Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = synthetic soil habitat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3930 KiB  
Article
Microplastic Contamination of the Turkish Worm Lizard (Blanus strauchi Bedriaga, 1884) in Muğla Province (Türkiye)
by Cantekin Dursun, Nagihan Demirci, Kamil Candan, Elif Yıldırım Caynak, Yusuf Kumlutaş, Çetin Ilgaz and Serkan Gül
Biology 2025, 14(4), 441; https://doi.org/10.3390/biology14040441 - 19 Apr 2025
Cited by 1 | Viewed by 676
Abstract
Because of their diversity, microplastics (MPs), which are synthetic particles smaller than 5 mm, are highly bioavailable and widely distributed. The prevalence of microplastics in aquatic habitats has been extensively studied but less is known about their presence in terrestrial environments and biota. [...] Read more.
Because of their diversity, microplastics (MPs), which are synthetic particles smaller than 5 mm, are highly bioavailable and widely distributed. The prevalence of microplastics in aquatic habitats has been extensively studied but less is known about their presence in terrestrial environments and biota. This study examined MP intake in terrestrial environments utilizing gastrointestinal tracts (GITs), with a particular focus on the Turkish worm lizard (Blanus strauchi). Suspected particles discovered in the GITs were removed, measured, and characterized based on size, shape, color, and polymer type in order to evaluate MP ingestion. Out of 118 samples analyzed, 29 specimens (or 24.57%) had microplastic particlesMP length did not significantly correlate with snout–vent length (SVL) and weight. These correlations were tested to determine whether the size or weight of Blanus strauchi influenced the amount or size of MPs found within the GITs. Also, MP consumption by the worm lizard did not correlate with the year of sampling. All particles identified as fibers through FT-IR spectroscopy analysis. The most common type of microplastic was polyethylene terephthalate (PET). The most often detected color was blue, with mean MP lengths ranging from 133 µm to 2929 µm. It has been demonstrated that worm lizards inhabiting soil or sheltering under stones in bushy areas with sparse vegetation consume MPs. Predation is regarded to be the most likely way through which MPs infiltrate terrestrial food webs. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

25 pages, 19380 KiB  
Article
GIS-Based Spatial Modeling of Soil Erosion and Wildfire Susceptibility Using VIIRS and Sentinel-2 Data: A Case Study of Šar Mountains National Park, Serbia
by Uroš Durlević, Tanja Srejić, Aleksandar Valjarević, Bojana Aleksova, Vojislav Deđanski, Filip Vujović and Tin Lukić
Forests 2025, 16(3), 484; https://doi.org/10.3390/f16030484 - 10 Mar 2025
Cited by 5 | Viewed by 1823
Abstract
Soil erosion and wildfires are frequent natural disasters that threaten the environment. Identifying and zoning susceptible areas are crucial for the implementation of preventive measures. The Šar Mountains are a national park with rich biodiversity and various climate zones. Therefore, in addition to [...] Read more.
Soil erosion and wildfires are frequent natural disasters that threaten the environment. Identifying and zoning susceptible areas are crucial for the implementation of preventive measures. The Šar Mountains are a national park with rich biodiversity and various climate zones. Therefore, in addition to protecting the local population from natural disasters, special attention must be given to preserving plant and animal species and their habitats. The first step in this study involved collecting and organizing the data. The second step applied geographic information systems (GIS) and remote sensing (RS) to evaluate the intensity of erosion using the erosion potential model (EPM) and the wildfire susceptibility index (WSI). The EPM involved the analysis of four thematic maps, and a new index for wildfires was developed, incorporating nine natural and anthropogenic factors. This study introduces a novel approach by integrating the newly developed WSI with the EPM, offering a comprehensive framework for assessing dual natural hazards in a single region using advanced geospatial tools. The third step involved obtaining synthetic maps and comparing the final results with satellite images and field research. For the Šar Mountains (Serbia), high and very high susceptibility to wildfires was identified in 21.3% of the total area. Regarding soil erosion intensity, about 8.2% of the area is affected by intensive erosion, while excessive erosion is present in 2.2% of the study area. The synthetic hazard maps provide valuable insights into the dynamics of the erosive process and areas susceptible to wildfires. The final results can be useful for decision-makers, spatial planners, and emergency management services in implementing anti-erosion measures and improving forest management in the study area. Full article
Show Figures

