarinic acid 5.88%, and quercitrin 14.39%). Microencapsulation of this extract allowed us to obtain microcapsules of 104.2 ± 7.5 µm in diameter, an encapsulation rate of 96.57 ± 3.05%, and adequate bioadhesion. The kinetics of in vitro dissolution of the extract increase significantly after its microencapsulation. Percentages of ulcer inhibition for 100 mg/kg of extract increase from 71.71 ± 2.43% to 89.67 ± 2.54% after microencapsulation. In vitro H+/K+-ATPase-inhibiting activity resulted in an IC50 of 86.08 ± 8.69 µM/h/mg protein for free extract and 57.43 ± 5.78 µM/h/mg protein for encapsulated extract. Anti-Helicobacter pylori activity showed a similar Minimum Inhibitory Concentration (MIC) of 50 µg/mL for the extract and microcapsules. Salvia officinalis ethanolic extract has a significant efficacy for the treatment of gastric ulcer; its mechanism of action is based on its gastroprotective effect, anti-Helicobacter pylori, and H+/K+-ATPase inhibitor. Moreover, the microencapsulation of this extract increases its gastroprotective and H+/K+-ATPase-inhibiting activities significantly. Full article
Show Figures

Figure 1

12 pages, 760 KiB  
Article
Prediction of Congenital Portosystemic Shunt in Neonatal Hypergalactosemia Using Gal-1-P/Gal Ratio, Bile Acid, and Ammonia
by Sayaka Suzuki-Ajihara, Ikuma Musha, Masato Arao, Koki Mori, Shunsuke Fujibayashi, Ihiro Ryo, Tomotaka Kono, Asako Tajima, Hiroshi Mochizuki, Atsuko Imai-Okazaki, Ryuichiro Araki, Chikahiko Numakura and Akira Ohtake
Int. J. Neonatal Screen. 2025, 11(3), 61; https://doi.org/10.3390/ijns11030061 (registering DOI) - 7 Aug 2025
Abstract
Congenital portosystemic shunts (CPSSs) are often associated with life-threatening systemic complications, which may be detected by identifying hypergalactosemia in newborn screening (NBS). However, diagnosing CPSS at an early stage is not easy. The purpose of this study was to predict CPSS early using [...] Read more.
Congenital portosystemic shunts (CPSSs) are often associated with life-threatening systemic complications, which may be detected by identifying hypergalactosemia in newborn screening (NBS). However, diagnosing CPSS at an early stage is not easy. The purpose of this study was to predict CPSS early using screening values and general blood tests. The medical records of 153 patients with hypergalactosemia who underwent NBS in Saitama Prefecture between 1 December 1997 and 31 October 2023 were retrospectively analyzed. We provided the final diagnosis of the analyzed patients. Of the 153 patients, 44 (29%) were in the CPSS group and 83 (54%) were in the transient galactosemia group. Using the initial screening items and the six blood test items, we attempted to extract a CPSS group from the transient galactosemia group. Finally, a model for CPSS prediction was established. From multiple logistic regression analysis, filtered blood galactose-1 phosphate/galactose, serum total bile acid, and ammonia were adopted as explanatory variables for the prediction model. If the cut-off value for predicted disease probability value (P) was >0.357, CPSS was identified with 86.4% sensitivity (95%CI 72.6–94.8%) and 81.9% specificity (95%CI 72.0–89.5%). This predictive model might allow prediction of CPSS and early intervention. Full article
(This article belongs to the Collection Newborn Screening in Japan)
12 pages, 707 KiB  
Article
Characteristics of Varicella Breakthrough Cases in Jinhua City, 2016–2024
by Zhi-ping Du, Zhi-ping Long, Meng-an Chen, Wei Sheng, Yao He, Guang-ming Zhang, Xiao-hong Wu and Zhi-feng Pang
Vaccines 2025, 13(8), 842; https://doi.org/10.3390/vaccines13080842 (registering DOI) - 7 Aug 2025
Abstract
Background: Varicella remains a prevalent vaccine-preventable disease, but breakthrough infections are increasingly reported. However, long-term, population-based studies investigating the temporal and demographic characteristics of breakthrough varicella remain limited. Methods: This retrospective study analyzed surveillance data from Jinhua City, China, from 2016 [...] Read more.
