Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,187)

Search Parameters:
Keywords = synthetic development measures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 786 KiB  
Article
Frictional Cohesive Force and Multifunctional Simple Machine for Advanced Engineering and Biomedical Applications
by Carlos Aurelio Andreucci, Ahmed Yaseen and Elza M. M. Fonseca
Appl. Sci. 2025, 15(15), 8215; https://doi.org/10.3390/app15158215 - 23 Jul 2025
Abstract
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often [...] Read more.
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often rely solely on external threading for fixation, leading to limited cohesion, poor integration, or early loosening under cyclic loading. In response to this problem, we designed and built a novel device that leverages a unique mechanical principle to simultaneously perforate, collect, and compact the substrate material during insertion. This mechanism results in an internal material interlock, enhancing cohesion and stability. Drawing upon principles from physics, chemistry, engineering, and biology, we evaluated its biomechanical behavior in synthetic bone analogs. The maximum insertion (MIT) and removal torques (MRT) were measured on synthetic osteoporotic bones using a digital torquemeter, and the values were compared directly. Experimental results demonstrated that removal torque (mean of 21.2 Ncm) consistently exceeded insertion torque (mean of 20.2 Ncm), indicating effective material interlocking and cohesive stabilization. This paper reviews the relevant literature, presents new data, and discusses potential applications in civil infrastructure, aerospace, and energy systems where substrate cohesion is critical. The findings suggest that this new simple machine offers a transformative approach to improving fixation and integration across multiple domains. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 1519 KiB  
Article
Rare Earth Element Detection and Quantification in Coal and Rock Mineral Matrices
by Chet R. Bhatt, Daniel A. Hartzler and Dustin L. McIntyre
Chemosensors 2025, 13(8), 270; https://doi.org/10.3390/chemosensors13080270 - 23 Jul 2025
Abstract
As global demand for rare earth elements (REEs) increases, maintaining the production and supply chain is critical. Technologies capable of being used in the field and in situ in the subsurface for rapid REE detection and quantification facilitates the efficient mining of known [...] Read more.
As global demand for rare earth elements (REEs) increases, maintaining the production and supply chain is critical. Technologies capable of being used in the field and in situ in the subsurface for rapid REE detection and quantification facilitates the efficient mining of known resources and exploration of new and unconventional resources. Laser-induced breakdown spectroscopy (LIBS) is a promising technique for rapid elemental analysis both in the laboratory and in the field. Multiple articles have been published evaluating LIBS for detection and quantification of REEs; however, REEs in their natural deposits have not been adequately studied. In this work, detection and quantification of two REEs, La and Nd, have been studied in both synthetic and natural mineral matrices at concentrations relevant to REE extraction. Measurements were performed on REE-containing rock and coal samples (natural and synthetic) utilizing different LIBS instruments and techniques, specifically a commercial benchtop instrument, a custom benchtop instrument (single- and double-pulse modes), and a custom LIBS probe currently being developed for in situ, subsurface, borehole wall detection and quantification of REEs. Plasma expansion, emission intensity, detection limits, and double-pulse signal enhancement were studied. The limits of detection (LOD) were found to be 10/14 ppm for La and 15/25 ppm for Nd in simulated coal/rock matrices in single-pulse mode. Signal enhancement of 3.5 to 6-fold was obtained with double-pulse mode as compared to single-pulse operation. Full article
(This article belongs to the Special Issue Application of Laser-Induced Breakdown Spectroscopy, 2nd Edition)
Show Figures

