Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = synthetic wastewater treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 - 1 Aug 2025
Viewed by 197
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

19 pages, 5166 KiB  
Article
Investigation of a Volcanic Rock-Derived Coagulant for Water Purification: A Study of Its Preparation Process
by Lei Zhou, Zhangrui Yang, Xiaoyong Liu, Xiaoben Yang, Xuewen Wu, Yong Zhou and Guocheng Zhu
Water 2025, 17(15), 2279; https://doi.org/10.3390/w17152279 - 31 Jul 2025
Viewed by 121
Abstract
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. [...] Read more.
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. Further investigation into the influence of synthetic parameters, such as calcination temperature, reaction time, and alkali types, on the structure and performance of a volcanic rock-derived coagulant was conducted. Techniques including Scanning Electron Microscopy, Energy-Dispersive Spectroscopy, Fourier-Transform Infrared Spectroscopy, and X-Ray Diffraction were utilized to characterize it. Also, a ferron-complexation timed spectrophotometric method was used to study the distribution of aluminum species in the coagulant. Results indicated that the volcanic rock that was treated with acidic and alkaline solutions had the potential to form PSAC with Al-OH, Al-O-Si, Fe-OH, and Fe-O-Si bonds, which influenced the coagulation–flocculation efficiency. An acid leaching temperature of 90 °C, 8 mL of 2 mol/L NaOH, a reaction time of 0.5 h, and a reaction temperature of 60 °C were conducive to the preparation. A higher temperature could result in a higher proportion of Alb species, and, at 100 °C, the Ala, Alc, and Alb were 29%, 24%, and 47%, respectively, achieving a residual turbidity lower than 1 NTU at an appropriate dosage, as well as a reduction of over 0.1 to 0.018 in the level of UV254. The findings of this study provide a feasible method to prepare a flocculant using volcanic rock. Further application is expected to yield good results in wastewater/water treatment. Full article
Show Figures

Figure 1

36 pages, 9312 KiB  
Review
Current Progress in the Biosynthesis of Metal Sulfide Nanomaterials for the Degradation of Dyes: A Review
by Carol D. Langa, Nonhlangabezo Mabuba and Nomso C. Hintsho-Mbita
Catalysts 2025, 15(8), 727; https://doi.org/10.3390/catal15080727 - 30 Jul 2025
Viewed by 284
Abstract
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted [...] Read more.
The contamination of water bodies by industrial dyes poses a significant environmental challenge on a global scale. Conventional wastewater treatment methods often suffer from limitations related to high cost, limited efficiency, and potential secondary environmental impacts. Recent advances in photocatalytic technologies have highlighted the potential of metal sulfide-based photocatalysts, particularly those synthesized through environmentally friendly, plant-mediated approaches, as promising alternatives for efficient and sustainable dye degradation. However, despite their promising potential, metal sulfide photocatalysts often suffer from limitations such as photocorrosion, low stability under irradiation, and rapid recombination of charge carriers, which restrict their long-term applicability. In light of these challenges, this review provides a comprehensive examination of the physicochemical characteristics, synthetic strategies, and photocatalytic applications of metal sulfides. Particular emphasis is placed on green synthesis routes employing plant-derived extracts, which offer environmentally benign and sustainable alternatives to conventional methods. Moreover, the review elucidates various modification approaches, most notably, the formation of heterostructures, as viable strategies to enhance photocatalytic efficiency and mitigate the aforementioned drawbacks. The green synthesis of metal sulfides, aligned with the principles of green chemistry, offers a promising route toward the development of sustainable and environmentally friendly water treatment technologies. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

28 pages, 525 KiB  
Review
Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
by Daniel A. Leontieff, Keisuke Ikehata, Yasutaka Inanaga and Seiji Furukawa
Processes 2025, 13(8), 2331; https://doi.org/10.3390/pr13082331 - 23 Jul 2025
Viewed by 602
Abstract
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented [...] Read more.
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented ozone at full scale, others have yet to fully embrace these technologies’ effectiveness. This review article examines recent publications from the past two decades, exploring novel applications of ozone-based technologies in treating wastewater from diverse sectors, including food and beverage, agriculture, aquaculture, textile, pulp and paper, oil and gas, medical and pharmaceutical manufacturing, pesticides, cosmetics, cigarettes, latex, cork manufacturing, semiconductors, and electroplating industries. The review underscores ozone’s broad applicability in degrading recalcitrant synthetic and natural organics, thereby reducing toxicity and enhancing biodegradability in industrial effluents. Additionally, ozone-based treatments prove highly effective in disinfecting pathogenic microorganisms present in these effluents. Continued research and application of these ozonation and ozone-based advanced oxidation processes hold promise for addressing environmental challenges and advancing sustainable wastewater management practices globally. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