Background: Varicella remains a prevalent vaccine-preventable disease, but breakthrough infections are increasingly reported. However, long-term, population-based studies investigating the temporal and demographic characteristics of breakthrough varicella remain limited. Methods: This retrospective study analyzed surveillance data from Jinhua City, China, from 2016 to 2024. Varicella case records were obtained from the China Information System for Disease Control and Prevention (CISDCP), while vaccination data were retrieved from the Zhejiang Provincial Immunization Program Information System (ISIS). Breakthrough cases were defined as infections occurring more than 42 days after administration of the varicella vaccine. Differences in breakthrough interval were analyzed across subgroups defined by dose, sex, age, population category, and vaccination type. A bivariate cubic regression model was used to assess the combined effect of initial vaccination age and dose interval on the breakthrough interval. Results: Among 28,778 reported varicella cases, 7373 (25.62%) were classified as breakthrough infections, with a significant upward trend over the 9-year period (p < 0.001). Most cases occurred in school-aged children, especially those aged 6–15 years. One-dose recipients consistently showed shorter breakthrough intervals than two-dose recipients (M = 62.10 vs. 120.10 months, p < 0.001). Breakthrough intervals also differed significantly by sex, age group, population category, and vaccination type (p < 0.05). Regression analysis revealed a negative correlation between the initial vaccination age, the dose interval, and the breakthrough interval (R2 = 0.964, p < 0.001), with earlier and closely spaced vaccinations associated with longer protection. Conclusions: The present study demonstrates that a two-dose varicella vaccination schedule, when initiated at an earlier age and administered with a shorter interval between doses, provides more robust and longer-lasting protection. These results offer strong support for incorporating varicella vaccination into China’s National Immunization Program to enhance vaccine coverage and reduce the public health burden associated with breakthrough infections. Full article
(This article belongs to the Section Epidemiology and Vaccination)
23 pages, 5370 KiB  
Article
Evidence of Chronic Tusk Trauma and Compensatory Scoliosis in Mammuthus meridionalis from Madonna della Strada (Scoppito, L’Aquila, Italy)
by Leonardo Della Salda, Amedeo Cuomo, Franco Antonucci, Silvano Agostini and Maria Adelaide Rossi
Quaternary 2025, 8(3), 46; https://doi.org/10.3390/quat8030046 (registering DOI) - 7 Aug 2025
Abstract
A remarkably well-preserved skeleton of a male Mammuthus meridionalis, approximately 60 years old, from the Early Pleistocene that is housed at the Castle of L’Aquila (Italy) exhibits a fractured left tusk with severe bone erosion of the alveolus and premaxillary bone, as [...] Read more.
A remarkably well-preserved skeleton of a male Mammuthus meridionalis, approximately 60 years old, from the Early Pleistocene that is housed at the Castle of L’Aquila (Italy) exhibits a fractured left tusk with severe bone erosion of the alveolus and premaxillary bone, as well as marked spinal deformities. The cranial region underwent ultrasonographic, radiological, and histological examinations, while morphological and biomechanical analyses were conducted on the vertebral column. Microscopic analysis revealed intra vitam lesions, including woven bone fibers indicative of early bone remodeling and lamellar bone with expanded and remodeled Haversian systems. These findings are consistent with osteomyelitis and bone sequestration, likely resulting from chronic pulpitis following the tusk fracture, possibly due to an accident or interspecific combat. The vertebral column shows cervical scoliosis, compensatory curves, fusion between the first cervical vertebrae, and asymmetric articular facets, suggesting postural adaptations. Evidence of altered molar wear and masticatory function also support long-term survival post-trauma. Additionally, lesions compatible with spondyloarthropathy, an inflammatory spinal condition not previously documented in Mammuthus meridionalis, were identified. These findings provide new insights into the pathology and adaptive responses of extinct proboscideans, demonstrating the critical role of (paleo)histological methods in reconstructing trauma, disease, and aspects of life history in fossil vertebrates. Full article
Show Figures