Figure 1

23 pages, 24301 KiB  
Article
Robust Optical and SAR Image Registration Using Weighted Feature Fusion
by Ao Luo, Anxi Yu, Yongsheng Zhang, Wenhao Tong and Huatao Yu
Remote Sens. 2025, 17(15), 2544; https://doi.org/10.3390/rs17152544 - 22 Jul 2025
Abstract
Image registration constitutes the fundamental basis for the joint interpretation of synthetic aperture radar (SAR) and optical images. However, robust image registration remains challenging due to significant regional heterogeneity in remote sensing scenes (e.g., co-existing urban and marine areas within a single image). [...] Read more.
Image registration constitutes the fundamental basis for the joint interpretation of synthetic aperture radar (SAR) and optical images. However, robust image registration remains challenging due to significant regional heterogeneity in remote sensing scenes (e.g., co-existing urban and marine areas within a single image). To overcome this challenge, this article proposes a novel optical–SAR image registration method named Gradient and Standard Deviation Feature Weighted Fusion (GDWF). First, a Block-local standard deviation (Block-LSD) operator is proposed to extract block-based feature points with regional adaptability. Subsequently, a dual-modal feature description is developed, constructing both gradient-based descriptors and local standard deviation (LSD) descriptors for the neighborhoods surrounding the detected feature points. To further enhance matching robustness, a confidence-weighted feature fusion strategy is proposed. By establishing a reliability evaluation model for similarity measurement maps, the contribution weights of gradient features and LSD features are dynamically optimized, ensuring adaptive performance under varying conditions. To verify the effectiveness of the method, different optical and SAR datasets are used to compare it with the currently advanced algorithms MOGF, CFOG, and FED-HOPC. The experimental results demonstrate that the proposed GDWF algorithm achieves the best performance in terms of registration accuracy and robustness among all compared methods, effectively handling optical–SAR image pairs with significant regional heterogeneity. Full article
Show Figures

Figure 1

15 pages, 2070 KiB  
Article
Synthesis of Vibration Environment Spectra and Fatigue Assessment for Underfloor Equipment in High-Speed EMU Trains
by Can Chen, Lirong Guo, Guoshun Li, Yongheng Li, Yichao Zhang, Hongwei Zhang and Dao Gong
Machines 2025, 13(7), 628; https://doi.org/10.3390/machines13070628 - 21 Jul 2025
Viewed by 82
Abstract
With the continuous development of high-speed electric multiple units (EMUs), vibration issues of vehicles have become increasingly prominent. During operation, the underfloor equipment installed on the carbody is subjected to random multi-point vibrations transmitted from the carbody, inducing significant fatigue damage. This paper [...] Read more.
With the continuous development of high-speed electric multiple units (EMUs), vibration issues of vehicles have become increasingly prominent. During operation, the underfloor equipment installed on the carbody is subjected to random multi-point vibrations transmitted from the carbody, inducing significant fatigue damage. This paper presents a comprehensive analysis of multi-channel vibration environment data for various underfloor equipment across different operating speeds obtained through on-site measurements. A spectral synthetic method grounded in statistical principles is then proposed to generate vibration environment spectra for diverse underfloor equipment. Finally, utilizing fatigue analysis in the frequency domain, the fatigue damage to underfloor equipment is assessed under different operational environments. The research results show that the vibration environment spectrum of the underfloor equipment in high-speed EMU trains differs significantly from the vibration spectrum specified in the IEC 61373 standard, especially at high frequencies. Despite this difference in spectral characteristics, the overall vibration energy values of the two spectra are comparable. Additionally, the vibration spectra of different underfloor equipment exhibit variations that can be attributed to their installation positions. As operational speed increases, the fatigue damage to the underfloor equipment exhibits exponential growth. However, the total accumulated fatigue damage remains relatively low, consistently staying below a value of 1. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

22 pages, 1532 KiB  
Article
Novel Alkyl-Polyglucoside-Based Topical Creams Containing Basil Essential Oil (Ocimum basilicum L. Lamiaceae): Assessment of Physical, Mechanical, and Sensory Characteristics
by Ana Barjaktarević, Georgeta Coneac, Snežana Cupara, Olivera Kostić, Marina Kostić, Ioana Olariu, Vicenţiu Vlaia, Ana-Maria Cotan, Ştefania Neamu and Lavinia Vlaia
Pharmaceutics 2025, 17(7), 934; https://doi.org/10.3390/pharmaceutics17070934 - 19 Jul 2025
Viewed by 268
Abstract
Background/Objectives: Basil essential oil exhibits a wide range of biological activities, including strong antimicrobial and anti-inflammatory effects. Considering the health benefits of basil essential oil (BEO) and the favorable properties of alkyl polyglucoside emulsifiers, novel Montanov™-68-based O/W creams containing BEO were developed and [...] Read more.
Background/Objectives: Basil essential oil exhibits a wide range of biological activities, including strong antimicrobial and anti-inflammatory effects. Considering the health benefits of basil essential oil (BEO) and the favorable properties of alkyl polyglucoside emulsifiers, novel Montanov™-68-based O/W creams containing BEO were developed and characterized. Additionally, the influence of the emulsifier content on the cream’s properties was evaluated. Methods: The physicochemical properties were evaluated by organoleptic examination, physical stability test, and pH and electrical conductivity measurement. The mechanical properties were investigated by rheological, textural, and consistency analyses. In addition, a sensory evaluation protocol was applied. Results: The cream formulations containing 5% and 7% Montanov™ 68 demonstrated physical stability, with no evidence of phase separation during the observation period or following accelerated aging. The pH values remained within the acceptable range for topical use, and a gradual decrease in electrical conductivity over time was observed. The rheological analyses confirmed the non-Newtonian pseudoplastic behavior with thixotropic flow characteristics. The textural analyses demonstrated that the higher emulsifier content led to increased firmness, consistency, cohesiveness, and index of viscosity. The sensory analysis revealed differences between the alkyl polyglucoside (APG)-based cream formulations only in terms of the elasticity and stickiness. Conclusions: Although the rheological analyses suggested the better spreadability of the formulation with 5% emulsifier, this was not confirmed by the sensory analysis. However, the APG-based formulations performed significantly better than the synthetic surfactant-based formulation in terms of the absorption, stickiness, and greasiness (during and after application). These results are encouraging for the further evaluation of APG-based creams containing basil essential oil for topical application. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems for the Treatment of Skin Disorders)
Show Figures

Graphical abstract

22 pages, 487 KiB  
Article
Fuzzy Hypothesis Testing for Radar Detection: A Statistical Approach for Reducing False Alarm and Miss Probabilities
by Ahmed K. Elsherif, Hanan Haj Ahmad, Mohamed Aboshady and Basma Mostafa
Mathematics 2025, 13(14), 2299; https://doi.org/10.3390/math13142299 - 17 Jul 2025
Viewed by 170
Abstract
This paper addresses a fundamental challenge in statistical radar detection systems: optimizing the trade-off between the probability of a false alarm (PFA) and the probability of a miss (PM). These two metrics are inversely related and [...] Read more.
This paper addresses a fundamental challenge in statistical radar detection systems: optimizing the trade-off between the probability of a false alarm (PFA) and the probability of a miss (PM). These two metrics are inversely related and critical for performance evaluation. Traditional detection approaches often enhance one aspect at the expense of the other, limiting their practical applicability. To overcome this limitation, a fuzzy hypothesis testing framework is introduced that improves decision making under uncertainty by incorporating both crisp and fuzzy data representations. The methodology is divided into three phases. In the first phase, we reduce the probability of false alarm PFA while maintaining a constant probability of miss PM using crisp data characterized by deterministic values and classical statistical thresholds. In the second phase, the inverse scenario is considered: minimizing PM while keeping PFA fixed. This is achieved through parameter tuning and refined threshold calibration. In the third phase, a strategy is developed to simultaneously enhance both PFA and PM, despite their inverse correlation, by adopting adaptive decision rules. To further strengthen system adaptability, fuzzy data are introduced, which effectively model imprecision and ambiguity. This enhances robustness, particularly in scenarios where rapid and accurate classification is essential. The proposed methods are validated through both real and synthetic simulations of radar measurements, demonstrating their ability to enhance detection reliability across diverse conditions. The findings confirm the applicability of fuzzy hypothesis testing for modern radar systems in both civilian and military contexts, providing a statistically sound and operationally applicable approach for reducing detection errors and optimizing system performance. Full article
(This article belongs to the Special Issue New Advance in Applied Probability and Statistical Inference)
Show Figures