23 pages, 1658 KiB  
Article
Valorization of a Lanthanum-Modified Natural Feedstock for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations
by Hamed Al-Nadabi, Salah Jellali, Wissem Hamdi, Ahmed Al-Raeesi, Fatma Al-Muqaimi, Afrah Al-Tamimi, Ahmed Al-Sidairi, Ahlam Al-Hanai, Waleed Al-Busaidi, Khalifa Al-Zeidi, Malik Al-Wardy and Mejdi Jeguirim
Materials 2025, 18(14), 3383; https://doi.org/10.3390/ma18143383 - 18 Jul 2025
Viewed by 342
Abstract
This work investigates, for the first time, the application of a modified natural magnetite material with 35% of lanthanum for phosphorus (P) recovery from synthetic and actual wastewater under both static (batch) and dynamic (continuous stirred tank reactor (CSTR)) conditions. The characterization results [...] Read more.
This work investigates, for the first time, the application of a modified natural magnetite material with 35% of lanthanum for phosphorus (P) recovery from synthetic and actual wastewater under both static (batch) and dynamic (continuous stirred tank reactor (CSTR)) conditions. The characterization results showed that the natural feedstock mainly comprises magnetite and kaolinite. Moreover, the lanthanum-modified magnetite (La-MM) exhibited more enhanced textural, structural, and surface chemistry properties than the natural feedstock. In particular, its surface area (82.7 m2 g−1) and total pore volume (0.160 cm3 g−1) were higher by 86.6% and 255.5%, respectively. The La-MM efficiently recovered P in batch mode under diverse experimental settings with an adsorption capacity of 50.7 mg g−1, which is significantly greater than that of various engineered materials. It also maintained high efficiency even when used for the treatment of actual wastewater, with an adsorption capacity of 47.3 mg g−1. In CSTR mode, the amount of P recovered from synthetic solutions and real wastewater decreased to 33.8 and 10.2 mg g−1, respectively, due to the limited contact time. The phosphorus recovery process involves mainly electrostatic attraction over a wide pH interval, complexation, and precipitation as lanthanum phosphates. This investigation indicates that lanthanum-modified natural feedstocks from magnetite deposits can be regarded as promising materials for P recovery from aqueous solutions. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications (2nd Edition))
Show Figures

Figure 1

22 pages, 2011 KiB  
Article
Advanced Municipal Wastewater Treatment and Bioproduct Generation via Optimized Autotrophic and Mixotrophic Microalgal Cultivation
by Juan Nápoles-Armenta, Itzel Celeste Romero-Soto, Luis Samaniego-Moreno, Lourdes Mariana Díaz-Tenorio, Luis Alonso Leyva Soto, Celia De La Mora-Orozco, Rafael González Pérez, Edgardo Martínez-Orozco, Celestino García-Gómez and Laura Izascum Pérez-Valencia
Sustainability 2025, 17(14), 6539; https://doi.org/10.3390/su17146539 - 17 Jul 2025
Viewed by 315
Abstract
In this paper, the production of biomass, pigments, lipids, and carbohydrates and the elimination of ammonium and orthophosphate by the microalgae Chlorella vulgaris, grown in synthetic wastewater (SWW), were studied under different light intensities (3000–10,000 lux), pH (7.5–9.5) and daily illumination time [...] Read more.
In this paper, the production of biomass, pigments, lipids, and carbohydrates and the elimination of ammonium and orthophosphate by the microalgae Chlorella vulgaris, grown in synthetic wastewater (SWW), were studied under different light intensities (3000–10,000 lux), pH (7.5–9.5) and daily illumination time (8–16 h). The best conditions for the autotrophic culture of microalgae were predicted using response surface methodology (RSM). The results showed that the adaptation of the microalgae for this nutrient source was effective. The best conditions for the cultivation of Chlorella vulgaris in SWW were 8.44 pH and a light intensity of 8433 lux in the daily illumination time of 16 h. Under optimal conditions, the production of microalgal biomass, chlorophyll-a, chlorophyll-b, carotenoids, lipids and carbohydrates was 0.534 g/L, 7.46 mg/mL, 3.53 mg/mL, 2.01 mg/mL, 21.40% and 28.46%, respectively. The removal efficiencies of ammonium and orthophosphate from SWW were 97.66% and 58.78% in autotrophic cultures. This investigation introduces a new aspect by verifying the optimized cultivation conditions with real municipal wastewater, indicating that the procedure could be utilized for sustainable production of bioproducts and efficient treatment of municipal wastewater. Full article
Show Figures

Figure 1

13 pages, 1243 KiB  
Article
Is Ozonation Treatment Efficient to Provide Safe Reclaimed Water? Assessing the Effects of Synthetic Wastewater Effluents in Human Cell Models
by Ana Teresa Rocha, Fátima Jesus, Helena Oliveira, João Gomes and Joana Luísa Pereira
Appl. Sci. 2025, 15(14), 7784; https://doi.org/10.3390/app15147784 - 11 Jul 2025
Viewed by 262
Abstract
Ozonation has been promoted as a successful methodology for recovering effluents from wastewater treatment plants, with special emphasis on wastewater contaminated with pharmaceutical and personal care products (PPCPs). Still, ozonation reactions may generate potentially toxic by-products, jeopardizing human health safety, a critical aspect [...] Read more.
Ozonation has been promoted as a successful methodology for recovering effluents from wastewater treatment plants, with special emphasis on wastewater contaminated with pharmaceutical and personal care products (PPCPs). Still, ozonation reactions may generate potentially toxic by-products, jeopardizing human health safety, a critical aspect considering the use of reclaimed water. We aimed at understanding the potential impacts of ozonation on the quality of reclaimed water for human use through cell viability assays with human skin keratinocytes (HaCaT cell line). Under this context, the cytotoxicity of synthetic effluents contaminated with methyl- and propylparaben, paracetamol, sulfamethoxazole, and carbamazepine, both individually and in mixtures, was assessed before and after ozonation. The viability of HaCaT cells decreased after exposure to untreated synthetic effluents, denoting the cytotoxicity of the tested PPCPs singly and more prominently in mixtures (especially in those combining two and three PPCPs). A similar pattern was observed when testing effluents treated with ozonation. Since the parent contaminants were fully removed during ozonation, the observed cytotoxicity relates to degradation by-products and interactive effects among them. This study suggests that ozonation is poorly efficient in reducing cytotoxicity, as required for the safe use of ozone-treated reclaimed water in activities involving direct contact with human skin. Full article
Show Figures

Figure 1

17 pages, 1420 KiB  
Article
Molecular Response of Bacteria Exposed to Wastewater-Borne Nanoparticles
by Nina Doskocz, Katarzyna Affek and Monika Załęska-Radziwiłł
Appl. Sci. 2025, 15(14), 7746; https://doi.org/10.3390/app15147746 - 10 Jul 2025
Viewed by 207
Abstract
The increasing release of nanoparticles into aquatic environments, particularly via wastewater, raises concerns about their biological effects on microbial communities. This study investigated the molecular response of Pseudomonas putida to aluminum oxide nanoparticles (Al2O3NPs) under controlled conditions and in [...] Read more.
The increasing release of nanoparticles into aquatic environments, particularly via wastewater, raises concerns about their biological effects on microbial communities. This study investigated the molecular response of Pseudomonas putida to aluminum oxide nanoparticles (Al2O3NPs) under controlled conditions and in synthetic wastewater, both before and after biological treatment. Acute toxicity was evaluated using growth inhibition assays, while the expression of katE, ahpC, and ctaD—genes associated with oxidative stress and energy metabolism—was quantified via RT-qPCR. Exposure to pristine Al2O3NPs induced a strong, time-dependent upregulation of all tested genes (e.g., katE and ahpC up to 4.5-fold). In untreated wastewater, this effect persisted but at a lower intensity; bulk Al2O3 caused only moderate changes. Treated wastewater samples showed markedly reduced gene expression, indicating partial detoxification. Nanoparticles elicited stronger biological responses than their bulk counterparts, confirming the material form-specific effects. Comparative analysis with Daphnia magna revealed similar patterns of oxidative stress gene activation. These findings highlight the influence of nanoparticle form and environmental matrix on microbial responses and support the use of gene expression analysis as a sensitive biomarker for nanoparticle-induced stress in environmental risk assessment. Full article
Show Figures