Figure 1

20 pages, 2937 KiB  
Review
Review of Cardiovascular Mock Circulatory Loop Designs and Applications
by Victor K. Tsui and Daniel Ewert
Bioengineering 2025, 12(8), 851; https://doi.org/10.3390/bioengineering12080851 (registering DOI) - 7 Aug 2025
Abstract
Cardiovascular diseases remain a leading cause of mortality in the United States, driving the need for advanced cardiovascular devices and pharmaceuticals. Mock Circulatory Loops (MCLs) have emerged as essential tools for in vitro testing, replicating pulsatile pressure and flow to simulate various physiological [...] Read more.
Cardiovascular diseases remain a leading cause of mortality in the United States, driving the need for advanced cardiovascular devices and pharmaceuticals. Mock Circulatory Loops (MCLs) have emerged as essential tools for in vitro testing, replicating pulsatile pressure and flow to simulate various physiological and pathological conditions. While many studies focus on custom MCL designs tailored to specific applications, few have systematically reviewed their use in device testing, and none have assessed their broader utility across diverse biomedical domains. This comprehensive review categorizes MCL designs into three types: mechanical, computational, and hybrid. Applications are classified into four major areas: Cardiovascular Devices Testing, Clinical Training and Education, Hemodynamics and Blood Flow Studies, and Disease Modeling. Most existing MCLs are complex, highly specialized, and difficult to reproduce, highlighting the need for simplified, standardized, and programmable hybrid systems. Improved validation and waveform fidelity—particularly through incorporation of the dicrotic notch and other waveform parameters—are critical for advancing MCL reliability. Furthermore, integration of machine learning and artificial intelligence holds significant promise for enhancing waveform analysis, diagnostics, predictive modeling, and personalized care. In conclusion, the development of MCLs should prioritize standardization, simplification, and broader accessibility to expand their impact across biomedical research and clinical translation. Full article
(This article belongs to the Special Issue Cardiovascular Models and Biomechanics)
20 pages, 1558 KiB  
Review
Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies
by Jae-Yeon Park and Hye-Mi Lee
Life 2025, 15(8), 1260; https://doi.org/10.3390/life15081260 (registering DOI) - 7 Aug 2025
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification and maintenance, making JEV fundamentally a veterinary infectious disease with zoonotic potential. This review summarizes the current understanding of JEV transmission dynamics from a veterinary and ecological perspective, emphasizing the roles of amplifying hosts and animal surveillance in controlling viral circulation. Recent genotype shifts and viral evolution have raised concerns regarding vaccine effectiveness and regional emergence. National surveillance systems and animal-based monitoring strategies are examined for their predictive value in detecting outbreaks early. Veterinary and human vaccination strategies are also reviewed, highlighting the importance of integrated One Health approaches. Advances in modeling and climate-responsive surveillance further underscore the dynamic and evolving landscape of JEV transmission. By managing the infection in animal reservoirs, veterinary interventions form the foundation of sustainable zoonotic disease control. Full article
Show Figures

Figure 1

12 pages, 363 KiB  
Article
Changes in Retinal Nerve Fiber and Ganglion Cell Layers After Chemical Injury: A Prospective Study
by Justina Skruodyte, Justina Olechnovic and Pranas Serpytis
J. Clin. Med. 2025, 14(15), 5601; https://doi.org/10.3390/jcm14155601 (registering DOI) - 7 Aug 2025
Abstract
Background: Chemical eye burns are a serious ophthalmic emergency that can lead to permanent vision loss in severe cases. This study aims to evaluate structural changes in the posterior segment of the eye in individuals who have experienced chemical burns. Methods: The study [...] Read more.
Background: Chemical eye burns are a serious ophthalmic emergency that can lead to permanent vision loss in severe cases. This study aims to evaluate structural changes in the posterior segment of the eye in individuals who have experienced chemical burns. Methods: The study included 64 eyes from 54 patients with chemical burns (chemical burn group) and 87 healthy eyes from 87 subjects (control group), matched by age and sex. Patients had confirmed burns with limbal ischemia, no glaucoma, normal intraocular pressure, and no major ocular or systemic diseases. Burned eyes were examined during the acute phase and again at 3 months, with some followed up at 6 months if significant retinal asymmetry was detected. Retinal nerve fiber layer (RNFL) thickness was assessed in four quadrants, and ganglion cell complex (GCL++) thickness was analyzed using automated segmentation of optical coherence tomography (OCT) maps. Results: This study compared measurements between the burn group, the control group, and timepoints. OCT analysis revealed no significant difference in total RNFL thickness between burn patients and controls (mean difference: −1.14 µm, 95% CI: −3.92 to 1.64). Similarly, GCL++ thickness did not differ significantly between groups (mean difference: −0.97 µm, 95% CI: −3.31 to 1.37). At 6-month follow-up, a non-significant decline in both RNFL and GCL++ thicknesses was observed. Logistic regression identified higher Dua grade as an independent predictor of RNFL thinning (OR: 4.816, 95% CI: 1.103–21.030; p = 0.037). Patients with severe ocular chemical burns (Dua grade ≥ 3) demonstrated reduced RNFL thickness in all quadrants compared to healthy controls. The most pronounced reductions were observed in the nasal and superior quadrants (p = 0.007 and p = 0.069, respectively); however, after applying Bonferroni correction for multiple comparisons, only the difference in the nasal quadrant remained statistically significant (adjusted p = 0.035). Conclusions: Although overall RNFL and GCL++ thicknesses did not differ significantly between burn patients and healthy controls, patients with severe ocular chemical burns (Dua grade ≥ 3) showed a significant reduction in RNFL thickness, in the nasal quadrant. Higher Dua grade was identified as an independent predictor of RNFL thinning. These findings suggest a potential association between burn severity and posterior segment changes, highlighting the need for further longitudinal studies with larger cohorts. Full article
(This article belongs to the Section Ophthalmology)
27 pages, 830 KiB  
Review
Influence of Exercise on Oxygen Consumption, Pulmonary Ventilation, and Blood Gas Analyses in Individuals with Chronic Diseases
by Mallikarjuna Korivi, Mohan Krishna Ghanta, Poojith Nuthalapati, Nagabhishek Sirpu Natesh, Jingwei Tang and LVKS Bhaskar
Life 2025, 15(8), 1255; https://doi.org/10.3390/life15081255 (registering DOI) - 7 Aug 2025
Abstract
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of [...] Read more.
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of vigorous-intensity physical activity, alongside muscle-strengthening and balance-training exercises at least twice a week. However, nearly one-third of the adult population (31%) is physically inactive, which increases the risk of developing obesity, type 2 diabetes, cardiovascular diseases, hypertension, and psychological issues. Physical activity in the form of aerobic exercise, resistance training, or a combination of both is effective in preventing and managing these metabolic diseases. In this review, we explored the effects of exercise training, especially on respiratory and pulmonary factors, including oxygen consumption, pulmonary ventilation, and blood gas analyses among adults. During exercise, oxygen consumption can increase up to 15-fold (from a resting rate of ~250 mL/min) to meet heightened metabolic demands, enhancing tidal volume and pulmonary efficiency. During exercise, the increased energy demand of skeletal muscle leads to increases in tidal volume and pulmonary function, while blood gases play a key role in maintaining the pH of the blood. In this review, we explored the influence of age, body composition (BMI and obesity), lifestyle factors (smoking and alcohol use), and comorbidities (diabetes, hypertension, neurodegenerative disorders) in the modulation of these physiological responses. We underscored exercise as a potent non-pharmacological intervention for improving cardiopulmonary health and mitigating the progression of metabolic diseases in aging populations. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

