Enhancing Micropropagation of Adenophora liliifolia: Insights from PGRs, Natural Extracts, and pH Optimization
Abstract
:1. Introduction
2. Results
2.1. Experiments Utilizing Various Medium Components
2.1.1. Silver Nitrate (AgNO3)
2.1.2. 1-Naphthaleneacetic Acid (NAA)
2.1.3. Coconut Water (CW)
Coconut Water’s Impact on the Development of Plant Growth
Effect of Coconut Water on the Content of Chlorophyll and Carotenoids
2.2. Optimizing pH Levels
2.2.1. Developmental Impact of Varying pH Levels on Plants
2.2.2. Pigment Content of A. liliifolia in Response to Variations in pH
3. Discussion
4. Materials and Methods
- -
- Seed samples were collected from a small, randomly chosen natural population in Ócsa, encompassing multiple species. The population consisted of approximately 10 individuals dispersed throughout the region, inhabiting a riparian mixed-gallery forest habitat.
- -
- Jelitto® Seeds: Additionally, the seeds of Adenophora liliifolia, specifically designated as Item No. AA112, was acquired from Jelitto® (Schwarzenbach an der Saale, Germany). The seeds were utilized as explants to initiate the culture, and subsequently, the sterilized plantlets were employed for further experimentation. Notably, the plantlets cultivated in a controlled environment were selected as the primary specimens, resulting in a total of sixty individuals derived from seeds produced under controlled conditions.
4.1. Elements of Culture Media (Utilized in the Micropropagation of Adenophora liliifolia)
- (a)
- The culture medium was composed of ½ MS, MS/2 macronutrients, MS micronutrients, and MS vitamins, with the inclusion of 100 mg m-Inositol, 25 mg Fe-EDTA, 20 g sugar, and 7 g agar, and had a pH of 5.8.The experimental setup included the following concentrations of silver nitrate (AgNO3): the control concentration of 0 mg L−1 was compared to concentrations of 5 mg L−1, 10 mg L−1, and 20 mg L−1.
- (b)
- The growth medium utilized was 1-Naphthaleneacetic acid (NAA), which particularly consisted of ½ MS. The experiment employed several amounts of NAA: the control (0 mg L−1); 0.1 mg L−1; 0.5 mg L−1; and 1 mg L−1.
- (c)
- Coconut Water (CW): The culture medium for coconut water (CW) was prepared by combining half-strength Murashige and Skoog (½ MS) medium with additional MS micro and MS vitamin supplements. In addition, it was fortified with 50 mg of Fe-EDTA, 20 g of sugar, and 6 g of agar. Different amounts of CW were utilized in the experiment.
- (d)
- The control groups were exposed to different concentrations: 0, 25, 50, 100, and 200 mL L−1.The pH gradient was produced by utilizing a growing medium composed of ½ MS. The pH was modified by the addition of 1 N KOH and/or 1 N HCl. The experiment employed the following pH intervals: 5.6–5.8, 6.8–7.0, and 7.8–8.0.
4.2. Plantlet Manipulations and Environmental Conditions in the Growth Room
4.3. Vegetative Measurement
4.4. Pigment Content Measurement
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farjon, A.; Filer, D. An Atlas of the World’s Conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status; Brill: Leiden, The Netherlands, 2013. [Google Scholar]
- Denk, T.; Frotzler, N.; Davitashvili, N. Vegetational Patterns and Distribution of Relict Taxa in Humid Temperate Forests and Wetlands of Georgia (Transcaucasia). Biol. J. Linn. Soc. 2001, 72, 287–332. [Google Scholar] [CrossRef]
- Ravazzi, C. Late Quaternary history of spruce in southern Europe. Rev. Palaeobot. Polynol. 2002, 120, 131–177. [Google Scholar] [CrossRef]
- Šmídová, A.; Münzbergová, Z.; Plačková, I. Genetic Diversity of a Relict Plant Species, Ligularia sibirica (L.) Cass. (Asteraceae). Flora-Morphol. Distrib. Funct. Ecol. Plants 2011, 206, 151–157. [Google Scholar] [CrossRef]
- Hendrych, R.; Hendrychová, H. Die Pedicularis-Arten Der Tschechoslowakei, Früher Und Jetzt. Acta Univ. Carolinae. Biol. 1989, 32, 403–456. [Google Scholar]
- Kaplan, Z. Flora and Phytogeography of the Czech Republic. In Flora and Vegetation of the Czech Republic; Springer: Cham, Switzerland, 2017; pp. 89–163. [Google Scholar]
- Plieninger, T.; Hartel, T.; Martín-López, B.; Beaufoy, G.; Bergmeier, E.; Kirby, K.; Montero, M.J.; Moreno, G.; Oteros-Rozas, E.; Van Uytvanck, J. Wood-Pastures of Europe: Geographic Coverage, Social-Ecological Values, Conservation Management, and Policy Implications. Biol. Conserv. 2015, 190, 70–79. [Google Scholar] [CrossRef]
- Prausová, R.; Marečková, L.; Kapler, A.; Majeský, L.; Farkas, T.; Indreica, A.; Šafářová, L.; Kitner, M. Adenophora Liliifolia: Condition of Its Populations in Central Europe. Acta Biol. Cracoviensia Ser. Bot. 2016, 58, 83–105. [Google Scholar] [CrossRef]
- Tacik, T. Rodzina: Campanulaceae, Dzwonkowate. In Flora Polska. Rośliny naczyniowe Polski i ziem ościennych; Pawłowski, B., Jasiewicz, A., Eds.; PWN: Warszawa, Poland, 1971; Volume 12, pp. 50–99. (In Polish) [Google Scholar]
- Fedorov, A. Fłora SSSR. Flora partis Europaeae URSS. Vol. III: Magnoliopsida (Dicotyledones). Izd. ”Nauka”, Leningrad. 1978. [Google Scholar]
- Deyuan, H.; Song, G.; Lammers, T.; Klein, L. Adenophora Fischer, Mém. Soc. Imp. Nat. Moscou 6: 165. 1823. Flora China 2011, 19, 536–551. [Google Scholar]
- Bilz, M.; Kell, S.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; European Commission: Luxemburg; Colchester Print Group: Colchester, UK, 2011. [Google Scholar]
- Szymura, T.H. How Does Recent Vegetation Reflect Previous Systems of Forest Management. Polish J. Ecol. 2012, 60, 859–862. [Google Scholar]
- Müllerová, J.; Hédl, R.; Szabó, P. Coppice Abandonment and Its Implications for Species Diversity in Forest Vegetation. For. Ecol. Manag. 2015, 343, 88–100. [Google Scholar] [CrossRef]
- Siklósi, E. The Flora of the Pits in the Nature Preservation Area of Ócsa. Stud. Bot. Hung. 1984, 17, 41–54. [Google Scholar]
- Farkas, T.; Vojtkó, A. Az Illatos Csengettyűvirág (Adenophora liliifolia L./Ledeb. Ex A.DC.) Aktuális Helyzete, Morfológiai Változatossága És Élőhelyválasztása Magyarországon. Bot. Közlemények 2013, 100, 77–102. [Google Scholar]
- Moser, D. Merkblätter Artenschutz, Blütenpflanzen und Farne. Adenophora liliifolia. Buwal/Skew/ZDSF/Pronatura, Schweiz. 1999; pp. 36–37. [Google Scholar]
- Dražil, T. Ls8 Jedl’ové a Jedl’ovo-Smrekové Lesy. [Ls8 Fir and Fir-Spruce Forests.]. Katalóg Biotopov Slov. 2002, 108–109. Available online: https://www.sopsr.sk/dokumenty/Katalog-biotopov-SK.pdf (accessed on 7 May 2024).
- Vaculná, L.; Majeský, Ľ.; Ali, T.; Seregin, A.P.; Prausová, R.; Kapler, A.; Iakushenko, D.; Thines, M.; Kitner, M. Genetic Structure of Endangered Species Adenophora liliifolia and Footprints of Postglacial Recolonisation in Central Europe. Conserv. Genet. 2021, 22, 1069–1084. [Google Scholar] [CrossRef]
- Reed, B.M.; Sarasan, V.; Kane, M.; Bunn, E.; Pence, V.C. Biodiversity Conservation and Conservation Biotechnology Tools. Vitr. Cell. Dev. Biol. Plant 2011, 47, 1–4. [Google Scholar] [CrossRef]
- Chauhan, R.S. Biotechnological Approaches for Conservation of Rare, Endangered and Threatened Plants. Int. J. Sci. Res. Publ. 2016, 6, 10–14. [Google Scholar]
- Roshanfekrrad, M.; Zarghami, R.; Hassani, H.; Zakizadeh, H.; Salari, A. Effect of AgNO3 and BAP on Root as a Novel Explant in Date Palm (Phoenix dactylifera cv. Medjool) Somatic Embryogenesis. Pak. J. Biol. Sci. 2017, 20, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Ehsanpour, A. Ethylene Inhibition with Silver Nitrate (AgNO3) and Pyrazinamide (PZA) Ameliorates In Vitro Salt Tolerance of Tomato (Lycopersicon esculentum L) Plantlets. Plant Cell Tissue Organ Cult. 2023, 154, 239–247. [Google Scholar] [CrossRef]
- Sevİnc, E.S.; Ak, B.E.; Hatipoglu, I.; Ekinci, H. Effects of Different Combinations of Growth Regulators on the In Vitro Growth Parameters of Poncirus trifoliata L. (Raf.). Int. J. Agric. Environ. Food Sci. 2022, 6, 598–604. [Google Scholar] [CrossRef]
- Sarropoulou, V.; Dimassi-Theriou, K.; Therios, I. Effect of the Ethylene Inhibitors Silver Nitrate, Silver Sulfate, and Cobalt Chloride on Micropropagation and Biochemical Parameters in the Cherryrootstocks CAB-6P and Gisela 6. Turk. J. Biol. 2016, 40, 670–683. [Google Scholar] [CrossRef]
- Jaberi, M.; Azadi, P.; Gharehyazi, B.; Khosrowchahli, M.; Sharafi, A.; Aboofazeli, N.; Bagheri, H. Silver Nitrate and Adenine Sulphate Induced High Regeneration Frequency in the Recalcitrant Plant Cosmos Bipinnatus Using Cotyledon Explants. J. Hortic. Sci. Biotechnol. 2018, 93, 204–208. [Google Scholar] [CrossRef]
- Isah, T.; Qurratul; Umar, S. Influence of Silver Nitrate and Copper Sulfate on Somatic Embryogenesis, Shoot Morphogenesis, Multiplication, and Associated Physiological Biochemical Changes in Gladiolus hybridus L. Plant Cell Tissue Organ Cult. 2022, 149, 563–587. [Google Scholar]
- Vinod Kumar, V.K.; Giridhar Parvatam, G.P.; Ravishankar, G.A. AgNO3-a Potential Regulator of Ethylene Activity and Plant Growth Modulator. Electron. J. Biotechnol. 2009, 12, 8–9. [Google Scholar]
- McDaniel, B.K.; Binder, B.M. Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis Thaliana. J. Biol. Chem. 2012, 287, 26094–26103. [Google Scholar] [CrossRef] [PubMed]
- Moniuszko, G. Ethylene Signaling Pathway Is Not Linear, However Its Lateral Part Is Responsible for Sensing and Signaling of Sulfur Status in Plants. Plant Signal. Behav. 2015, 10, e1067742. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.C.C.; Ribeiro, W.S.; de Oliveira, M.M.T.; da Costa, L.C.; Finger, F.L. Ethylene, 1-Methylcyclopropene and Silver Thiosulfate on the Post-Production of Ornamental Pepper. Ciência Rural 2016, 47, e20151611. [Google Scholar] [CrossRef]
- Kumar, P.G.; Sivakumar, S.; Siva, G.; Vigneswaran, M.; Senthil Kumar, T.; Jayabalan, N. Silver Nitrate Promotes High-Frequency Multiple Shoot Regeneration in Cotton (Gossypium hirsutum L.) by Inhibiting Ethylene Production and Phenolic Secretion. Vitr. Cell. Dev. Biol. 2016, 52, 408–418. [Google Scholar] [CrossRef]
- Asgher, M.; Khan, M.I.R.; Anjum, N.A.; Verma, S.; Vyas, D.; Per, T.S.; Masood, A.; Khan, N.A. Ethylene and Polyamines in Counteracting Heavy Metal Phytotoxicity: A Crosstalk Perspective. J. Plant Growth Regul. 2018, 37, 1050–1065. [Google Scholar] [CrossRef]
- Park, E.-H.; Bae, H.; Park, W.T.; Kim, Y.B.; Chae, S.C.; Park, S.U. Improved Shoot Organogenesis of Gloxinia (‘Sinningia Speciosa’) Using Silver Nitrate and Putrescine Treatment. Plant Omics 2012, 5, 6–9. [Google Scholar]
- Tahoori, F.; Majd, A.; Nejadsattari, T.; Ofoghi, H.; Iranbakhsh, A. Effects of Silver Nitrate (AgNO3) on Growth and Anatomical Structure of Vegetative Organs of Liquorice (Glycyrrhiza glabra L.) under in Vitro Condition. Plant Omics 2018, 11, 153–160. [Google Scholar] [CrossRef]
- Sankar, A.; Mary, S.L.; Vijayakumar, A.; Rani, R.K.; Selvam, J.R.; Kohila, R.; Liby, I.; Vadivukarasi, S.; Ganesh, D. Phloroglucinol Enhances Shoot Proliferation in Nodal Explants of Vanilla planifolia Andr. J. Plantn Crop. 2008, 36, 127–131. [Google Scholar]
- Steephen, M.; Nagarajan, S.; Ganesh, D. Phloroglucinol and Silver Nitrate Enhances Axillary Shoot Proliferation in Nodal Explants of Vitex negundo L.—An Aromatic Medicinal Plant. Iran. J. Biotechnol. 2010, 8, 82–89. [Google Scholar]
- Arya, A.; Husen, A. Role of Various Auxins in Adventitious Root Formation. In Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings; Elsevier: Amsterdam, The Netherlands, 2022; pp. 213–238. [Google Scholar]
- Pant, B.; Thapa, D. In Vitro Mass Propagation of an Epiphytic Orchid, Dendrobium primulinum Lindl. through Shoot Tip Culture. Afr. J. Biotechnol. 2012, 11, 9970–9974. [Google Scholar]
- Hartati, S.; Arniputri, R.B.; Soliah, L.A.; Cahyono, O. Effects of Organic Additives and Naphthalene Acetid Acid (NAA) Application on the In Vitro Growth of Black Orchid Hybrid (Coelogyne pandurata Lindley). Bulg. J. Agric. Sci. 2017, 23, 951–957. [Google Scholar]
- Ebrahimzadegan, R.; Maroufi, A. In Vitro Regeneration and Agrobacterium-Mediated Genetic Transformation of Dragon’s Head Plant (Lallemantia iberica). Sci. Rep. 2022, 12, 1784. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Kaviani, B.; Nematzadeh, G.; Negahdar, N. Micropropagation of Orchis Catasetum—A Rare and Endangered Orchid. Acta Sci. Pol. Hortorum Cultus 2014, 13, 197–205. [Google Scholar]
- Rostami, M.; Movahedi, Z. Evaluating the Effects of Naphthalene Acetic Acid (NAA) on Morpho-Physiological Traits of Valerian (Valeriana officinalis L.) in Aeroponic System. Plant Physiol. 2016, 6, 1751–1759. [Google Scholar]
- Putri, A.I.; Kartikawati, N.K.; Nirsatmanto, A.; Sunarti, S.; Haryjanto, L.; Herawan, T.; Santosa, P.B.; Wahyuningtyas, R.S.; Lestari, F.; Rimbawanto, A. Tissue Culture of Gerunggang (Cratoxylum arborescens (Vahl) Blume): Multipurpose Native Species of Indonesian Peatland. Forest Sci. Technol. 2023, 19, 171–178. [Google Scholar] [CrossRef]
- Mullin, A.; Costa, B.N.S.; Downing, J.; Khoddamzadeh, A.A. Conservation Horticulture: In Vitro Micropropagation and Acclimatization of Selected Florida Native Orchids. HortScience 2022, 57, 1159–1166. [Google Scholar] [CrossRef]
- Yong, J.W.H.; Ge, L.; Ng, Y.F.; Tan, S.N. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water. Molecules 2009, 14, 5144–5164. [Google Scholar] [CrossRef]
- Ichihashi, S.; Islam, M.O. Effects of Complex Organic Additives on Callus Growth in Three Orchid Genera, Phalaenopsis, Doritaenopsis, and Neofinetia. J. Jpn. Soc. Hortic. Sci. 1999, 68, 269–274. [Google Scholar] [CrossRef]
- Deeksha Raj, N.; Sathyanarayana, B.N.; Madegowda, J.; Venkatesha Murty, P.; Gowda, B.; Devakumar, A.; Anil, V.; Bennur, P. Coconut Water to the Rescue of Dendrobium ovatum (L.) Kraenzl., a RET Species of Orchid through Enhanced Proliferation of Shoots from PLBs under In Vitro Conditions. Pharma Innov. J. 2021, 10, 273–278. [Google Scholar]
- Hafsan, H.; Mustami, M.K.; Masriany, M.; Aziz, I.R.; Mustakim, M. The Utilization of Coconut Water Waste as a Growth Media of the In Vitro Potato Cutting. Sci. Educ. 2019, 7, 108. [Google Scholar] [CrossRef]
- Aishwarya, P.P.; Seenivasan, N.; Naik, D.S. Coconut Water as a Root Hormone: Biological and Chemical Composition and Applications. Magnes 2022, 22, 31–65. [Google Scholar]
- Kafle, D.P.; Parajuli, S.; Upreti, A.; Gauchan, D.P. Effect of Coconut Water and GA3 Concentrations on In Vitro Clonal Propagation of Potato Cultivars from Nepal. Nepal J. Biotechnol. 2023, 11, 27–34. [Google Scholar] [CrossRef]
- Takahashi, N.; Inagaki, S.; Nishimura, K.; Sakakibara, H.; Antoniadi, I.; Karady, M.; Umeda, M. DNA damage inhibits root growth by enhancing cytokinin biosynthesis in Arabidopsis thaliana. bioRxiv 2020. [Google Scholar] [CrossRef]
- Mawarni, L.; Hasanah, Y.; Rusmarilin, H. Morphophysiological Characters of Binahong (Anredera cordifolia (L.) Steenis) with Application of Natural Growth Regulators. IOP Conf. Ser. Earth Environ. Sci. 2021, 782, 042041. [Google Scholar] [CrossRef]
- Geneve, R.L.; Kester, D.E.; Davies, F.T.; Hartmann, H.T.; Geneve, R.L. Hartmann and Kester’s Plant Propagation: Principles and Practices: Glossary; Prentice Hall: Hoboken, HJ, USA, 2002. [Google Scholar]
- Chen, C.-C.; Bates, R.; Carlson, J. Effect of Environmental and Cultural Conditions on Medium PH and Explant Growth Performance of Douglas-Fir (Pseudotsuga menziesii) Shoot Cultures. F1000Research 2015, 3, 298. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; Klerk, G.-J.D. The Components of Plant Tissue Culture Media II: Organic Additions, Osmotic and PH Effects, and Support Systems. In Plant Propagation by Tissue Culture; Springer: Dordrecht, The Netherlands, 2008; pp. 115–173. [Google Scholar]
- Pasternak, T.P.; Steinmacher, D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. Plants 2024, 13, 327. [Google Scholar] [CrossRef]
- Shi, X.; Yang, L.; Yan, G.; Du, G. Medium pH between 5.5 and 7.5 Has Minimal Effects on Tissue Culture of Apple. HortScience 2017, 52, 475–478. [Google Scholar] [CrossRef]
- Del Campo, J. Carotenoid Content of Chlorophycean Microalgae: Factors Determining Lutein Accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 2000, 76, 51–59. [Google Scholar] [CrossRef]
- Khalil, Z.I.; Asker, M.M.S.; El-Sayed, S.; Kobbia, I.A. Effect of pH on Growth and Biochemical Responses of Dunaliella Bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotechnol. 2010, 26, 1225–1231. [Google Scholar] [CrossRef]
- Emiliani, J.; D’Andrea, L.; Lorena Falcone Ferreyra, M.; Maulión, E.; Rodriguez, E.; Rodriguez-Concepción, M.; Casati, P. A Role for β,β-Xanthophylls in Arabidopsis UV-B Photoprotection. J. Exp. Bot. 2018, 69, 4921–4933. [Google Scholar] [CrossRef]
- Didyk, N.; Ivanytska, B.; Lysenko, T.; Zaimenko, N. Interactive effect of simulated acid rain, calcium silicate, and γ- aminobutyric acid on physiological processes in corn and wheat. Plant Introd. 2022, 95–96, 57–67. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- D’Agostino, R.B.; Belanger, A.; D’Agostino, R.B. A Suggestion for Using Powerful and Informative Tests of Normality. Am. Stat. 1990, 44, 316. [Google Scholar] [CrossRef]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2013. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Levene, H. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; SAGE: London, UK, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, Z.; Portocarrero, L.K.; Honfi, P.; Kohut, I.; Eisa, E.A.; Tilly-Mándy, A. Enhancing Micropropagation of Adenophora liliifolia: Insights from PGRs, Natural Extracts, and pH Optimization. Plants 2024, 13, 1735. https://doi.org/10.3390/plants13131735
Kovács Z, Portocarrero LK, Honfi P, Kohut I, Eisa EA, Tilly-Mándy A. Enhancing Micropropagation of Adenophora liliifolia: Insights from PGRs, Natural Extracts, and pH Optimization. Plants. 2024; 13(13):1735. https://doi.org/10.3390/plants13131735
Chicago/Turabian StyleKovács, Zsófia, Liz Kelly Portocarrero, Péter Honfi, Ildikó Kohut, Eman Abdelhakim Eisa, and Andrea Tilly-Mándy. 2024. "Enhancing Micropropagation of Adenophora liliifolia: Insights from PGRs, Natural Extracts, and pH Optimization" Plants 13, no. 13: 1735. https://doi.org/10.3390/plants13131735
APA StyleKovács, Z., Portocarrero, L. K., Honfi, P., Kohut, I., Eisa, E. A., & Tilly-Mándy, A. (2024). Enhancing Micropropagation of Adenophora liliifolia: Insights from PGRs, Natural Extracts, and pH Optimization. Plants, 13(13), 1735. https://doi.org/10.3390/plants13131735