Figure 1

15 pages, 1966 KiB  
Article
Lithium Adsorption Using Graphene Oxide: Modeling, Regeneration, and Mechanistic Insights
by Abdulrahman Abu-Nada, Ahmed Abdala, Gordon McKay and Shifa Zuhara
Materials 2025, 18(14), 3211; https://doi.org/10.3390/ma18143211 - 8 Jul 2025
Viewed by 310
Abstract
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional [...] Read more.
Graphene oxide (GO) was synthesized using the Hummers method and evaluated for lithium-ion removal from aqueous solutions. Characterization via X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) confirmed the presence of oxygen-containing functional groups (C–O–C, C=O), which act as active adsorption sites. BET analysis revealed a surface area of 232 m2/g and a pore volume of 0.4 cm3/g, indicating its high porosity. Lithium adsorption was tested using synthetic Li-doped solutions under controlled conditions. Kinetics and equilibrium studies demonstrated that the process followed the pseudo-second-order model and the Redlich–Peterson isotherm, achieving an optimum lithium adsorption capacity of 179 mg/g. The adsorption efficiency was influenced by factors such as pH and salinity. Regeneration experiments showed that HNO3 was the most effective desorbing agent, enabling GO to be reused multiple times with a moderate loss of adsorption capacity. These findings highlight GO’s exceptional efficiency in lithium removal and its suitability for wastewater treatment applications. Its recyclability and reusability further support a circular economy, making GO a highly promising material for sustainable lithium recovery and broader environmental remediation efforts. Full article
(This article belongs to the Special Issue Development and Application of Novel Membranes (2nd Edition))
Show Figures

Graphical abstract

18 pages, 6590 KiB  
Article
Synthesis of ZnS Nano-Powders and Fabrication of ZnS Thin Films via Electron-Beam Evaporation: Structural and Optical Characterization
by Ahmed Al-Mobydeen, Ehab AlShamaileh, Bashar Lahlouh, Mariam Al-Qderat, Ahmed N. AL-Masri, Wadah Mahmoud, Imad Hamadneh, Muayad Esaifan and Iessa Sabbe Moosa
Coatings 2025, 15(7), 796; https://doi.org/10.3390/coatings15070796 - 7 Jul 2025
Viewed by 469
Abstract
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, [...] Read more.
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, and laboratory-prepared Na2S. The obtained ZnS was studied using an SEM coupled with EDS, XRD analysis, UV–Visible spectroscopy, and FTIR techniques. The XRD results showed that the synthesized nanoscale ZnS powder was approximately 2.26 nm. Meanwhile, the EDS and XRD patterns confirmed the high purity of the obtained ZnS powder. In addition, the ZnS powder was compacted and sintered in an argon atmosphere at 400 °C for 8 h to prepare the required pellets for thin-film deposition via E-beam evaporation. The microscopic structure of the sintered pellets was investigated using the SEM/EDS. Furthermore, the optical properties of the deposited thin films were studied using UV–Visible spectroscopy in the wavelength range of 190–1100 nm and the FTIR technique. The bandgap energies of the deposited thin films with thicknesses of 111 nm and 40 nm were determined to be around 4.72 eV and 5.82 eV, respectively. This article offers a facile production route of high-purity ZnS powder, which can be compacted and sintered as a suitable source for thin-film deposition. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

20 pages, 3059 KiB  
Article
Optimization of Organic Content Removal from Aqueous Solutions by Fenton-Ozonation
by Paixan Febrialy Samba, Marius Sebastian Secula, Sebastien Schaefer and Benoît Cagnon
Appl. Sci. 2025, 15(13), 7370; https://doi.org/10.3390/app15137370 - 30 Jun 2025
Viewed by 329
Abstract
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of [...] Read more.
This paper presents a study on the optimization of 2,4-Dichlorophenoxyacetic (2,4-D) acid removal from synthetic wastewater by batch Fenton-Ozonation. The aim of this study is to evaluate the potential of the catalytic system Fe-L27 coupled to ozonation in the presence and absence of H2O2 as an effective and affordable technique for the treatment of organic pollutants in water. Fenton-like catalysts for the removal of 2,4-D in aqueous solutions were elaborated using catalysts synthesized by the wet impregnation method. The ACs and prepared catalysts were characterized by nitrogen adsorption–desorption isotherms at 77 K, TGA, XPS, SEM, and TEM. Their efficiency as Fenton-like catalysts was studied. In a first step, a response surface modeling method was employed in order to find the optimal parameters of the Fenton process, and then the optimal O3/H2O2 ratio was established at laboratory scale. Finally, the investigated advanced oxidation processes were carried out at pilot scale. The results show that Fenton-like catalysts obtained by the direct impregnation method enhance the degradation rate and mineralization of 2,4-D. Full article
(This article belongs to the Special Issue Promising Sustainable Technologies in Wastewater Treatment)
Show Figures