Figure 1

26 pages, 6272 KiB  
Article
Degradation of the Surface of Synthetic Layered Composites Due to Accelerated Ageing
by Cezary Strąk, Ewelina Kozikowska, Marcin Małek and Marcin Wachowski
Materials 2025, 18(14), 3342; https://doi.org/10.3390/ma18143342 - 16 Jul 2025
Viewed by 250
Abstract
This study investigates the effect of accelerated aging on the microstructure and surface properties of synthetic sports surfaces, with the goal of developing a more representative laboratory simulation method. Three common types of polyurethane-based sports surfaces were examined: (1) a dual-layer SBR base [...] Read more.
This study investigates the effect of accelerated aging on the microstructure and surface properties of synthetic sports surfaces, with the goal of developing a more representative laboratory simulation method. Three common types of polyurethane-based sports surfaces were examined: (1) a dual-layer SBR base with a thin EPDM spray topcoat; (2) a single-layer EPDM surface with a smooth finish; and (3) a dual-layer “sandwich” structure with a rough EPDM upper layer. Samples were tested for slip resistance (PTV), abrasion resistance, and surface morphology using SEM, as well as surface roughness and tensile properties before and after aging. Method combining UV radiation and water spray was introduced and evaluated. Microstructural analysis with roughness measurements revealed surface degradation in all materials, with more extensive damage observed in the UV + spray cycle. Slip resistance results showed reduced performance in dry conditions and improved values in wet conditions post-aging. The single-layer EPDM surface demonstrated the highest initial dry PTV, while the dual-layer with spray had the lowest. After aging, all surfaces exhibited smaller differences between dry and wet performance but no longer met dry condition standards. These results may guide future revisions of performance testing standards and contribute to the development of safer, longer-lasting synthetic sports surfaces. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Graphical abstract

24 pages, 26359 KiB  
Article
Evaluating the Interferometric Performance of China’s Dual-Star SAR Satellite Constellation in Large Deformation Scenarios: A Case Study in the Jinchuan Mining Area, Gansu
by Zixuan Ge, Wenhao Wu, Jiyuan Hu, Nijiati Muhetaer, Peijie Zhu, Jie Guo, Zhihui Li, Gonghai Zhang, Yuxing Bai and Weijia Ren
Remote Sens. 2025, 17(14), 2451; https://doi.org/10.3390/rs17142451 - 15 Jul 2025
Viewed by 273
Abstract
Mining activities can trigger geological disasters, including slope instability and surface subsidence, posing a serious threat to the surrounding environment and miners’ safety. Consequently, the development of reasonable, effective, and rapid deformation monitoring methods in mining areas is essential. Traditional synthetic aperture radar(SAR) [...] Read more.
Mining activities can trigger geological disasters, including slope instability and surface subsidence, posing a serious threat to the surrounding environment and miners’ safety. Consequently, the development of reasonable, effective, and rapid deformation monitoring methods in mining areas is essential. Traditional synthetic aperture radar(SAR) satellites are often limited by their revisiting period and image resolution, leading to unwrapping errors and decorrelation issues in the central mining area, which pose challenges in deformation monitoring in mining areas. In this study, persistent scatterer interferometric synthetic aperture radar (PS-InSAR) technology is used to monitor and analyze surface deformation of the Jinchuan mining area in Jinchang City, based on SAR images from the small satellites “Fucheng-1” and “Shenqi”, launched by the Tianyi Research Institute in Hunan Province, China. Notably, the dual-star constellation offers high-resolution SAR data with a spatial resolution of up to 3 m and a minimum revisit period of 4 days. We also assessed the stability of the dual-star interferometric capability, imaging quality, and time-series monitoring capability of the “Fucheng-1” and “Shenqi” satellites and performed a comparison with the time-series results from Sentinel-1A. The results show that the phase difference (SPD) and phase standard deviation (PSD) mean values for the “Fucheng-1” and “Shenqi” interferograms show improvements of 21.47% and 35.47%, respectively, compared to Sentinel-1A interferograms. Additionally, the processing results of the dual-satellite constellation exhibit spatial distribution characteristics highly consistent with those of Sentinel-1A, while demonstrating relatively better detail representation capabilities at certain measurement points. In the context of rapid deformation monitoring in mining areas, they show a higher revisit frequency and spatial resolution, demonstrating high practical value. Full article
Show Figures