Figure 1

21 pages, 2975 KiB  
Article
Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis
by Juan Tang, Wei Li, Ting Wei, Ruilong Huang and Zhuanfei Zeng
Plants 2024, 13(22), 3244; https://doi.org/10.3390/plants13223244 - 19 Nov 2024
Cited by 4 | Viewed by 1935
Abstract
Nitrogen (N), while the most abundant element in the atmosphere, is an essential soil nutrient that limits plant growth. Leguminous plants naturally possess the ability to fix atmospheric nitrogen through symbiotic relationships with rhizobia in their root nodules. However, the widespread use of [...] Read more.
Nitrogen (N), while the most abundant element in the atmosphere, is an essential soil nutrient that limits plant growth. Leguminous plants naturally possess the ability to fix atmospheric nitrogen through symbiotic relationships with rhizobia in their root nodules. However, the widespread use of synthetic N fertilizers in modern agriculture has led to N enrichment in soils, causing complex and profound effects on legumes. Amid ongoing debates about how leguminous plants respond to N enrichment, the present study compiles 2174 data points from 162 peer-reviewed articles to analyze the impacts and underlying mechanisms of N enrichment on legumes. The findings reveal that N enrichment significantly increases total legume biomass by 30.9% and N content in plant tissues by 13.2% globally. However, N enrichment also leads to notable reductions, including a 5.8% decrease in root-to-shoot ratio, a 21.2% decline in nodule number, a 29.3% reduction in nodule weight, and a 27.1% decrease in the percentage of plant N derived from N2 fixation (%Ndfa). Legume growth traits and N2-fixing capability in response to N enrichment are primarily regulated by climatic factors, such as mean annual temperature (MAT) and mean annual precipitation (MAP), as well as the aridity index (AI) and N fertilizer application rates. Correlation analyses show that plant biomass is positively correlated with MAT, and tissue N content also exhibits a positive correlation with MAT. In contrast, nodule numbers and tissue N content are negatively correlated with N fertilizer application rates, whereas %Ndfa shows a positive correlation with AI and MAP. Under low N addition, the increase in total biomass in response to N enrichment is twice as large as that observed under high N addition. Furthermore, regions at lower elevations with abundant hydrothermal resources are especially favorable for total biomass accumulation, indicating that the responses of legumes to N enrichment are habitat-specific. These results provide scientific evidence for the mechanisms underlying legume responses to N enrichment and offer valuable insights and theoretical references for the conservation and management of legumes in the context of global climate change. Full article
(This article belongs to the Special Issue Fertilizer and Abiotic Stress)
Show Figures

Figure 1

32 pages, 5708 KiB  
Review
Plastic-Degrading Enzymes from Marine Microorganisms and Their Potential Value in Recycling Technologies
by Robert Ruginescu and Cristina Purcarea
Mar. Drugs 2024, 22(10), 441; https://doi.org/10.3390/md22100441 - 26 Sep 2024
Cited by 3 | Viewed by 7929
Abstract
Since the 2005 discovery of the first enzyme capable of depolymerizing polyethylene terephthalate (PET), an aromatic polyester once thought to be enzymatically inert, extensive research has been undertaken to identify and engineer new biocatalysts for plastic degradation. This effort was directed toward developing [...] Read more.
Since the 2005 discovery of the first enzyme capable of depolymerizing polyethylene terephthalate (PET), an aromatic polyester once thought to be enzymatically inert, extensive research has been undertaken to identify and engineer new biocatalysts for plastic degradation. This effort was directed toward developing efficient enzymatic recycling technologies that could overcome the limitations of mechanical and chemical methods. These enzymes are versatile molecules obtained from microorganisms living in various environments, including soil, compost, surface seawater, and extreme habitats such as hot springs, hydrothermal vents, deep-sea regions, and Antarctic seawater. Among various plastics, PET and polylactic acid (PLA) have been the primary focus of enzymatic depolymerization research, greatly enhancing our knowledge of enzymes that degrade these specific polymers. They often display unique catalytic properties that reflect their particular ecological niches. This review explores recent advancements in marine-derived enzymes that can depolymerize synthetic plastic polymers, emphasizing their structural and functional features that influence the efficiency of these catalysts in biorecycling processes. Current status and future perspectives of enzymatic plastic depolymerization are also discussed, with a focus on the underexplored marine enzymatic resources. Full article
(This article belongs to the Special Issue Bioactive Molecules from Extreme Environments III)
Show Figures