Figure 1

11 pages, 497 KiB  
Opinion
Beyond Biomass: Reimagining Microalgae as Living Environmental Nano-Factories
by Thinesh Selvaratnam, Shaseevarajan Sivanantharajah and Kirusha Sriram
Environments 2025, 12(7), 221; https://doi.org/10.3390/environments12070221 - 28 Jun 2025
Viewed by 430
Abstract
Microalgae have long been recognized for their potential in biofuel production and wastewater treatment, but their broader capabilities remain underexplored. This opinion paper presents a case for a significant shift in how microalgae are conceptualized from biomass producers to dynamic, multifunctional systems that [...] Read more.
Microalgae have long been recognized for their potential in biofuel production and wastewater treatment, but their broader capabilities remain underexplored. This opinion paper presents a case for a significant shift in how microalgae are conceptualized from biomass producers to dynamic, multifunctional systems that can serve as environmental nano-factories. It highlights emerging research on the role of microalgae in heavy metal sequestration, the green biosynthesis of metal nanoparticles, and the cascading valorization of residual biomass through environmentally sustainable extraction methods. Together, these applications offer a unified platform for pollution mitigation and the production of valuable materials. The paper also examines recent progress in synthetic biology, bioreactor design, and microbial consortia that could support this transition. At the same time, it acknowledges key challenges, including issues of scalability, regulatory acceptance, and process integration. Strategic recommendations are proposed to advance this field and align it more closely with circular economy models. By reimagining microalgae as living nano-factories, this paper outlines a path forward for developing integrated, sustainable technologies that simultaneously address environmental and industrial challenges. Full article
Show Figures

Figure 1

25 pages, 1107 KiB  
Review
Microalgae Cultivation in Wastewater: How Realistic Is This Approach for Value-Added Product Production?
by Rosangela Rodrigues Dias, Mariany Costa Deprá, Cristiano Ragagnin de Menezes, Leila Queiroz Zepka and Eduardo Jacob-Lopes
Processes 2025, 13(7), 2052; https://doi.org/10.3390/pr13072052 - 28 Jun 2025
Viewed by 710
Abstract
Microalgae cultivation in wastewater is a production approach that combines wastewater treatment with biomass generation for various applications. This strategy aligns with the concept of a circular bioeconomy, which aims to transform waste into valuable resources. However, although this is true, this synergy’s [...] Read more.
Microalgae cultivation in wastewater is a production approach that combines wastewater treatment with biomass generation for various applications. This strategy aligns with the concept of a circular bioeconomy, which aims to transform waste into valuable resources. However, although this is true, this synergy’s potential bumps into obstacles that still limit the consolidation of the commercial cultivation of microalgae using wastewater. This review analyzed how close or far we are from achieving the successful integration of commercial microalgae cultivation with wastewater treatment for the production of value-added products. The analysis of the scientific literature highlighted that certain strains, such as Chlorella, Arthrospira, and Scenedesmus, can remove up to 90% of nitrogen and phosphorus from effluents while maintaining productivities of up to 45 g/m2/day. The techno-economic analyses presented here indicate that production costs range between 1.98 and 9.69 EUR/kg, depending on the effluent composition and biomass productivity. From an environmental perspective, replacing synthetic media with wastewater can significantly reduce input use, but the environmental impacts associated with energy consumption remain a challenge. This paper also discusses the technological readiness level (TRL), which currently remains between levels 4 and 6, concentrated on demonstration and pilot scales. By gathering and critically analyzing the current literature, this work seeks to answer how realistic and sustainable this integration is today. Full article
(This article belongs to the Special Issue Research on Conversion and Utilization of Waste Biomass)
Show Figures