Figure 1

30 pages, 8543 KiB  
Article
Multi-Channel Coupled Variational Bayesian Framework with Structured Sparse Priors for High-Resolution Imaging of Complex Maneuvering Targets
by Xin Wang, Jing Yang and Yong Luo
Remote Sens. 2025, 17(14), 2430; https://doi.org/10.3390/rs17142430 - 13 Jul 2025
Viewed by 178
Abstract
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the [...] Read more.
High-resolution ISAR (Inverse Synthetic Aperture Radar) imaging plays a crucial role in dynamic target monitoring for aerospace, maritime, and ground surveillance. Among various remote sensing techniques, ISAR is distinguished by its ability to produce high-resolution images of non-cooperative maneuvering targets. To meet the increasing demands for resolution and robustness, modern ISAR systems are evolving toward wideband and multi-channel architectures. In particular, multi-channel configurations based on large-scale receiving arrays have gained significant attention. In such systems, each receiving element functions as an independent spatial channel, acquiring observations from distinct perspectives. These multi-angle measurements enrich the available echo information and enhance the robustness of target imaging. However, this setup also brings significant challenges, including inter-channel coupling, high-dimensional joint signal modeling, and non-Gaussian, mixed-mode interference, which often degrade image quality and hinder reconstruction performance. To address these issues, this paper proposes a Hybrid Variational Bayesian Multi-Interference (HVB-MI) imaging algorithm based on a hierarchical Bayesian framework. The method jointly models temporal correlations and inter-channel structure, introducing a coupled processing strategy to reduce dimensionality and computational complexity. To handle complex noise environments, a Gaussian mixture model (GMM) is used to represent nonstationary mixed noise. A variational Bayesian inference (VBI) approach is developed for efficient parameter estimation and robust image recovery. Experimental results on both simulated and real-measured data demonstrate that the proposed method achieves significantly improved image resolution and noise robustness compared with existing approaches, particularly under conditions of sparse sampling or strong interference. Quantitative evaluation further shows that under the continuous sparse mode with a 75% sampling rate, the proposed method achieves a significantly higher Laplacian Variance (LV), outperforming PCSBL and CPESBL by 61.7% and 28.9%, respectively and thereby demonstrating its superior ability to preserve fine image details. Full article
Show Figures

Graphical abstract

23 pages, 1388 KiB  
Article
Machine Learning-Based State-of-Health Estimation of Battery Management Systems Using Experimental and Simulation Data
by Anas Al-Rahamneh, Irene Izco, Adrian Serrano-Hernandez and Javier Faulin
Mathematics 2025, 13(14), 2247; https://doi.org/10.3390/math13142247 - 11 Jul 2025
Viewed by 343
Abstract
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric [...] Read more.
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric buses (e-buses), which, despite their environmental benefits, introduce significant operational challenges—chief among them, the management of battery systems, the most critical and complex component of e-buses. The development of efficient and reliable Battery Management Systems (BMSs) is thus central to ensuring battery longevity, operational safety, and overall vehicle performance. This study examines the potential of intelligent BMSs to improve battery health diagnostics, extend service life, and optimize system performance through the integration of simulation, real-time analytics, and advanced deep learning techniques. Particular emphasis is placed on the estimation of battery state of health (SoH), a key metric for predictive maintenance and operational planning. Two widely recognized deep learning models—Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM)—are evaluated for their efficacy in predicting SoH. These models are embedded within a unified framework that combines synthetic data generated by a physics-informed battery simulation model with empirical measurements obtained from real-world battery aging datasets. The proposed approach demonstrates a viable pathway for enhancing SoH prediction by leveraging both simulation-based data augmentation and deep learning. Experimental evaluations confirm the effectiveness of the framework in handling diverse data inputs, thereby supporting more robust and scalable battery management solutions for next-generation electric urban transportation systems. Full article
(This article belongs to the Special Issue Operations Research and Intelligent Computing for System Optimization)
Show Figures

Figure 1

24 pages, 7707 KiB  
Article
Improving Building Acoustics with Coir Fiber Composites: Towards Sustainable Construction Systems
by Luis Bravo-Moncayo, Virginia Puyana-Romero, Miguel Chávez and Giuseppe Ciaburro
Sustainability 2025, 17(14), 6306; https://doi.org/10.3390/su17146306 - 9 Jul 2025
Viewed by 362
Abstract
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its [...] Read more.
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its use with the United Nations Sustainable Development Goals. Acoustic absorption was quantified with an impedance tube, and subsequent simulations compared the performance of coir composite panels with that of conventional materials, which constitutes an underexplored evaluation. Using 10 receiver points, the simulations reproduced the acoustic conditions of a multipurpose auditorium before and after the coir covering of parts of the rear and posterior walls. The results indicate that when coir coverings account for approximately 10% of the auditorium surface, reverberation times at 250, 500, 2000, and 4000 Hz are reduced by roughly 1 s. Furthermore, the outcomes reveal that early reflections occur more rapidly in the coir-enhanced model, while the values of the early decay time parameter decrease across all receiver points. Although the original configuration had poor speech clarity, the modified model achieved optimal values at all the measurement locations. These findings underscore the potential of coir fiber panels in enhancing acoustic performance while fostering sustainable construction practices. Full article
(This article belongs to the Special Issue Sustainable Architecture: Energy Efficiency in Buildings)
Show Figures

Figure 1

18 pages, 3618 KiB  
Article
Quality Assessment of Dual-Polarization C-Band SAR Data Influenced by Precipitation Based on Normalized Polarimetric Radar Vegetation Index
by Jisung Geba Chang, Simon Kraatz, Yisok Oh, Feng Gao and Martha Anderson
Remote Sens. 2025, 17(14), 2343; https://doi.org/10.3390/rs17142343 - 8 Jul 2025
Viewed by 283
Abstract
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar [...] Read more.
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar Vegetation Index (NPRVI) using dual-polarization Sentinel-1 C-band SAR data from agricultural fields at the Beltsville Agricultural Research Center (BARC). Field-measured precipitation and Global Precipitation Measurement (GPM) precipitation datasets were temporally aligned with Sentinel-1 acquisition times to assess the sensitivity of radar signals to precipitation events. NPRVI exhibited a strong sensitivity to precipitation, particularly within the 1 to 7 h prior to the satellite overpass, even for small amounts of precipitation. A quality assessment (QA) framework was developed to flag and correct precipitation-affected radar observations through interpolation. The adjusted NPRVI values, based on the QA framework using precipitation within a 6 h window, showed strong agreement between field- and GPM-derived data, with an RMSE of 0.09 and a relative RMSE of 19.8%, demonstrating that GPM data can serve as a viable alternative for quality adjustment despite its coarse spatial resolution. The adjusted NPRVI for both soybean and corn fields significantly improved the temporal consistency of the time series and closely followed NDVI trends, while also capturing crop-specific seasonal variations, especially during periods of NDVI saturation or limited variability. These findings underscore the value of the proposed radar-based QA framework in enhancing the interpretability of vegetation dynamics. NPRVI, when adjusted for precipitation effects, can serve as a reliable and complementary tool to optical vegetation indices in agricultural and environmental monitoring. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

24 pages, 11020 KiB  
Article
Monitoring and Assessment of Slope Hazards Susceptibility Around Sarez Lake in the Pamir by Integrating Small Baseline Subset InSAR with an Improved SVM Algorithm
by Yang Yu, Changming Zhu, Majid Gulayozov, Junli Li, Bingqian Chen, Qian Shen, Hao Zhou, Wen Xiao, Jafar Niyazov and Aminjon Gulakhmadov
Remote Sens. 2025, 17(13), 2300; https://doi.org/10.3390/rs17132300 - 4 Jul 2025
Viewed by 321
Abstract
Sarez Lake, situated at one of the highest altitudes among naturally dammed lakes, is regarded as potentially hazardous due to its geological setting. Therefore, developing an integrated monitoring and risk assessment framework for slope-related geological hazards in this region holds significant scientific and [...] Read more.
Sarez Lake, situated at one of the highest altitudes among naturally dammed lakes, is regarded as potentially hazardous due to its geological setting. Therefore, developing an integrated monitoring and risk assessment framework for slope-related geological hazards in this region holds significant scientific and practical value. In this study, we processed 220 Sentinel-1A SAR images acquired between 12 March 2017 and 2 August 2024, using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to extract time-series deformation data with millimeter-level precision. These deformation measurements were combined with key environmental factors to construct a susceptibility evaluation model based on the Information Value and Support Vector Machine (IV-SVM) methods. The results revealed a distinct spatial deformation pattern, characterized by greater activity in the western region than in the east. The maximum deformation rate along the shoreline increased from 280 mm/yr to 480 mm/yr, with a marked acceleration observed between 2022 and 2023. Geohazard susceptibility in the Sarez Lake area exhibits a stepped gradient: the proportion of area classified as extremely high susceptibility is 15.26%, decreasing to 29.05% for extremely low susceptibility; meanwhile, the density of recorded hazard sites declines from 0.1798 to 0.0050 events per km2. The spatial configuration is characterized by high susceptibility on both flanks, a central low, and convergence of hazardous zones at the front and distal ends with a central expansion. These findings suggest that mitigation efforts should prioritize the detailed monitoring and remediation of steep lakeside slopes and fault-associated fracture zones. This study provides a robust scientific and technical foundation for the emergency warning and disaster management of high-altitude barrier lakes, which is applicable even in data-limited contexts. Full article
Show Figures