27 pages, 1680 KiB  
Review
Microtubule-Targeting Agents: Advances in Tubulin Binding and Small Molecule Therapy for Gliomas and Neurodegenerative Diseases
by Maya Ezzo and Sandrine Etienne-Manneville
Int. J. Mol. Sci. 2025, 26(15), 7652; https://doi.org/10.3390/ijms26157652 (registering DOI) - 7 Aug 2025
Abstract
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central [...] Read more.
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central nervous system (CNS) applications, including brain malignancies such as gliomas and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Microtubule-stabilizing agents, such as taxanes and epothilones, promote microtubule assembly and have shown efficacy in both tumour suppression and neuronal repair, though their CNS use is hindered by blood–brain barrier (BBB) permeability and neurotoxicity. Destabilizing agents, including colchicine-site and vinca domain binders, offer potent anticancer effects but pose greater risks for neuronal toxicity. This review highlights the mapping of nine distinct tubulin binding pockets—including classical (taxane, vinca, colchicine) and emerging (tumabulin, pironetin) sites—that offer new pharmacological entry points. We summarize the recent advances in structural biology and drug design, enabling MTAs to move beyond anti-mitotic roles, unlocking applications in both cancer and neurodegeneration for next-generation MTAs with enhanced specificity and BBB penetration. We further discuss the therapeutic potential of combination strategies, including MTAs with radiation, histone deacetylase (HDAC) inhibitors, or antibody–drug conjugates, that show synergistic effects in glioblastoma models. Furthermore, innovative delivery systems like nanoparticles and liposomes are enhancing CNS drug delivery. Overall, MTAs continue to evolve as multifunctional tools with expanding applications across oncology and neurology, with future therapies focusing on optimizing efficacy, reducing toxicity, and overcoming therapeutic resistance in brain-related diseases. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