Graphical abstract

16 pages, 5156 KiB  
Article
Enhancing Micropropagation of Adenophora liliifolia: Insights from PGRs, Natural Extracts, and pH Optimization
by Zsófia Kovács, Liz Kelly Portocarrero, Péter Honfi, Ildikó Kohut, Eman Abdelhakim Eisa and Andrea Tilly-Mándy
Plants 2024, 13(13), 1735; https://doi.org/10.3390/plants13131735 - 23 Jun 2024
Viewed by 1258
Abstract
The endangered plant species Adenophora liliifolia faces threats to its survival in the wild, necessitating the development of effective micropropagation techniques for potential reintroduction efforts. This study demonstrates that Adenophora liliifolia effectively reproduces on MS synthetic medium with diverse plant growth regulators (PGR) [...] Read more.
The endangered plant species Adenophora liliifolia faces threats to its survival in the wild, necessitating the development of effective micropropagation techniques for potential reintroduction efforts. This study demonstrates that Adenophora liliifolia effectively reproduces on MS synthetic medium with diverse plant growth regulators (PGR) and natural extracts, facilitating swift micropropagation for potential future reintroduction endeavors. It highlights the substantial impact of PGR composition and natural extracts on the growth and development of A. liliifolia. The ideal growth medium for A. liliifolia was determined to be ½ MS with specific treatments. Additionally, incorporating silver nitrate (AgNO3) at 5 mg L−1 into the medium led to enhanced root formation and shoot length, albeit excessive concentrations adversely affected root development. Varying concentrations of NAA significantly affected different plant growth parameters, with the 0.1 mg L−1 treatment yielding comparable plant height to the control. Moreover, 50 mL L−1 of coconut water bolstered root formation, while 200 mL L−1 increased shoot formation during in vitro propagation. However, elevated doses of coconut water (CW) impeded root development but stimulated shoot growth. Experiments measuring chlorophyll a + b and carotenoid content indicated higher concentrations in the control group than differing levels of applied coconut water. Optimizing pH levels from 6.8–7 to 7.8–8.0 notably enhanced plant height and root formation, with significant carotenoid accumulation observed at pH 6.8–7. Soil samples from A. liliifolia’s natural habitat exhibited a pH of 6.65. Ultimately, the refined in vitro propagation protocol effectively propagated A. liliifolia, representing a pioneering effort and setting the stage for future restoration initiatives and conservation endeavors. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Figure 1

14 pages, 2874 KiB  
Article
Harmful and Harmless Soil-Dwelling Fungi Indicate Microhabitat Suitability for Off-Host Ixodid Ticks
by Claire E. Gooding, Layla Gould and Gerhard Gries
Microorganisms 2024, 12(3), 609; https://doi.org/10.3390/microorganisms12030609 - 19 Mar 2024
Cited by 1 | Viewed by 1900
Abstract
Following blood meals or questing bouts, hard ticks (Ixodidae) must locate moist off-host microhabitats as refuge. Soil-dwelling fungi, including entomopathogenic Beauveria bassiana (Bb), thrive in moist microhabitats. Working with six species of ixodid ticks in olfactometer bioassays, we tested the hypothesis [...] Read more.
Following blood meals or questing bouts, hard ticks (Ixodidae) must locate moist off-host microhabitats as refuge. Soil-dwelling fungi, including entomopathogenic Beauveria bassiana (Bb), thrive in moist microhabitats. Working with six species of ixodid ticks in olfactometer bioassays, we tested the hypothesis that ticks avoid Bb. Contrary to our prediction, nearly all ticks sought, rather than avoided, Bb-inoculated substrates. In further bioassays with female black-legged ticks, Ixodes scapularis, ticks oriented towards both harmful Bb and harmless soil-dwelling fungi, implying that fungi—regardless of their pathogenicity—signal habitat suitability to ticks. Only accessible Bb-inoculated substrate appealed to ticks, indicating that they sense Bb or its metabolites by contact chemoreception. Bb-inoculated substrate required ≥24 h of incubation before it appealed to ticks, suggesting that they respond to Bb metabolites rather than to Bb itself. Similarly, ticks responded to Bb-inoculated and incubated cellulose but not to sterile cellulose, indicating that Bb detection by ticks hinges on the Bb metabolism of cellulose. 2-Methylisoborneol—a common fungal metabolite with elevated presence in disturbed soils—strongly deterred ticks. Off-host ticks that avoid disturbed soil may lower their risk of physical injury. Synthetic 2-methylisoborneol could become a commercial tick repellent, provided its repellency extends to ticks in diverse taxa. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

13 pages, 1707 KiB  
Article
Saprotrophic Fungus Induces Microscale Mineral Weathering to Source Potassium in a Carbon-Limited Environment
by Jocelyn A. Richardson, Christopher R. Anderton and Arunima Bhattacharjee
Minerals 2023, 13(5), 641; https://doi.org/10.3390/min13050641 - 5 May 2023
Cited by 3 | Viewed by 3027
Abstract
Plants rely on potassium for many critical biological processes, but most soils are potassium limited. Moving potassium from the inaccessible, mineral-bound pool to a more bioavailable form is crucial for sustainably increasing local potassium concentrations for plant growth and health. Here, we use [...] Read more.
Plants rely on potassium for many critical biological processes, but most soils are potassium limited. Moving potassium from the inaccessible, mineral-bound pool to a more bioavailable form is crucial for sustainably increasing local potassium concentrations for plant growth and health. Here, we use a synthetic soil habitat (mineral doped micromodels) to study and directly visualize how the saprotrophic fungus, Fusarium sp. DS 682, weathers K-rich soil minerals. After 30 days of fungal growth, both montmorillonite and illite (secondary clays) had formed as surface coatings on primary K-feldspar, biotite, and kaolinite grains. The distribution of montmorillonite differed depending on the proximity to a carbon source, where montmorillonite was found to be associated with K-feldspar closer to the carbon (C) source, which the fungus was inoculated on, but associated with biotite at greater distances from the C source. The distribution of secondary clays is likely due to a change in the type of fungal exuded organic acids; from citric to tartaric acid dominated production with increasing distance from the C source. Thus, the main control on the ability of Fusarium sp. DS 682 to weather K-feldspar is proximity to a C source to produce citric acid via the TCA cycle. Full article
(This article belongs to the Special Issue Microbial Biomineralization and Organimineralization)
Show Figures

Figure 1

24 pages, 2078 KiB  
Article
Armeria maritima (Mill.) Willd. Flower Hydromethanolic Extract for Cucurbitaceae Fungal Diseases Control
by Eva Sánchez-Hernández, Pablo Martín-Ramos, Luis Manuel Navas-Gracia, Jesús Martín-Gil, Ana Garcés-Claver, Alejandro Flores-León and Vicente González-García
Molecules 2023, 28(9), 3730; https://doi.org/10.3390/molecules28093730 - 26 Apr 2023
Cited by 6 | Viewed by 3251
Abstract
The cliff rose (Armeria maritima), like other halophytes, has a phenolics-based antioxidant system that allows it to grow in saline habitats. Provided that antioxidant properties are usually accompanied by antimicrobial activity, in this study we investigated the phytochemicals present in a [...] Read more.
The cliff rose (Armeria maritima), like other halophytes, has a phenolics-based antioxidant system that allows it to grow in saline habitats. Provided that antioxidant properties are usually accompanied by antimicrobial activity, in this study we investigated the phytochemicals present in a hydromethanolic extract of A. maritima flowers and explored its antifungal potential. The main phytocompounds, identified by gas chromatography–mass spectrometry, were: hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, 3-(3,4-dihydroxy-phenyl)-acrylic acid ethyl ester, and benzeneacetaldehyde. The antifungal activity of the extract and its main constituents—alone and in combination with chitosan oligomers—was tested against six pathogenic taxa associated with soil-borne diseases of plant hosts in the family Cucurbitaceae: Fusarium equiseti, F. oxysporum f. sp. niveum, Macrophomina phaseolina, Neocosmospora falciformis, N. keratoplastica, and Sclerotinia sclerotiorum. In in vitro tests, EC90 effective concentrations in the 166−865 μg·mL−1 range were obtained for the chitosan oligomers–A. maritima extract conjugate complexes, lower than those obtained for fosetyl-Al and azoxystrobin synthetic fungicides tested for comparison purposes, and even outperforming mancozeb against F. equiseti. In ex situ tests against S. sclerotiorum conducted on artificially inoculated cucumber slices, full protection was achieved at a dose of 250 μg·mL−1. Thus, the reported results support the valorization of A. maritima as a source of biorationals for Cucurbitaceae pathogens protection, suitable for both organic and conventional agriculture. Full article
Show Figures

Graphical abstract

14 pages, 1470 KiB  
Article
A Pipeline to Investigate Fungal–Fungal Interactions: Trichoderma Isolates against Plant-Associated Fungi
by Marianna Dourou and Caterina Anna Maria La Porta
J. Fungi 2023, 9(4), 461; https://doi.org/10.3390/jof9040461 - 10 Apr 2023
Cited by 7 | Viewed by 4673
Abstract
Soil fungi play essential roles in ecosystems, forming complex interaction networks with bacteria, yeasts, other fungi, or plants. In the framework of biocontrol strategies, Trichoderma-based fungicides are at the forefront of research as an alternative to synthetic ones. However, the impact of [...] Read more.
Soil fungi play essential roles in ecosystems, forming complex interaction networks with bacteria, yeasts, other fungi, or plants. In the framework of biocontrol strategies, Trichoderma-based fungicides are at the forefront of research as an alternative to synthetic ones. However, the impact of introducing new microbial strain(s) on the soil microbiome of a habitat is not well-explored. Aiming to identify a quantitative method to explore the complex fungal interactions, we isolated twelve fungi from three Italian vineyards and identified three strains of the Trichoderma genus in addition to nine more plant-associated fungi of different genera. Investigating in dual nucleation assay fungal–fungal interactions, we recognised two types of interaction: neutral or antagonistic. All three Trichoderma strains displayed a slight inhibitory behaviour against themselves. Trichoderma strains showed a mutually intermingling growth with Aspergillus aculeatus and Rhizopus arrhizus but antagonistic behaviour against the plant pathogens Alternaria sp., Fusarium ramigenum, and Botrytis caroliniana. Yet, in some cases, antagonistic behaviour by Trichoderma fungi was also observed against plant-promoting fungi (e.g., Aspergillus piperis and Penicillium oxalicum). Our study highlights the importance of studying the interactions between fungi, aiming to clarify better the impact of fungal-based biological fungicides in the soil communities, and offers a pipeline for further applications. Full article
Show Figures

Figure 1

16 pages, 1821 KiB  
Article
Factors Influencing Earthworm Fauna in Parks in Megacity Beijing, China: An Application of a Synthetic and Simple Index (ESI)
by Tian Xie, Xuzhi Li, Meie Wang, Weiping Chen and Jack H. Faber
Sustainability 2022, 14(10), 6054; https://doi.org/10.3390/su14106054 - 17 May 2022
Cited by 2 | Viewed by 2555
Abstract
Complicated factors in urban areas have been reported to impact the density, biomass, and diversity of earthworm fauna. Urban parks provide essential habitats for earthworm fauna. However, how earthworm fauna are impacted by park traits, such as construction age, distance to city center, [...] Read more.
Complicated factors in urban areas have been reported to impact the density, biomass, and diversity of earthworm fauna. Urban parks provide essential habitats for earthworm fauna. However, how earthworm fauna are impacted by park traits, such as construction age, distance to city center, visitor volumes, sizes of greenspaces/parks, and attractiveness, etc., still remains unknown. These traits are well characterized by the impacts of urbanization intensity and administration quality of parks in megacities. Therefore, 16 parks with gradients of construction ages and geographical locations in Beijing city were selected for investigation. Furthermore, an earthworm synthetic and simple index (ESI) for characterizing earthworm community has been developed to compensate for the lack of robustness by using single ecological indexes. The results showed that earthworm population density (38.6 ind/m2) and biomass (34.0 g/m2) in parks were comparable to those in other land use types in Beijing. Ecological groupings were dominated by disturbance-tolerant endogeic and deep soil-inhabiting anecic groups, and most of them were adults. The earthworm population was influenced by urbanization intensity, while the earthworm community composition, species biodiversity, and ESI were affected by administration quality of parks. The soil moisture and microbial biomass carbon were the key factors in shaping earthworm assemblages. ESI could be employed as an effective indicator in depicting character of earthworm fauna. This study highlighted the impacts of park traits on earthworms in urban parks. The variation in park traits that influence earthworm fauna was probably attributed to soil properties. Full article
(This article belongs to the Special Issue Soil Health Restoration and Environmental Management)
Show Figures

Figure 1

17 pages, 5432 KiB  
Article
Synthetic Soil Aggregates: Bioprinted Habitats for High-Throughput Microbial Metaphenomics
by Darian Smercina, Neerja Zambare, Kirsten Hofmockel, Natalie Sadler, Erin L. Bredeweg, Carrie Nicora, Lye Meng Markillie and Jayde Aufrecht
Microorganisms 2022, 10(5), 944; https://doi.org/10.3390/microorganisms10050944 - 30 Apr 2022
Cited by 2 | Viewed by 4165
Abstract
The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat [...] Read more.
The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat that mimics aspects of natural soil aggregates while providing a chemically defined and translucent alternative culturing method for soil microorganisms. Our Synthetic Soil Aggregates (SSAs) retain the porosity, permeability, and patchy resource distribution of natural soil aggregates—parameters that are expected to influence emergent microbial community interactions. We demonstrate the printability and viability of several different microorganisms within SSAs and show how the SSAs can be integrated into a multi-omics workflow for single SSA resolution genomics, metabolomics, proteomics, lipidomics, and biogeochemical assays. We study the impact of the structured habitat on the distribution of a model co-culture microbial community and find that it is significantly different from the spatial organization of the same community in liquid culture, indicating a potential for SSAs to reproduce naturally occurring emergent community phenotypes. The SSAs have the potential as a tool to help researchers quantify microbial scale processes in situ and achieve high-resolution data from the interplay between environmental properties and microbial ecology. Full article
(This article belongs to the Special Issue Advances in Soil Microbiome)
Show Figures

Figure 1

12 pages, 1683 KiB  
Article
Controlling Woody Weed Chinese Elm (Celtis sinensis Pers.) with Stem-Implanted Herbicide Capsules
by Ciara Jade O’Brien, Vincent Mellor and Victor Joseph Galea
Plants 2022, 11(3), 444; https://doi.org/10.3390/plants11030444 - 6 Feb 2022
Cited by 5 | Viewed by 3705
Abstract
Chinese elm [Celtis sinensis Pers.] is an emerging environmental weed naturalised throughout the coastal and riparian (creek-banks, river margins, and streams) regions of eastern Australia. Throughout this introduced range, its management is limited to the application of synthetic herbicides and mechanical clearing [...] Read more.
Chinese elm [Celtis sinensis Pers.] is an emerging environmental weed naturalised throughout the coastal and riparian (creek-banks, river margins, and streams) regions of eastern Australia. Throughout this introduced range, its management is limited to the application of synthetic herbicides and mechanical clearing operations (terrain and soil type permitting). The current mechanisms of chemical control (basal bark spraying, stem-injection, and cut-stump applications) often result in collateral damage to non-target native species (such as Eucalyptus spp. and Casuarina cunninghamiana Miq.) through herbicidal drift, runoff or leaching into adjacent habitats. This has raised concerns regarding the suitability of synthetic herbicides in ecologically sensitive (e.g., riparian zones, rainforest margins, and woodlands) or low-value habitats, thereby promoting significant developments in the fields of integrated weed management. This study investigated the effectiveness of a novel stem-implantation system for controlling woody weed species in the context of a conserved habitat. A replicated trial (n = 315) was established among a naturally occurring population of C. sinensis. This trial involved the mapping, measurement, and treatment of this invasive species with five encapsulated synthetic herbicides, as well as an untreated control and benchmark treatment (diesel + AccessTM). A significant effect (p < 0.05) on plant vigour and functional canopy was discerned for each assessment period following trial establishment. The highest incidence of mortality was observed among the individuals treated with glyphosate (245 mg/capsule), aminopyralid and metsulfuron-methyl (58.1 and 37.5 mg/capsule) and picloram (10 mg/capsule), achieving a similar response to the basal bark application of diesel and AccessTM (240 g/L triclopyr, 120 g/L picloram, and 389 g/L liquid hydrocarbon). This was also evidenced by a rapid reduction in functional canopy (i.e., no or little living leaf tissue) from three weeks after treatment. Unlike their industry counterparts, these encapsulated herbicides are immediately sealed into the vascular system of the target species by a plug. This significantly minimises the possibility of environmental or operator exposure to synthetic compounds by providing a targeted, readily calibrated herbicide application. Full article
(This article belongs to the Special Issue Sustainable Weed Management)
Show Figures

Figure 1

38 pages, 10558 KiB  
Review
Remote Sensing of Wetlands in the Prairie Pothole Region of North America
by Joshua Montgomery, Craig Mahoney, Brian Brisco, Lyle Boychuk, Danielle Cobbaert and Chris Hopkinson
Remote Sens. 2021, 13(19), 3878; https://doi.org/10.3390/rs13193878 - 28 Sep 2021
Cited by 21 | Viewed by 7550
Abstract
The Prairie Pothole Region (PPR) of North America is an extremely important habitat for a diverse range of wetland ecosystems that provide a wealth of socio-economic value. This paper describes the ecological characteristics and importance of PPR wetlands and the use of remote [...] Read more.
The Prairie Pothole Region (PPR) of North America is an extremely important habitat for a diverse range of wetland ecosystems that provide a wealth of socio-economic value. This paper describes the ecological characteristics and importance of PPR wetlands and the use of remote sensing for mapping and monitoring applications. While there are comprehensive reviews for wetland remote sensing in recent publications, there is no comprehensive review about the use of remote sensing in the PPR. First, the PPR is described, including the wetland classification systems that have been used, the water regimes that control the surface water and water levels, and the soil and vegetation characteristics of the region. The tools and techniques that have been used in the PPR for analyses of geospatial data for wetland applications are described. Field observations for ground truth data are critical for good validation and accuracy assessment of the many products that are produced. Wetland classification approaches are reviewed, including Decision Trees, Machine Learning, and object versus pixel-based approaches. A comprehensive description of the remote sensing systems and data that have been employed by various studies in the PPR is provided. A wide range of data can be used for various applications, including passive optical data like aerial photographs or satellite-based, Earth-observation data. Both airborne and spaceborne lidar studies are described. A detailed description of Synthetic Aperture RADAR (SAR) data and research are provided. The state of the art is the use of multi-source data to achieve higher accuracies and hybrid approaches. Digital Surface Models are also being incorporated in geospatial analyses to separate forest and shrub and emergent systems based on vegetation height. Remote sensing provides a cost-effective mechanism for mapping and monitoring PPR wetlands, especially with the logistical difficulties and cost of field-based methods. The wetland characteristics of the PPR dictate the need for high resolution in both time and space, which is increasingly possible with the numerous and increasing remote sensing systems available and the trend to open-source data and tools. The fusion of multi-source remote sensing data via state-of-the-art machine learning is recommended for wetland applications in the PPR. The use of such data promotes flexibility for sensor addition, subtraction, or substitution as a function of application needs and potential cost restrictions. This is important in the PPR because of the challenges related to the highly dynamic nature of this unique region. Full article
(This article belongs to the Special Issue Remote Sensing of Wetland Vegetation Patterns and Dynamics)
Show Figures