Figure 1

16 pages, 2481 KiB  
Article
Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System
by Nguyen Trong Nghia and Vinh Dinh Nguyen
Molecules 2025, 30(12), 2627; https://doi.org/10.3390/molecules30122627 - 17 Jun 2025
Viewed by 284
Abstract
The release of synthetic dyes like Basic Red 46 (BR46) from industrial wastewater has raised growing concerns due to their toxicity, long-term persistence, and resistance to standard biological treatment methods. In this work, we developed and tested a pilot-scale electrocoagulation–ozonation (EC–O) hybrid system [...] Read more.
The release of synthetic dyes like Basic Red 46 (BR46) from industrial wastewater has raised growing concerns due to their toxicity, long-term persistence, and resistance to standard biological treatment methods. In this work, we developed and tested a pilot-scale electrocoagulation–ozonation (EC–O) hybrid system aimed at removing BR46 from aqueous solutions. The system integrates electrocoagulation, using iron electrodes, with ozone-based advanced oxidation processes, facilitating a combination of coagulation, adsorption, and oxidative breakdown of dye molecules. The response surface methodology (RSM) with a central composite design (CCD) was applied to optimize the treatment process, focusing on five variables: current density, flow rate, ozone dosage, ozonation time, and initial dye concentration. The quadratic model exhibited strong predictive power, with an adjusted R2 of 0.9897 and a predicted R2 of 0.9812. The optimal conditions identified included a current density of 70 A/m2, flow rate of 1.6 L/min, ozone dose of 2.0 g/h, and an ozonation time of 20 min, achieving a predicted removal efficiency of 91.67% for a solution with BR46 at an initial concentration of 300 mg/L. Experiments conducted under these conditions confirmed the model’s reliability, with observed removal rates exceeding 90% and deviations under 2%. The EC–O system had a treatment capability of 26.19 L/h and an energy consumption of 3.04 kWh/m3. These findings suggest that the EC–O system is an effective and scalable option for treating dye-contaminated wastewater, offering faster and more efficient results than conventional techniques. Full article
Show Figures

Graphical abstract

21 pages, 4771 KiB  
Article
Synthesis of Antioxidant Nano Zero-Valent Iron Using FeCl2 and Leucaena leucocephala Leaves’ Aqueous Extract and the Nanomaterial’s Potential to Promote the Adsorption of Tartrazine and Nigrosine
by Fernanda Maria Policarpo Tonelli, Christopher Santos Silva, Geicielly da Costa Pinto, Lucas Santos Azevedo, Jhenifer Cristina Carvalho Santos, Danilo Roberto Carvalho Ferreira, Pamela da Rocha Patricio, Giullya Amaral Cordeiro Lembrança, Luciana Alves Rodrigues dos Santos Lima, Clascídia Aparecida Furtado, Flávia Cristina Policarpo Tonelli and Adriano Guimarães Parreira
Int. J. Mol. Sci. 2025, 26(12), 5751; https://doi.org/10.3390/ijms26125751 - 16 Jun 2025
Cited by 1 | Viewed by 361
Abstract
Synthetic dyes are commonly present in industrial wastewater and when discharged in water bodies without receiving a treatment capable of removing or destroying them, they turn into concerning water pollutants. These organic contaminants threaten living beings due to their toxicity, and some of [...] Read more.
Synthetic dyes are commonly present in industrial wastewater and when discharged in water bodies without receiving a treatment capable of removing or destroying them, they turn into concerning water pollutants. These organic contaminants threaten living beings due to their toxicity, and some of them can even damage DNA. Consequently, in order to achieve sustainable development, it is necessary to develop eco-friendly tools that can efficiently manage this kind of pollution. In the present study the aqueous extract from the leaves of Leucaena leucocephala (an invasive plant species native to Mexico) was used to produce green nano zero-valent iron (nZVI). The nanomaterial was characterized (TEM, UV–vis, FTIR, SEM, EDS, XRD) and assayed regarding its antioxidant potential (DPPH test) and capacity to remediate the pollution caused by two dyes. It proved to be able to adsorb nigrosine (288.30 mg/g of nanomaterial) and tartrazine (342.50 mg/g of nanomaterial), and also displayed antioxidant activity (effective concentration to discolor 50% of the DPPH solution = 286.02 μg/mL). Therefore, the biogenic antioxidant nanoparticle proved also to be a possible nanotool to be applied to remediate water contamination caused by these synthetic dyes. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop