Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,010)

Search Parameters:
Keywords = synthetic fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4132 KiB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 1424 KiB  
Article
Synthesis and Trapping of the Elusive Ortho-Iminoquinone Methide Derived from α-Tocopheramine and Comparison to the Case of α-Tocopherol
by Anjan Patel and Thomas Rosenau
Molecules 2025, 30(15), 3257; https://doi.org/10.3390/molecules30153257 - 4 Aug 2025
Abstract
Tocopheramines are a class of antioxidants which are distinguished from tocopherols (vitamin E) by the presence of an amino group instead of the phenolic hydroxyl group. α-Tocopheramine is intensively studied for biomedical applications but also as a stabilizer for synthetic and natural polymers, [...] Read more.
Tocopheramines are a class of antioxidants which are distinguished from tocopherols (vitamin E) by the presence of an amino group instead of the phenolic hydroxyl group. α-Tocopheramine is intensively studied for biomedical applications but also as a stabilizer for synthetic and natural polymers, in particular for cellulose solutions and spinning dopes for cellulosic fibers. This study addresses a fundamental difference in the oxidation chemistry of α-tocopheramine and its tocopherol counterpart: while the formation of the ortho-quinone methide (o-QM) involving C-5a is one of the most fundamental reactions of α-tocopherol, the corresponding ortho-iminoquinone methide (o-IQM) derived from α-tocopheramine has been elusive so far. Synthesis of the transient intermediate succeeded initially via 5a-hydroxy-α-tocopheramine, and its occurrence was confirmed by dimerization to the corresponding spiro-dimer and by trapping with ethyl vinyl ether. Eventually, suitable oxidation conditions were found which allowed for the generation of the o-IQM directly from α-tocopheramine. The underlying oxidation chemistry of α-tocopherol and α-tocopheramine is concisely discussed. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Scheme 1

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 142
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 261
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 197
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

27 pages, 4682 KiB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Viewed by 197
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Viewed by 382
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

18 pages, 4381 KiB  
Article
Glucocorticoid-Induced Muscle Satellite Cell-Derived Extracellular Vesicles Mediate Skeletal Muscle Atrophy via the miR-335-5p/MAPK11/iNOS Pathway
by Pei Ma, Jiarui Wu, Ruiyuan Zhou, Linli Xue, Xiaomao Luo, Yi Yan, Jiayin Lu, Yanjun Dong, Jianjun Geng and Haidong Wang
Biomolecules 2025, 15(8), 1072; https://doi.org/10.3390/biom15081072 - 24 Jul 2025
Viewed by 357
Abstract
Prolonged high-dose administration of synthetic glucocorticoids (GCs) leads to limb muscle atrophy and weakness, yet its underlying mechanisms remain incompletely understood. Muscle fibers and muscle satellite cells (MSCs) are essential for skeletal muscle development and associated pathologies. This study demonstrates that dexamethasone (Dex) [...] Read more.
Prolonged high-dose administration of synthetic glucocorticoids (GCs) leads to limb muscle atrophy and weakness, yet its underlying mechanisms remain incompletely understood. Muscle fibers and muscle satellite cells (MSCs) are essential for skeletal muscle development and associated pathologies. This study demonstrates that dexamethasone (Dex) induced MSC-derived extracellular vesicles (EVs) impair myogenesis in muscle fiber-like cells (MFLCs) via inducible nitric oxide synthase (iNOS) suppression. High-throughput sequencing revealed a marked upregulation of miR-335-5p in MSC-derived EVs following Dex treatment. Mechanistically, EV miR-335-5p targeted MAPK11, leading to iNOS downregulation and subsequent UPS activation in MFLCs, which directly promoted muscle protein degradation. Collectively, our findings identify the EV miR-335-5p/MAPK11/iNOS axis as a critical mediator of GC-induced muscle atrophy, offering novel insights into therapeutic strategies targeting EV-mediated signaling in muscle wasting disorders. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

19 pages, 10032 KiB  
Article
Synthesis, Characterization, and Enzyme Conjugation of Polycaprolactone Nanofibers for Tissue Engineering
by Chandana B. Shivakumar, Nithya Rani Raju, Pruthvi G. Ramu, Prashant M. Vishwanath, Ekaterina Silina, Victor Stupin and Raghu Ram Achar
Pharmaceutics 2025, 17(8), 953; https://doi.org/10.3390/pharmaceutics17080953 - 23 Jul 2025
Viewed by 388
Abstract
Background/Objectives: A nanostructured membrane of polycaprolactone (a synthetic polymer) was synthesized using an electrospinning technique aiming to enhance its hydrophilicity and rate of degradation by surface modification via aminolysis. Since polycaprolactone nanofibrous films are naturally hydrophobic and with slow degradation, which restricts [...] Read more.
Background/Objectives: A nanostructured membrane of polycaprolactone (a synthetic polymer) was synthesized using an electrospinning technique aiming to enhance its hydrophilicity and rate of degradation by surface modification via aminolysis. Since polycaprolactone nanofibrous films are naturally hydrophobic and with slow degradation, which restricts their use in biological systems, amino groups were added to the fiber surface using the aminolysis technique, greatly increasing the wettability of the membranes. Methods: Polycaprolactone nanofibrous membranes were synthesized via the electrospinning technique and surface modification by aminolysis. Trypsin, pepsin, and pancreatin were conjugated onto the aminolyzed PNF surface to further strengthen biocompatibility by enhancing the hydrophilicity, porosity, and biodegradation rate. SEM, FTIR, EDX, and liquid displacement method were performed to investigate proteolytic efficiency and morphological and physical characteristics such as hydrophilicity, porosity, and degradation rates. Results: Enzyme activity tests, which showed a zone of clearance, validated the successful enzyme conjugation and stability over a wide range of pH and temperatures. Scanning electron microscopy (SEM) confirms the smooth morphology of nanofibers with diameters ranging from 150 to 950 nm. Fourier transform infrared spectroscopy (FTIR) revealed the presence of O–H, C–O, C=O, C–N, C–H, and O–H functional groups. Energy-dispersive X-ray (EDX) elemental analysis indicates the presence of carbon, oxygen, and nitrogen atoms owing to the presence of peptide and amide bonds. The liquid displacement technique and contact angle proved that Pepsin-PNFs possess notably increased porosity (88.50% ± 0.31%) and hydrophilicity (57.6° ± 2.3 (L), 57.9° ± 2.5 (R)), respectively. Pancreatin-PNFs demonstrated enhanced enzyme activity and degradation rate on day 28 (34.61%). Conclusions: These enzyme-conjugated PNFs thus show improvements in physicochemical properties, making them ideal candidates for various biomedical applications. Future studies must aim for optimization of enzyme conjugation and in vitro and in vivo performance to investigate the versatility of these scaffolds. Full article
Show Figures

Figure 1

22 pages, 1486 KiB  
Review
Review on Aging Behavior and Durability Enhancement of Bamboo Fiber-Reinforced Polymer Composites
by Sameeksha Shettigar, Mandya Channegowda Gowrishankar and Manjunath Shettar
Molecules 2025, 30(15), 3062; https://doi.org/10.3390/molecules30153062 - 22 Jul 2025
Viewed by 245
Abstract
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation [...] Read more.
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation of mechanical and structural performance of bamboo fiber-reinforced polymer composites due to moisture absorption, fiber swelling, and fiber–matrix interface deterioration. To mitigate these aging effects, the study evaluates and compares multiple strategies, including chemical and physical fiber surface treatments, filler additions, and fiber hybridization, which aim to enhance moisture resistance and mechanical stability. These composites are relevant in automotive interiors, construction panels, building insulation, and consumer goods due to their eco-friendly nature and potential to replace conventional synthetic composites. This review is necessary to consolidate current knowledge, identify effective enhancement approaches, and guide the development of environmentally resilient bamboo fiber-reinforced polymer composites for real-world applications. Full article
(This article belongs to the Special Issue Advances in Natural Fiber Composites)
Show Figures

Figure 1

17 pages, 1171 KiB  
Article
An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets
by Alexis Conides, Efthimia Cotou, Dimitris Klaoudatos and Branko Glamuzina
J. Mar. Sci. Eng. 2025, 13(8), 1384; https://doi.org/10.3390/jmse13081384 - 22 Jul 2025
Viewed by 303
Abstract
Based on the experience gained worldwide from potential solutions to the fouling problem of fisheries and aquaculture infrastructure, we attempted to design, construct and test the antifouling efficiency of a new hybrid filament created from non-laminated copper wire braided with synthetic fibers made [...] Read more.
Based on the experience gained worldwide from potential solutions to the fouling problem of fisheries and aquaculture infrastructure, we attempted to design, construct and test the antifouling efficiency of a new hybrid filament created from non-laminated copper wire braided with synthetic fibers made of Dyneema. The design involved the creation of a hybrid twine substituting a percentage of the synthetic fibers with 0.1–0.15 mm diameter copper wire at 5%, 10%, 20% and 40% levels. There is limited information in the international literature for comparison with our results, since there has never been any attempt to create such a hybrid net. The results showed that for the 6 mm mesh, the maximum openness obtained after the 8-month experimental period was 8.72%, with Cu wire substitution at 35%. For the 12 mm mesh, these values were 27.07% at 26%, and for the 20 mm mesh, they were 33.68% at 28%. A conservative average independent from mesh size to achieve optimum openness in the long term is 30 ± 4.73% Cu wire substitution. In addition, we found that both the mesh size (mm) and the copper substitution percentage affected the fouling process during the experimental period, which lasted 8 months. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

17 pages, 2862 KiB  
Article
Crack Assessment Using Acoustic Emission in Cement-Free High-Performance Concrete Under Mechanical Stress
by Muhammad Ali Rostampour, Davood Mostofinejad, Hadi Bahmani and Hasan Mostafaei
J. Compos. Sci. 2025, 9(7), 380; https://doi.org/10.3390/jcs9070380 - 19 Jul 2025
Cited by 1 | Viewed by 332
Abstract
This study investigates the cracking behavior of high-performance calcium oxide-activated concrete incorporating basalt and synthetic macro fibers under compressive and flexural loading. Acoustic emission (AE) monitoring was employed to capture real-time crack initiation and propagation, offering insights into damage evolution mechanisms. A comprehensive [...] Read more.
This study investigates the cracking behavior of high-performance calcium oxide-activated concrete incorporating basalt and synthetic macro fibers under compressive and flexural loading. Acoustic emission (AE) monitoring was employed to capture real-time crack initiation and propagation, offering insights into damage evolution mechanisms. A comprehensive series of uniaxial compression and four-point bending tests were conducted on fiber-reinforced and plain specimens. AE parameters, including count, duration, risetime, amplitude, and signal energy, were analyzed to quantify crack intensity and classify fracture modes. The results showed that tensile cracking dominated even under compressive loading due to lateral stresses, while fiber inclusion significantly enhanced toughness by promoting distributed microcracking and reducing abrupt energy release. Basalt fibers were particularly effective under flexural loading, increasing the post-peak load-bearing capacity, whereas synthetic macro fibers excelled in minimizing tensile crack occurrence under compression. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

21 pages, 2143 KiB  
Article
Physically Informed Synthetic Data Generation and U-Net Generative Adversarial Network for Palimpsest Reconstruction
by Jose L. Salmeron and Eva Fernandez-Palop
Mathematics 2025, 13(14), 2304; https://doi.org/10.3390/math13142304 - 18 Jul 2025
Viewed by 235
Abstract
This paper introduces a novel adversarial learning framework for reconstructing hidden layers in historical palimpsests. Recovering text hidden in historical palimpsests is complicated by various artifacts, such as ink diffusion, degradation of the writing substrate, and interference between overlapping layers. To address these [...] Read more.
This paper introduces a novel adversarial learning framework for reconstructing hidden layers in historical palimpsests. Recovering text hidden in historical palimpsests is complicated by various artifacts, such as ink diffusion, degradation of the writing substrate, and interference between overlapping layers. To address these challenges, the authors of this paper combine a synthetic data generator grounded in physical modeling with three generative architectures: a baseline VAE, an improved variant with stronger regularization, and a U-Net-based GAN that incorporates residual pathways and a mixed loss strategy. The synthetic data engine aims to emulate key degradation effects—such as ink bleeding, the irregularity of parchment fibers, and multispectral layer interactions—using stochastic approximations of underlying physical processes. The quantitative results suggest that the U-Net-based GAN architecture outperforms the VAE-based models by a notable margin, particularly in scenarios with heavy degradation or overlapping ink layers. By relying on synthetic training data, the proposed method facilitates the non-invasive recovery of lost text in culturally important documents, and does so without requiring costly or specialized imaging setups. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 297
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

14 pages, 2997 KiB  
Article
The Development of a Multilayer Transdermal Patch Platform Based on Electrospun Nanofibers for the Delivery of Caffeine
by Jorge Teno, Zoran Evtoski, Cristina Prieto and Jose M. Lagaron
Pharmaceutics 2025, 17(7), 921; https://doi.org/10.3390/pharmaceutics17070921 - 16 Jul 2025
Viewed by 367
Abstract
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various [...] Read more.
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various permeation enhancers. A backing layer made of annealed electrospun polycaprolactone (PCL) facilitated the lamination of the two layers to form the final multilayer patch. Comprehensive characterization was conducted, utilizing scanning electron microscopy (SEM) to assess the fiber morphology, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for chemical detection and to assess the stability of the caffeine, and differential scanning calorimetry (DSC) along with wide-angle X-ray scattering (WAXS) to analyze the physical state of the caffeine within the fibers of the active layer. Additionally, Franz cell permeation studies were performed using both synthetic membranes (Strat-M) and ex vivo human stratum corneum (SC) to evaluate and model the permeation kinetics. Results: These experiments demonstrated the significant role of enhancers in modulating the caffeine permeation rates provided by the patch, achieving permeation rates of up to 0.73 mg/cm2 within 24 h. Conclusions: This work highlights the potential of using electro-hydrodynamic processing technology to develop innovative transdermal delivery systems for drugs, offering a promising strategy for enhancing efficacy and innovative therapeutic direct plasma administration. Full article
(This article belongs to the Special Issue Dermal and Transdermal Drug Delivery Systems)
Show Figures

Figure 1

Back to TopTop