Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (49,865)

Search Parameters:
Keywords = syntheses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2119 KiB  
Review
Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases
by Qinghai Tan, Mei Liu and Xiang Tao
Biomolecules 2025, 15(8), 1178; https://doi.org/10.3390/biom15081178 (registering DOI) - 16 Aug 2025
Abstract
Lactylation, a recently identified post-translational modification (PTM) triggered by excessive lactate accumulation, has emerged as a crucial regulator linking metabolic reprogramming to pathological processes in liver diseases. In hepatic contexts, aberrant lactylation contributes to a range of pathological processes, including inflammation, dysregulation of [...] Read more.
Lactylation, a recently identified post-translational modification (PTM) triggered by excessive lactate accumulation, has emerged as a crucial regulator linking metabolic reprogramming to pathological processes in liver diseases. In hepatic contexts, aberrant lactylation contributes to a range of pathological processes, including inflammation, dysregulation of lipid metabolism, angiogenesis, and fibrosis. Importantly, lactylation has been shown to impact tumor growth, metastasis, and therapy resistance by modulating oncogene expression, metabolic adaptation, stemness, angiogenesis, and altering the tumor microenvironment (TME). This review synthesizes current knowledge on the biochemical mechanisms of lactylation, encompassing both enzymatic and non-enzymatic pathways, and its roles in specific liver diseases. From a therapeutic perspective, targeting lactate availability and transport, as well as the enzymes regulating lactylation, has demonstrated promise in preclinical models. Additionally, combinatorial approaches and natural compounds have shown efficacy in disrupting lactylation-driven pathways, providing insights into future research directions for hepatic diseases. Although the emerging role of lactylation is gaining attention, its spatiotemporal dynamics and potential for clinical translation are not yet well comprehended. This review aims to synthesize the multifaceted roles of lactylation, thereby bridging mechanistic insights with actionable therapeutic strategies for liver diseases. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

45 pages, 1602 KiB  
Review
Mechanisms and Genetic Drivers of Resistance of Insect Pests to Insecticides and Approaches to Its Control
by Yahya Al Naggar, Nedal M. Fahmy, Abeer M. Alkhaibari, Rasha K. Al-Akeel, Hend M. Alharbi, Amr Mohamed, Ioannis Eleftherianos, Hesham R. El-Seedi, John P. Giesy and Hattan A. Alharbi
Toxics 2025, 13(8), 681; https://doi.org/10.3390/toxics13080681 (registering DOI) - 16 Aug 2025
Abstract
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations [...] Read more.
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations affecting nicotinic acetylcholine receptors (nAChRs), acetylcholinesterase (AChE), voltage-gated sodium channels (VGSCs), and γ-aminobutyric acid (GABA) receptors, and metabolic detoxification mediated by cytochrome P450 monooxygenases (CYPs), esterases, and glutathione S-transferases (GSTs). Emerging resistance mechanisms are also explored, including protein sequestration by odorant-binding proteins and post-transcriptional regulation via non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Focused case studies on Aedes aegypti and Spodoptera frugiperda illustrate the complex interplay of genetic and biochemical adaptations driving resistance. In Ae. aegypti, voltage-gated sodium channel (VGSCs) mutations (V410L, V1016I, F1534C) combined with metabolic enzyme amplification confer resistance to pyrethroids, accompanied by notable fitness costs and ecological impacts on vector populations. In S. frugiperda, multiple resistance mechanisms, including overexpression of cytochrome P450 genes (e.g., CYP6AE43, CYP321A8), target-site mutations in ryanodine receptors (e.g., I4790K), and behavioral avoidance, have rapidly evolved across global populations, undermining the efficacy of diamide, organophosphate, and pyrethroid insecticides. The review further evaluates integrated pest management (IPM) strategies, emphasizing the role of biopesticides, biological control agents, including entomopathogenic fungi and parasitoids, and molecular diagnostics for resistance management. Taken together, this analysis underscores the urgent need for continuous molecular surveillance, the development of resistance-breaking technologies, and the implementation of sustainable, multifaceted interventions to safeguard the long-term efficacy of insecticides in both agricultural and public health contexts. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Figure 1

21 pages, 2711 KiB  
Article
Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten
by Chrysoula-Evangelia Karachaliou, Christos Zikos, Christos Liolios, Maria Pelecanou and Evangelia Livaniou
Toxins 2025, 17(8), 415; https://doi.org/10.3390/toxins17080415 (registering DOI) - 16 Aug 2025
Abstract
We report herein the development of a polyclonal antibody against ochratoxin A (OTA) using a specially designed synthetic OTA derivative as the immunizing hapten. This OTA derivative contains a tetrapeptide linker (glycyl-glycyl-glycyl-lysine, GGGK), through which it can be linked to a carrier protein [...] Read more.
We report herein the development of a polyclonal antibody against ochratoxin A (OTA) using a specially designed synthetic OTA derivative as the immunizing hapten. This OTA derivative contains a tetrapeptide linker (glycyl-glycyl-glycyl-lysine, GGGK), through which it can be linked to a carrier protein and form an immunogenic conjugate. The OTA derivative (OTA-glycyl-glycyl-glycyl-lysine, OTA-GGGK) has been synthesized on a commercially available resin via the well-established Fmoc-based solid-phase peptide synthesis (Fmoc-SPPS) strategy; overall, this approach has allowed us to avoid tedious liquid-phase synthesis protocols, which are often characterized by multiple steps, several intermediate products and low overall yield. Subsequently, OTA-GGGK was conjugated to bovine thyroglobulin through glutaraldehyde, and the conjugate was used in an immunization protocol. The antiserum obtained was evaluated with a simple-format ELISA in terms of its titer and capability of recognizing the natural free hapten; the anti-OTA antibody, as a whole IgG fragment, was successfully applied to three different immunoanalytical systems for determining OTA in various food materials and wine samples, i.e., a multi-mycotoxin microarray bio-platform, an optical immunosensor, and a biotin–streptavidin ELISA, which has proved the analytical effectiveness and versatility of the anti-OTA antibody developed. The same approach may be followed for developing antibodies against other low-molecular-weight toxins and hazardous substances. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 3458 KiB  
Article
Synthesis and Characterization of [Co(tta)2(4,4′-bipy)2.CHCl3]n: A Coordination Polymer with Sulfur–Sulfur Interactions
by Mohammed A. Al-Anber, Deeb Taher, Petra Ecorchard, Matous Kloda, Yasser Mahmoud Aboelmagd and Heinrich Lang
Crystals 2025, 15(8), 729; https://doi.org/10.3390/cryst15080729 (registering DOI) - 16 Aug 2025
Abstract
Coordination polymer [{Co(tta)2(4,4′-bipy)}n] (1) (tta = 4,4,4 trifluoro-1-(2-thienyl)-1,3-butanedionate; 4,4′-bipy = 4,4′-bipyridine) was synthesized by reacting [Co(tta)2-(H2O)2] with equivalent of 4,4′-bipy, whereby the aqua ligands in [Co(tta)2-(H2O)2 [...] Read more.
Coordination polymer [{Co(tta)2(4,4′-bipy)}n] (1) (tta = 4,4,4 trifluoro-1-(2-thienyl)-1,3-butanedionate; 4,4′-bipy = 4,4′-bipyridine) was synthesized by reacting [Co(tta)2-(H2O)2] with equivalent of 4,4′-bipy, whereby the aqua ligands in [Co(tta)2-(H2O)2] were replaced by 4,4′-bipy ligand. Thermal behavior, investigated via thermogravimetric analysis (TGA), revealed that 1 decomposes between 290 and 400 °C. The solid-state structure of 1 was confirmed by single-crystal X-ray diffraction, which established its polymeric nature of 1. Each monomer unit of 1 features a cobalt center in an octahedral coordination environment, with two equatorially chelating tta ligands and one axially oriented 4,4′-bipy ligand. Sulfur–sulfur interactions lead to the formation of a two-dimensional supramolecular network. In addition, compound 1 is stabilized by various intermolecular interactions, including C-H···π, C-F···F-C, and C-H···F-C contacts. Hirshfeld surface analysis and 2D-fingerprint plots were employed to further investigate the non-covalent intermolecular interactions in the solid state, providing strong evidence for their role in stabilizing the crystal structure. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 485 KiB  
Systematic Review
Effects of Nicotine-Free E-Cigarettes on Gastrointestinal System: A Systematic Review
by Ivana Jukic, Ivona Matulic and Jonatan Vukovic
Biomedicines 2025, 13(8), 1998; https://doi.org/10.3390/biomedicines13081998 (registering DOI) - 16 Aug 2025
Abstract
Background/Objectives: Nicotine-free electronic cigarettes (NFECs) are becoming increasingly popular, especially among youth and non-smokers, yet their effects on the gastrointestinal tract (GIT) remain poorly understood. This systematic review synthesizes available in vitro, in vivo, and limited human evidence on NFEC-associated changes in gastrointestinal [...] Read more.
Background/Objectives: Nicotine-free electronic cigarettes (NFECs) are becoming increasingly popular, especially among youth and non-smokers, yet their effects on the gastrointestinal tract (GIT) remain poorly understood. This systematic review synthesizes available in vitro, in vivo, and limited human evidence on NFEC-associated changes in gastrointestinal health and function. Methods: Literature searches were conducted in Medline, Web of Science, Cochrane, and Scopus in July 2025, following PRISMA guidelines. Eligible studies examined NFEC effects on any GIT segment, including the oral cavity, liver, intestines, and microbiome. Data on study design, exposure characteristics, and main outcomes were extracted and narratively synthesized. Results: Of 111 identified records, 94 full-text articles were retrieved, and 21 studies met the inclusion criteria. Most were preclinical, with only one human pilot study. Evidence from oral cell and microbial models suggests that NFEC aerosols can induce pro-inflammatory cytokine production, impair cell viability, and disrupt microbial metabolism through their base constituents (propylene glycol, vegetable glycerine, and flavourings). Animal studies indicate possible hepatic oxidative stress, altered lipid metabolism, and gut barrier dysfunction, with some data suggesting more pronounced steatosis in nicotine-free exposures compared to nicotine-containing counterparts. Microbiome studies report reduced tight junction expression and altered neutrophil function. Conclusions: Current evidence is limited and predominantly preclinical but indicates that NFEC exposure can affect multiple aspects of gastrointestinal health. Robust longitudinal and interventional human studies are urgently needed to determine the clinical relevance of these findings and to inform regulation and public health policy. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Gastrointestinal Tract Disease)
25 pages, 2027 KiB  
Review
Mapping Multi-Modal Fatigue in Elite Soccer Through Sweat-Omics Perspectives: A Narrative Review
by Moses Gnanasigamani, Ersan Arslan, Yusuf Soylu, Bulent Kilit and Paweł Chmura
Biology 2025, 14(8), 1069; https://doi.org/10.3390/biology14081069 (registering DOI) - 16 Aug 2025
Abstract
Fatigue in elite soccer is a multifaceted phenomenon involving physical, metabolic, psychological, and neuromuscular stressors that accumulate over training and competition. Traditional monitoring tools, while informative, are often invasive, impractical during play, or fail to provide real-time insights. This narrative review synthesizes sweat-based [...] Read more.
Fatigue in elite soccer is a multifaceted phenomenon involving physical, metabolic, psychological, and neuromuscular stressors that accumulate over training and competition. Traditional monitoring tools, while informative, are often invasive, impractical during play, or fail to provide real-time insights. This narrative review synthesizes sweat-based biomarkers linked to fatigue in elite soccer, with a focus on multi-modal domains (neuromuscular, metabolic, inflammatory, psychological). Using an integrative approach, we reviewed studies published across databases including PubMed, Scopus, and Web of Science that evaluate sweat biomarkers of different types of fatigue in soccer. We identified key candidates—lactate, sodium, cortisol, IL-6, and hypoxanthine—and evaluated their potential in non-invasive monitoring. Youth-specific and female populations remain underrepresented. We also assessed each biomarker’s technological maturity using a sweat-specific Technology Readiness Level (TRL) framework. Based on these findings, we propose a translational framework for practitioners and outline priorities for future research and validation in real-world sport settings. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

37 pages, 3861 KiB  
Review
Research Progress on Biomarkers and Their Detection Methods for Benzene-Induced Toxicity: A Review
by Runan Qin, Shouzhe Deng and Shuang Li
Chemosensors 2025, 13(8), 312; https://doi.org/10.3390/chemosensors13080312 (registering DOI) - 16 Aug 2025
Abstract
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise [...] Read more.
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise prevention and control of its health impacts. Programmed cell death (PCD), an orderly and regulated form of cellular demise controlled by specific intracellular genes in response to various stimuli, has emerged as a key pathway where dysfunction may underlie benzene-induced toxicity. This review systematically integrates evidence linking benzene toxicity to PCD dysregulation, revealing that benzene and its metabolites induce abnormal subtypes of PCD (apoptosis, autophagy, ferroptosis) in hematopoietic cells. This occurs through mechanisms including activation of Caspase pathways, regulation of long non-coding RNAs, and epigenetic modifications, with recent research highlighting the IRP1-DHODH-ALOX12 ferroptosis axis and oxidative stress–epigenetic interactions as pivotal. Additionally, this review describes a comprehensive monitoring system for early toxic effects comprising benzene exposure biomarkers (urinary t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA)), PCD-related molecules (Caspase-3, let-7e-5p, ACSL1), oxidative stress indicators (8-OHdG), and genetic damage markers (micronuclei, p14ARF methylation), with correlative analyses between PCD mechanisms and benzene toxicity elaborated to underscore their integrative roles in risk assessment. Furthermore, the review details analytical techniques for these biomarkers, including direct benzene detection methods—direct headspace gas chromatography with flame ionization detection (DHGC-FID), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and portable headspace sampling (Portable HS)—alongside molecular imprinting and fluorescence probe technologies, as well as methodologies for toxic effect markers such as live-cell imaging, electrochemical techniques, methylation-specific PCR (MSP), and Western blotting, providing technical frameworks for mechanistic studies and translational applications. By synthesizing current evidence and mechanistic insights, this work offers novel perspectives on benzene toxicity through the PCD lens, identifies potential therapeutic targets associated with PCD dysregulation, and ultimately establishes a theoretical foundation for developing interventional strategies against benzene-induced toxicity while emphasizing the translational value of mechanistic research in occupational and environmental health. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

20 pages, 9625 KiB  
Article
Ferric Tannate-Enhanced Electrochemical Conditioning Process for Improving Sludge Dewaterability
by Yalin Yu, Junkun Feng, Nanwen Zhu and Dongdong Ge
Water 2025, 17(16), 2424; https://doi.org/10.3390/w17162424 (registering DOI) - 16 Aug 2025
Abstract
Sludge dewatering is a key step in the overall process of sludge treatment and disposal. In this study, ferric tannate was synthesized by chemically complexing tannic acid with Fe2(SO4)3 under various conditions and then was innovatively employed to [...] Read more.
Sludge dewatering is a key step in the overall process of sludge treatment and disposal. In this study, ferric tannate was synthesized by chemically complexing tannic acid with Fe2(SO4)3 under various conditions and then was innovatively employed to enhance electrochemical conditioning (ECC) for municipal sludge dewatering. The optimal preparation conditions of ferric tannate were determined as a tannic acid to iron ion molar ratio of 0.8:10, pH of 10, and reaction time of 2 h. Subsequently, ferric tannate-enhanced ECC was investigated under different dosages and operating parameters. The optimal conditions were identified as ferric tannate dosage of 20% total solid, voltage of 50 V, and reaction time of 30 min, under which capillary suction time, specific resistance to filtration, and water content of dewatered sludge cake decreased by 84.3%, 84.2%, and 17.6%, respectively. Results of the mechanism analysis indicated that ferric tannate effectively reduced sludge viscosity, increased zeta potential, and neutralized the negative surface charges via charge neutralization, hydrophobic interactions, and hydrogen bonding. Meanwhile, adsorption bridging promoted floc aggregation and particle growth. Compared with the ECC process alone, the addition of ferric tannate in the ferric tannate-enhanced ECC process generated more OH, promoting the extracellular polymeric substance degradation and protein removal, thereby improving sludge hydrophobicity. Furthermore, the floc structure was reconstructed into a more compact and smooth morphology, facilitating the release of bound water during filtration. These findings provide new technical and theoretical support for the development of eco-friendly and efficient sludge conditioning and dewatering processes. Full article
Show Figures