Figure 1

15 pages, 1869 KiB  
Article
Application of Hybrid Model Based on LASSO-SMOTE-BO-SVM to Lithology Identification During Drilling
by Hui Yao, Manyu Liang, Shangxian Yin, Qing Zhang, Yunlei Tian, Guoan Wang, Enke Hou, Huiqing Lian, Jinfu Zhang and Chuanshi Wu
Processes 2025, 13(7), 2038; https://doi.org/10.3390/pr13072038 - 27 Jun 2025
Viewed by 372
Abstract
Lithology identification during drilling plays a vital role in geological and geotechnical exploration, as it facilitates the early detection of formation-related hazards and supports the development of optimized mining strategies. Traditional lithology identification research involves problems such as fuzzy indicator characteristics and unbalanced [...] Read more.
Lithology identification during drilling plays a vital role in geological and geotechnical exploration, as it facilitates the early detection of formation-related hazards and supports the development of optimized mining strategies. Traditional lithology identification research involves problems such as fuzzy indicator characteristics and unbalanced sample quantities, which affect the accuracy and interpretability of model identification. In order to solve these problems, the Shanxi Guoqiang Coal Mine was taken as the research object, and a combined machine learning model was used to conduct a study on lithology identification during drilling. First, the least absolute shrinkage and selection operator (LASSO) algorithm was used to screen the independent variables and retain the parameters that contributed the most to lithology identification. Then, the synthetic minority oversampling technique (SMOTE) algorithm was used to expand the data samples, increase the amounts of minority sample data, and keep the ratios of various lithology data at 1:1. Then, the Bayesian optimization (BO) algorithm was used to optimize the penalty factor C and kernel function hyperparameter γ—two important parameters of the support vector machine (SVM) model—and the BO-SVM lithology identification model was established. Finally, the data samples were processed, and the results were compared with those of single models and unbalanced sample processing to evaluate their effect. The results showed the following: during the drilling process, the four indicators of drilling speed, mud pressure, slurry flow rate, and torque are strongly correlated with the lithology and can be used for lithology identification and classification research. After the data set was oversampled using the SMOTE algorithm, each model had better robustness and generalization ability; the classification result evaluation indicators were also greatly improved, especially for the random forest model, which had a poor original evaluation effect. The BO algorithm was used to optimize the parameters of the SVM model and establish a combined model that correctly identified 95 groups of data out of 96 groups of test samples with an identification accuracy rate of 99%, which was better than that of the traditional machine learning model. The evaluation results were compared with measured data, which confirmed the reliability of the combined model classification method and its potential to be extended to lithology identification and classification work. Full article
(This article belongs to the Special Issue Data-Driven Analysis and Simulation of Coal Mining)
Show Figures

Figure 1

30 pages, 5702 KiB  
Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by Derek S. Tesser, Kyle C. McDonald, Erika Podest, Brian T. Lamb, Nico Blüthgen, Constance J. Tremlett, Felicity L. Newell, Edith Villa-Galaviz, H. Martin Schaefer and Raul Nieto
Remote Sens. 2025, 17(13), 2188; https://doi.org/10.3390/rs17132188 - 25 Jun 2025
Viewed by 381
Abstract
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of [...] Read more.
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems. Full article
(This article belongs to the Special Issue NISAR Global Observations for Ecosystem Science and Applications)
Show Figures

Figure 1

Back to TopTop