Figure 1

17 pages, 4798 KiB  
Article
Ecological and Environmental Effects of Estuarine Wetland Loss Using Keyhole and Landsat Data in Liao River Delta, China
by Hongyan Yin, Yuanman Hu, Miao Liu, Chunlin Li and Jiujun Lv
Remote Sens. 2021, 13(2), 311; https://doi.org/10.3390/rs13020311 - 18 Jan 2021
Cited by 11 | Viewed by 4835
Abstract
An estuarine wetland is an area of high ecological productivity and biodiversity, and it is also an anthropic activity hotspot area, which is of concern. The wetlands in estuarine areas have suffered declines, which have had remarkable ecological impacts. The land use changes, [...] Read more.
An estuarine wetland is an area of high ecological productivity and biodiversity, and it is also an anthropic activity hotspot area, which is of concern. The wetlands in estuarine areas have suffered declines, which have had remarkable ecological impacts. The land use changes, especially wetland loss, were studied based on Keyhole and Landsat images in the Liao River delta from 1962 to 2016. The dynamics of the ecosystem service values (ESVs), suitable habitat for birds, and soil heavy metal potential ecological risk were chosen to estimate the ecological effects with the benefit transfer method, synthetic overlaying method, and potential ecological risk index (RI) method, respectively. The driving factors of land use change and ecological effects were analyzed with redundancy analysis (RDA). The results showed that the built-up area increased from 95.98 km2 in 1962 to 591.49 km2 in 2016, and this large change was followed by changes in paddy fields (1351.30 to 1522.39 km2) and dry farmland (189.5 to 294.14 km2). The area of wetlands declined from 1823.16 km2 in 1962 to 1153.52 km2 in 2016, and this change was followed by a decrease in the water area (546.2 to 428.96 km2). The land use change was characterized by increasing built-up (516.25%), paddy fields (12.66%) and dry farmland (55.22%) areas and a decline in the wetland (36.73%) and water areas (21.47%) from 1962–2016. Wetlands decreased by 669.64 km2. The ESV values declined from 6.24 billion US$ to 4.46 billion US$ from 1962 to 2016, which means the ESVs were reduced by 19.26% due to wetlands being cultivated and the urbanization process. The area of suitable habitat for birds decreased by 1449.49 km2, or 61.42% of the total area available in 1962. Cd was the primary soil heavy metal pollutant based on its concentration, accumulation, and potential ecological risk contribution. The RDA showed that the driving factors of comprehensive ecological effects include wetland area, Cd and Cr concentration, river and oil well distributions. This study provides a comprehensive approach for estuarine wetland cultivation and scientific support for wetland conservation. Full article
(This article belongs to the Special Issue Remote Sensing of Wetlands)
Show Figures

Graphical abstract

32 pages, 54017 KiB  
Article
Monitoring and Characterizing Heterogeneous Mediterranean Landscapes with Continuous Textural Indices Based on VHSR Imagery
by Marc Lang, Samuel Alleaume, Sandra Luque, Nicolas Baghdadi and Jean-Baptiste Féret
Remote Sens. 2018, 10(6), 868; https://doi.org/10.3390/rs10060868 - 2 Jun 2018
Cited by 7 | Viewed by 6302
Abstract
Remote sensing tools (RS) can contribute to a better understanding of the diversity of natural and semi-naturals habitats, their spatial distribution, and their conservation status. RS can also provide a generic set of derived indicators to support local to regional habitat monitoring. Here [...] Read more.
Remote sensing tools (RS) can contribute to a better understanding of the diversity of natural and semi-naturals habitats, their spatial distribution, and their conservation status. RS can also provide a generic set of derived indicators to support local to regional habitat monitoring. Here we propose a set of synthetic continuous textural indices computed from high spatial resolution airborne images for the characterization of vegetation structure in very heterogeneous landscape mosaics. These indices are based on Fourier-based textural ordination (FOTO) of very-high-resolution images. We investigate the relationship between textural indices and a set of common landscape metrics derived from vegetation maps, identifying four strata of interest: bare soil, herbs, low ligneous, and high ligneous. We identify two continuous textural indices, the first one being related to vegetation strata fragmentation and the second being related to the dominance of high ligneous. The combination of these two textural indices with the Normalized Difference Vegetation Index (NDVI) provides a synoptic and accurate overview of the spatial organization of the different vegetation strata. The methodological approach presented herein has a generic value in response to national conservation targets in the context of mapping relevant habitat indicators. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

Back to TopTop