Figure 1

21 pages, 3177 KiB  
Review
Immunological and Inflammatory Biomarkers in the Prognosis, Prevention, and Treatment of Ischemic Stroke: A Review of a Decade of Advancement
by Marius P. Iordache, Anca Buliman, Carmen Costea-Firan, Teodor Claudiu Ion Gligore, Ioana Simona Cazacu, Marius Stoian, Doroteea Teoibaș-Şerban, Corneliu-Dan Blendea, Mirela Gabriela-Irina Protosevici, Cristiana Tanase and Maria-Linda Popa
Int. J. Mol. Sci. 2025, 26(16), 7928; https://doi.org/10.3390/ijms26167928 (registering DOI) - 16 Aug 2025
Abstract
Ischemic stroke triggers a dynamic immune response that influences both acute damage and long-term recovery. This review synthesizes a decade of evidence on immunological and inflammatory biomarkers in ischemic stroke, emphasizing their prognostic and therapeutic significance. Following ischemic insult, levels of pro-inflammatory cytokines, [...] Read more.
Ischemic stroke triggers a dynamic immune response that influences both acute damage and long-term recovery. This review synthesizes a decade of evidence on immunological and inflammatory biomarkers in ischemic stroke, emphasizing their prognostic and therapeutic significance. Following ischemic insult, levels of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and chemokines like interleukin-8 (IL-8) rapidly rise, promoting blood–brain barrier disruption, leukocyte infiltration, and neuronal death. Conversely, anti-inflammatory mediators such as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) facilitate repair, neurogenesis, and immune regulation in later phases. The balance between these pathways determines outcomes and is reflected in circulating biomarkers. Composite hematological indices including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) offer accessible and cost-effective prognostic tools. Several biomarkers correlate with infarct size, neurological deterioration, and mortality, and may predict complications like hemorrhagic transformation or infection. Therapeutic strategies targeting cytokines, especially IL-1 and IL-6, have shown promise in modulating inflammation and improving outcomes. Future directions include personalized immune profiling, real-time cytokine monitoring, and combining immunotherapy with neurorestorative approaches. By integrating immune biomarkers into stroke care, clinicians may enhance risk stratification, optimize treatment timing, and identify candidates for novel interventions. This review underscores inflammation’s dual role and evolving therapeutic and prognostic relevance in ischemic stroke. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 1964 KiB  
Article
Rapid Joule-Heating Synthesis of Efficient Low-Crystallinity Ru-Mo Oxide Catalysts for Alkaline Hydrogen Evolution Reaction
by Tao Shi, Xiaoling Huang, Zhan Zhao, Zizhen Li, Kelei Huang and Xiangchao Meng
Processes 2025, 13(8), 2594; https://doi.org/10.3390/pr13082594 (registering DOI) - 16 Aug 2025
Abstract
Electrocatalytic water splitting has been demonstrated to be a highly efficient and promising technology for green hydrogen production. However, the inefficiency and instability of the cathode hinder its wide application in water electrolysis. Herein, we report a rapid Joule heating method for synthesizing [...] Read more.
Electrocatalytic water splitting has been demonstrated to be a highly efficient and promising technology for green hydrogen production. However, the inefficiency and instability of the cathode hinder its wide application in water electrolysis. Herein, we report a rapid Joule heating method for synthesizing the Ru-Mo oxide catalyst. Comprehensive characterization results confirmed that the as-prepared catalyst featured an internal porous structure with low crystallinity, which weakened the strength of Ru-H bonds through structural and electronic modulation. The enhanced HER performance was attributed to the incorporation of Mo4+ species, which strengthened Ru-O-Mo interactions. As tested, the optimized catalyst exhibited ultralow overpotentials (25.08 mV and 120.52 mV @ 10 and 100 mA cm−2, respectively) and excellent stability (100 h @ 100 mA cm−2) in a 1 M KOH solution. Meanwhile, the as-prepared catalyst was equipped in an anion exchange membrane (AEM) alkaline water electrolyzer, which could deliver 185 mA cm−2 at only 2.16 V with 100% Faradaic efficiency. This study provides a feasible strategy for constructing highly efficient low-crystallinity electrocatalysts. Full article
(This article belongs to the Section Environmental and Green Processes)
47 pages, 1730 KiB  
Systematic Review
Overview of Artificial Intelligence Applications in Roselle (Hibiscus sabdariffa) from Cultivation to Post-Harvest: Challenges and Opportunities
by Alfonso Ramírez-Pedraza, Juan Terven, José-Joel González-Barbosa, Juan-Bautista Hurtado-Ramos, Diana-Margarita Córdova-Esparza, Francisco-Javier Ornelas-Rodríguez, Raymundo Ramirez-Pedraza, Julio-Alejandro Romero-González and Sebastián Salazar-Colores
Agriculture 2025, 15(16), 1758; https://doi.org/10.3390/agriculture15161758 (registering DOI) - 16 Aug 2025
Abstract
Hibiscus sabdariffa (H. sabdariffa) is a high-value economic and functional crop, limited by agroclimatic conditions and low technological adoption. This systematic review examines the current state of artificial intelligence applications in agricultural management, analyzing 2111 records, selecting 82, and synthesizing 22 studies that [...] Read more.
Hibiscus sabdariffa (H. sabdariffa) is a high-value economic and functional crop, limited by agroclimatic conditions and low technological adoption. This systematic review examines the current state of artificial intelligence applications in agricultural management, analyzing 2111 records, selecting 82, and synthesizing 22 studies that meet the inclusion criteria. This review adopts a holistic framework aligned with three priority areas in agriculture—resource and climate management, crop productivity and quality, and sustainability—to explore how AI addresses key challenges in the cultivation and post-harvest processing of Hibiscus sabdariffa. The results show a predominance of classical machine learning techniques, with limited implementation of deep learning models. The most common applications include image classification, yield prediction, and analysis of bioactive compounds. However, limitations remain in the availability of open data, reproducible code, and standardized metrics. The narrative synthesis identified clear opportunities to integrate emerging technologies, such as deep neural networks and the Internet of Things (IoT), particularly in water management and stress monitoring. The review concludes that strengthening interdisciplinary research and promoting data openness is key to achieving a more resilient, sustainable, and technologically advanced crop. Full article
(This article belongs to the Special Issue Computers and IT Solutions for Agriculture and Their Application)
16 pages, 7400 KiB  
Article
Waterborne Phosphated Alkynediol-Modified Mica Nanosheet/Acrylic Nanocomposite Coatings with Superior Anticorrosive Performance
by Rui Yuan, Zhixing Tang, Mindi Xiao, Minzhao Cai, Xin Yuan and Lin Gu
Nanomaterials 2025, 15(16), 1266; https://doi.org/10.3390/nano15161266 (registering DOI) - 16 Aug 2025
Abstract
Mica is a naturally layered material recognized for its superior insulation and exceptional barrier properties; however, it is prone to agglomeration, and its compatibility with resin remains to be resolved. In this work, phosphate butynediol ethoxylate (PBEO), synthesized by the reaction of a [...] Read more.
Mica is a naturally layered material recognized for its superior insulation and exceptional barrier properties; however, it is prone to agglomeration, and its compatibility with resin remains to be resolved. In this work, phosphate butynediol ethoxylate (PBEO), synthesized by the reaction of a commercial corrosion inhibitor, butynediol ethoxylate, with phosphorus pentoxide, was employed to modify mica nanosheets (MNs), as evidenced by FTIR, Raman, and XPS. The obtained MN@PBEO demonstrated improved water dispersibility and enhanced compatibility with acrylic latex. EIS measurements revealed that the impedance (|Z|0.01Hz) for the waterborne acrylic coating with 0.5 wt% MN@PBEO was approximately an order of magnitude greater than that of the pure waterborne acrylic coating after 28 days of immersion in a 3.5 wt% NaCl solution. Additionally, compared to the pure waterborne acrylic coating, the 0.5 wt% MN@PBEO/acrylic nanocomposite coating on Q235 carbon steel exhibited a water diffusion coefficient that was roughly ten times lower, demonstrating substantially enhanced corrosion protection, attributable to its superior barrier properties. Full article
Show Figures

Graphical abstract

19 pages, 3683 KiB  
Article
Electrophoretic Deposition of Gold Nanoparticles on Highly Ordered Titanium Dioxide Nanotubes for Photocatalytic Application
by Halima Benghanoum, Lotfi Khezami, Rabia Benabderrahmane Zaghouani, Syrine Sassi, Ahlem Guesmi, Amal Bouich, Bernabé Mari Soucase and Anouar Hajjaji
Catalysts 2025, 15(8), 781; https://doi.org/10.3390/catal15080781 (registering DOI) - 16 Aug 2025
Abstract
This work focused on the photocatalytic performance enhancement of titanium dioxide (TiO2) nanotubes decorated by gold nanoparticles. The surface of the nanotubes synthesized using the anodization technique was modified with subsequent deposition of gold nanoparticles (Au-NPs) via electrophoretic deposition. The impact [...] Read more.
This work focused on the photocatalytic performance enhancement of titanium dioxide (TiO2) nanotubes decorated by gold nanoparticles. The surface of the nanotubes synthesized using the anodization technique was modified with subsequent deposition of gold nanoparticles (Au-NPs) via electrophoretic deposition. The impact of electrophoretically deposited gold nanoparticles (Au-NPs) on TiO2 nanotubes, with varying deposition times (5 min, 8 min and 12 min), was investigated in the degradation of amido black (AB) dye. The morphological analysis using scanning electron microscopy (SEM, TESCAN VEGA3, TESCAN Orsay Holding, Brno, Czech Republic) and transmission electron microscopy (TEM, JEM—100CX2, JEOL Japan). revealed a well-organized nanotubular structure of TiO2, with a wall thickness of 25 nm and an internal diameter of 75 nm. Optical study, including photoluminescence and diffuse reflectance spectroscopy, provided evidence of charge transfer between the Au-NPs and the TiO2-NTs. Furthermore, the photocatalytic measurements showed that the enhanced photocatalytic activity of the TiO2-NTs resulted from successful Au deposition onto their surface, surpassing that of the pure sample. This improvement is attributed to the higher work function of gold nanoparticles, which effectively promoted the separation of photogenerated electron–hole pairs. The sample Au-NPs/TiO2-NTs with a deposition time of 5 min exhibited the best photocatalytic efficiency, achieving an 85% degradation rate after 270 min under UV irradiation. Moreover, the enhancement obtained was also attributed to the plasmonic effect induced by Au-NPs. Kinetic investigations revealed that the photocatalytic reaction followed apparent first-order kinetics, highlighting the efficiency of Au-NPs/TiO2-NTs as a photocatalyst for dye degradation. Full article
(This article belongs to the Special Issue Photocatalysis towards a Sustainable Future)
Show Figures

Figure 1

21 pages, 2431 KiB  
Article
Pyridyl-Thiourea Ruthenium and Osmium Complexes: Coordination of Ligand and Application as FLP Hydrogenation Catalysts
by Alejandro Grasa, Roisin D. Leavey, Fernando Viguri, Ricardo Rodríguez and Pilar Lamata
Molecules 2025, 30(16), 3398; https://doi.org/10.3390/molecules30163398 (registering DOI) - 16 Aug 2025
Abstract
Pyridyl-thiourea complexes of formula [(Cym)MCl(κ2Npy,S-H2NNS)][SbF6] (Cym = η6-p-MeC6H4iPr; H2NNS = N-(p-tolyl)-N′-(2-pyridylmethyl)thiourea); M = Ru ( [...] Read more.
Pyridyl-thiourea complexes of formula [(Cym)MCl(κ2Npy,S-H2NNS)][SbF6] (Cym = η6-p-MeC6H4iPr; H2NNS = N-(p-tolyl)-N′-(2-pyridylmethyl)thiourea); M = Ru (1), Os (2)) were synthesized by reacting the corresponding metal dimers [{(Cym)MCl}2(μ-Cl)2] with H2NNS in the presence of NaSbF6. Subsequent chloride abstraction with AgSbF6, followed by NH deprotonation using NaHCO3, afforded the cationic complexes [(Cym)M(κ3Npy,Namide,S-HNNS)][SbF6] (M = Ru (5a), (5c); M = Os (6a, 6c)) and [(Cym)M(κ2Namide,S-HNNS)][SbF6] (M = Ru (5b); M = Os (6b)). The proposed structures for the prepared compounds are based on NMR data. Complexes 5a, 5b, and 6a, 6b evolve to the thermodynamically more stable species 5c and 6c, respectively, in which the deprotonated ligand HNNS adopts a κ3Npy,Namide,S coordination mode. Complexes 5c and 6c activate H2, behaving as frustrated Lewis pair (FLP) species, and catalyze (5c and/or 6c) the hydrogenation of polar multiple bonds, including the C=N bonds of N-benzylideneaniline and quinoline, the C=C bond of methyl acrylate, and the C=O bond of 2,2,2-trifluoroacetophenone. Full article
(This article belongs to the Special Issue Recent Advances in Transition Metal Catalysis, 2nd Edition)
Show Figures

Figure 1

37 pages, 2406 KiB  
Review
Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights
by Humam Emad Rajha, Ahmed Hassanein, Rowan Mesilhy, Zainab Nurulhaque, Nebras Elghoul, Patrick G. Burgon, Rafif Mahmood Al Saady and Shona Pedersen
Int. J. Mol. Sci. 2025, 26(16), 7908; https://doi.org/10.3390/ijms26167908 (registering DOI) - 16 Aug 2025
Abstract
Apolipoprotein A (ApoA) proteins, ApoA-I, ApoA-II, ApoA-IV, and ApoA-V, play critical roles in lipid metabolism, neuroinflammation, and blood–brain barrier integrity, making them pivotal in neurological diseases such as Alzheimer’s disease (AD), stroke, Parkinson’s disease (PD), and multiple sclerosis (MS). This review synthesizes current [...] Read more.
Apolipoprotein A (ApoA) proteins, ApoA-I, ApoA-II, ApoA-IV, and ApoA-V, play critical roles in lipid metabolism, neuroinflammation, and blood–brain barrier integrity, making them pivotal in neurological diseases such as Alzheimer’s disease (AD), stroke, Parkinson’s disease (PD), and multiple sclerosis (MS). This review synthesizes current evidence on their structural and functional contributions to neuroprotection, highlighting their dual roles as biomarkers and therapeutic targets. ApoA-I, the most extensively studied, exhibits anti-inflammatory, antioxidant, and amyloid-clearing properties, with reduced levels associated with AD progression and cognitive decline. ApoA-II modulates HDL metabolism and stroke risk, while ApoA-IV influences neuroinflammation and amyloid processing. ApoA-V, although less explored, is implicated in stroke susceptibility through its regulation of triglycerides. Genetic polymorphisms (e.g., APOA1 rs670, APOA5 rs662799) further complicate disease risk, showing population-specific associations with stroke and neurodegeneration. Therapeutic strategies targeting ApoA proteins, including reconstituted HDL, mimetic peptides, and gene-based approaches, show promise in preclinical models but face translational challenges in human trials. Clinical trials, such as those with CSL112, highlight the need for neuro-specific optimization. Further research should prioritize human-relevant models, advanced neuroimaging techniques, and functional assays to elucidate ApoA mechanisms inside the central nervous system. The integration of genetic, lipidomic, and clinical data offers potential for enhancing precision medicine in neurological illnesses by facilitating the generation of ApoA-targeted treatments and bridging current deficiencies in disease comprehension and therapy. Full article
Show Figures

Figure 1

Back to TopTop