36 pages, 928 KiB  
Review
Reprogramming Atherosclerosis: Precision Drug Delivery, Nanomedicine, and Immune-Targeted Therapies for Cardiovascular Risk Reduction
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Konstantinos Grigoriou, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Pharmaceutics 2025, 17(8), 1028; https://doi.org/10.3390/pharmaceutics17081028 (registering DOI) - 7 Aug 2025
Abstract
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery [...] Read more.
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery represents a transformative strategy, offering the potential to modulate key pathogenic processes within atherosclerotic plaques while minimizing systemic exposure and off-target effects. Recent innovations span a diverse array of platforms, including nanoparticles, liposomes, exosomes, polymeric carriers, and metal–organic frameworks (MOFs), engineered to engage distinct pathological features such as inflamed endothelium, dysfunctional macrophages, oxidative microenvironments, and aberrant lipid metabolism. Ligand-based, biomimetic, and stimuli-responsive delivery systems further enhance spatial and temporal precision. In parallel, advances in in-silico modeling and imaging-guided approaches are accelerating the rational design of multifunctional nanotherapeutics with theranostic capabilities. Beyond targeting lipids and inflammation, emerging strategies seek to modulate immune checkpoints, restore endothelial homeostasis, and reprogram plaque-resident macrophages. This review provides an integrated overview of the mechanistic underpinnings of atherogenesis and highlights state-of-the-art targeted delivery systems under preclinical and clinical investigation. By synthesizing recent advances, we aim to elucidate how precision-guided drug delivery is reshaping the therapeutic landscape of atherosclerosis and to chart future directions toward clinical translation and personalized vascular medicine. Full article
Show Figures

Figure 1

26 pages, 1638 KiB  
Review
In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology
by Baiken B. Baimakhanova, Amankeldi K. Sadanov, Irina A. Ratnikova, Gul B. Baimakhanova, Saltanat E. Orasymbet, Aigul A. Amitova, Gulzat S. Aitkaliyeva and Ardak B. Kakimova
Fermentation 2025, 11(8), 458; https://doi.org/10.3390/fermentation11080458 - 7 Aug 2025
Abstract
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest [...] Read more.
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest in the rational design of next-generation probiotics. This review highlights progress in in silico approaches for enhancing the functionality of probiotic strains. Particular attention is given to genome-scale metabolic models, advanced simulation algorithms, and AI-driven tools that provide deeper insight into microbial metabolism and enable precise probiotic optimization. The integration of these methods with multi-omics data has greatly improved our ability to predict strain behavior and design probiotics with specific health benefits. Special focus is placed on modeling probiotic–prebiotic interactions and host–microbiome dynamics, which are essential for the development of functional food products. Despite these achievements, key challenges remain, including limited model accuracy, difficulties in simulating complex host–microbe systems, and the absence of unified standards for validating in silico-optimized strains. Addressing these gaps requires the development of integrative modeling platforms and clear regulatory frameworks. This review provides a critical overview of current advances, identifies existing barriers, and outlines future directions for the application of computational strategies in probiotic research. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

12 pages, 924 KiB  
Article
Houttuynia cordata Exhibits Anti-Inflammatory Activity Against Interleukin-1β-Induced Inflammation in Human Gingival Epithelial Cells: An In Vitro Study
by Ryo Kunimatsu, Sawako Ikeoka, Yuma Koizumi, Ayaka Odo, Izumi Tanabe, Yoshihito Kawashima, Akinori Kiso, Yoko Hashii, Yuji Tsuka and Kotaro Tanimoto
Dent. J. 2025, 13(8), 360; https://doi.org/10.3390/dj13080360 - 7 Aug 2025
Abstract
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function [...] Read more.
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function has been proposed as a therapeutic strategy to prevent the progression of periodontal disease. Houttuynia cordata, a perennial herb traditionally used in Asian medicine, is recognized for its anti-inflammatory properties, with documented benefits in the cardiovascular, respiratory, and gastrointestinal systems. However, its potential therapeutic role in oral pathologies, such as periodontitis, remains underexplored. This study aimed to investigate the anti-inflammatory effects of H. cordata extract on interleukin (IL)-1β-stimulated primary gingival keratinocytes (PGKs) subjected to IL-1β-induced inflammatory stress, simulating the conditions encountered during orthodontic treatment. Methods: Inflammation was induced in PGKs using IL-1β, and the impact of H. cordata extract pretreatment was assessed using quantitative real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunoblotting. Results: H. cordata extract significantly downregulated the mRNA and protein expression levels of tumor necrosis factor-alpha, IL-8, and intercellular adhesion molecule-1 in IL-1β-stimulated PGKs without inducing cytotoxicity. Conclusions: These findings suggest that H. cordata holds promise as a preventive agent against periodontitis by attenuating inflammatory responses in gingival epithelial tissues. We believe that our findings will inform the development of prophylactic interventions to reduce periodontitis risk in patients undergoing orthodontic therapy. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop