Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights
Abstract
1. Introduction
2. Structure and Function of Apolipoprotein A (ApoA)
2.1. Introduction to ApoA Proteins
2.2. Structure and Function of Apolipoprotein A-I
2.2.1. Amphipathic Helical Structure
2.2.2. Role in Reverse Cholesterol Transport (RCT)
- Anti-ferroptotic activity: Enhances the NRF2/SLC7A11/glutathione (GSH) pathway in macrophages, increasing intracellular GSH levels and reducing lipid peroxidation, thereby protecting neural cells from ferroptosis [31].
- Antithrombotic support: Stabilizes PGI2 through its amphipathic α-helices, prolonging vasodilatory and antiplatelet effects, which may preserve BBB integrity and reduce micro-thrombosis during neuroinflammation [56].
- Synergistic anti-inflammatory effects: Interacts with HDL-associated molecules such as sphingosine-1-phosphate (S1P), paraoxonase, and clusterin to suppress CNS inflammation, particularly in the context of AD and MS [57].
2.2.3. Anti-Inflammatory and Antioxidant Properties
2.3. Structure and Function of Apolipoprotein A-II
2.3.1. Homodimer Structure
2.3.2. Role in Lipid Metabolism
2.4. Structure and Function of Apolipoprotein A-IV
2.4.1. Structural Characteristics
2.4.2. Biological Functions
2.4.3. Immunomodulatory and Vascular Roles
2.5. Structure and Function of Apolipoprotein A-V
2.5.1. Hydrophobic Structure
2.5.2. Role in Lipid Regulation
2.5.3. Anti-Inflammatory and Antioxidant Effects
3. APOA Single Nucleotide Polymorphisms (SNPs)
Gene | Alleles | Implications in Neurological Diseases | Interpretation and Notes |
---|---|---|---|
APOA1 | |||
rs670 | C > A/C > T | Increased ischemic stroke risk (CT/TT) [95]. No association with CAA [99], PD [104], or stroke [105]. | Minor A-allele may be protective for arterial stiffness but increases stroke risk. |
rs5069 | G > A | No association with CAA [99]. | T-allele might be protective. |
APOA5 | |||
rs662799 | G > A/G > C | Higher stroke risk (AG/GG/CC) [95,97,98]. Minor C-allele protects against stroke [96]. No association with AD [106,107] | Conflicting evidence, as some studies claim that the minor allele offers protection, while others associate it with greater risk. |
rs2266788 | G > A/G > C | Affects atorvastatin treatment effectiveness in stroke patients [100]. Schizophrenia: drug interaction with anti-psychotic treatment, higher TG levels with minor alleles [101] | C-allele disrupts microRNA-3201 binding, affecting APOA5 expression, and potentially increases risk of CAD and MI [103]. |
rs3135506 | G > A/G > C | Higher stroke risk (CG genotype) [97], no association in some studies [108]. | Minor C-allele might be associated with higher risk of cardiovascular diseases. Strong linkage disequilibrium with rs662799. |
rs651821 | C > A/C > T | Protective against ischemic stroke (C-allele) [96] | Mediation analysis shows a strong triglyceride link [109]. |
4. Apolipoprotein A-I
4.1. Apolipoprotein A-I in Alzheimer’s Disease (AD)
4.2. Apolipoprotein A-I in Parkinson’s Disease (PD)
4.3. Apolipoprotein A-I in Multiple Sclerosis (MS)
4.4. Apolipoprotein A-I in Stroke
4.5. Apolipoprotein A-I in Cerebral Amyloid Angiopathy (CAA)
4.6. Apolipoprotein A-I in Amyotrophic Lateral Sclerosis (ALS) and General Paresis
5. Apolipoprotein A-II
5.1. Apolipoprotein A-II in Stroke and Alzheimer’s Disease (AD)
5.2. Apolipoprotein A-II in Frontotemporal Dementia (FTD) and Multiple Sclerosis (MS)
6. Apolipoprotein A-IV
6.1. Apolipoprotein A-IV in Alzheimer’s Disease (AD) and Stroke:
6.2. Apolipoprotein A-IV in Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s Disease (PD)
6.3. Apolipoprotein A-IV in Psychiatric Disorders, Guillain–Barré Syndrome (GBS) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)
7. Apolipoprotein A-V
7.1. Apolipoprotein A-V in Stroke:
7.2. Apolipoprotein A-V in Alzheimer’s Disease
8. Controversies in ApoA Function and Genetic Associations in Neurological Disorders
9. Therapeutic Implications of ApoA
9.1. ApoA-I Therapies
9.2. ApoA-II and ApoA-IV Therapies
9.3. ApoA-V Therapies
9.4. General Therapeutic Strategies
10. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCA1 | ATP-binding cassette transporter A1 |
AD | Alzheimer’s disease |
ApoA | Apolipoprotein A |
ApoA-I | Apolipoprotein A-I |
ApoA-II | Apolipoprotein A-II |
ApoA-IV | Apolipoprotein A-IV |
ApoA-V | Apolipoprotein A-V |
ApoE | Apolipoprotein E |
BBB | Blood–brain barrier |
CAA | Cerebral amyloid angiopathy |
CIDP | Chronic inflammatory demyelinating polyneuropathy |
CNS | Central nervous system |
CSF | Cerebrospinal fluid |
DHCR24 | 24-dehydrocholesterol reductase |
ER | Endoplasmic reticulum |
FTD | Frontotemporal dementia |
GBS | Guillain-Barré syndrome |
GWAS | Genome-wide association study |
HDL | High-density lipoprotein |
HDL-C | High-density lipoprotein cholesterol |
IFN-γ | Interferon-gamma |
IL | Interleukin |
JAK2/STAT3 | Janus kinase 2/signal transducer and activator of transcription 3 |
LCAT | Lecithin-cholesterol acyltransferase |
LDL | Low-density lipoprotein |
LDLR | Low-density lipoprotein receptor |
LPL | Lipoprotein lipase |
MPO | Myeloperoxidase |
MS | Multiple sclerosis |
N | Number of people (Sample Size) |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NRF2/SLC7A11/GSH | Nuclear factor erythroid 2-related factor 2/solute carrier family 7 member 11/glutathione |
PD | Parkinson’s disease |
PGI2 | Prostacyclin |
PI3K/Akt | Phosphoinositide 3-kinase/protein kinase B |
PPARγ | Peroxisome proliferator-activated receptor gamma |
RCT | Reverse cholesterol transport |
ROS | Reactive oxygen species |
RRMS | Relapsing-remitting multiple sclerosis |
S1P | Sphingosine-1-phosphate |
SCZ | Schizophrenia |
SNP | Single nucleotide polymorphism |
SR-B1 | Scavenger Receptor Class B type 1 |
TG | Triglycerides |
TLR4 | Toll-like receptor 4 |
TNF-α | Tumor necrosis factor-alpha |
VCAM1 | Vascular cell adhesion molecule 1 |
VLDL | Very low-density lipoprotein |
References
- World Health Organization. Over 1 in 3 People Affected by Neurological Conditions, the Leading Cause of Illness and Disability Worldwide. 2024. Available online: https://www.who.int/news/item/14-03-2024-over-1-in-3-people-affected-by-neurological-conditions--the-leading-cause-of-illness-and-disability-worldwide#:~:text=A%20major%20new%20study%20released%20by%20The%20Lancet,Injuries%2C%20and%20Risk%20Factor%20Study%20%28GBD%29%202021%20data (accessed on 28 May 2025).
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.K.; Wong, Y.C.; Siderowf, A.; Hurtig, H.I.; Xie, S.X.; Lee, V.M.Y.; Trojanowski, J.Q.; Yearout, D.; Leverenz, J.B.; Montine, T.J.; et al. Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann. Neurol. 2013, 74, 119–127. [Google Scholar] [CrossRef]
- Birjmohun, R.S.; Dallinga-Thie, G.M.; Kuivenhoven, J.A.; Stroes, E.S.G.; Otvos, J.D.; Wareham, N.J.; Luben, R.; Kastelein, J.J.P.; Khaw, K.-T.; Boekholdt, S.M. Apolipoprotein A-II Is Inversely Associated With Risk of Future Coronary Artery Disease. Circulation 2007, 116, 2029–2035. [Google Scholar] [CrossRef]
- Qu, J.; Ko, C.-W.; Tso, P.; Bhargava, A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019, 8, 319. [Google Scholar] [CrossRef]
- Ibi, D.; Boot, M.; Dollé, M.E.T.; Jukema, J.W.; Rosendaal, F.R.; Christodoulides, C.; Neville, M.J.; Koivula, R.; Rensen, P.C.N.; Karpe, F.; et al. Apolipoprotein A-V is a potential target for treating coronary artery disease: Evidence from genetic and metabolomic analyses. J. Lipid Res. 2022, 63, 100193. [Google Scholar] [CrossRef]
- Podrez, E.A. Anti-oxidant properties of high-density lipoprotein and atherosclerosis. Clin. Exp. Pharmacol. Physiol. 2010, 37, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Nicholls, S.; Rye, K.-A.; Anantharamaiah, G.M.; Navab, M.; Fogelman, A.M. Antiinflammatory Properties of HDL. Circ. Res. 2004, 95, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Tran-Dinh, A.; Diallo, D.; Delbosc, S.; Varela-Perez, L.M.; Dang, Q.; Lapergue, B.; Burillo, E.; Michel, J.; Levoye, A.; Martin-Ventura, J.; et al. HDL and endothelial protection. Br. J. Pharmacol. 2013, 169, 493–511. [Google Scholar] [CrossRef]
- Linsel-Nitschke, P.; Tall, A.R. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat. Rev. Drug Discov. 2005, 4, 193–205. [Google Scholar] [CrossRef]
- Khuseyinova, N.; Koenig, W. Apolipoprotein A-I and risk for cardiovascular diseases. Curr. Atheroscler. Rep. 2006, 8, 365–373. [Google Scholar] [CrossRef]
- Chan, D.C.; Ng, T.W.K.; Watts, G.F. Apolipoprotein A-II: Evaluating its significance in dyslipidaemia, insulin resistance, and atherosclerosis. Ann. Med. 2012, 44, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Li, X.-P. Apolipoprotein A-IV: A potential therapeutic target for atherosclerosis. Prostaglandins Other Lipid Mediat. 2018, 139, 87–92. [Google Scholar] [CrossRef]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Novel Insights From Human Studies on the Role of High-Density Lipoprotein in Mortality and Noncardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 128–140. [Google Scholar] [CrossRef]
- Kingwell, B.A.; Chapman, M.J.; Kontush, A.; Miller, N.E. HDL-targeted therapies: Progress, failures and future. Nat. Rev. Drug Discov. 2014, 13, 445–464. [Google Scholar] [CrossRef]
- Razavi, A.C.; Mehta, A.; Jain, V.; Patel, P.; Liu, C.; Patel, N.; Eisenberg, S.; Vaccarino, V.; Isiadinso, I.; Sperling, L.S.; et al. High-Density Lipoprotein Cholesterol in Atherosclerotic Cardiovascular Disease Risk Assessment: Exploring and Explaining the “U”-Shaped Curve. Curr. Cardiol. Rep. 2023, 25, 1725–1733. [Google Scholar] [CrossRef]
- Huang, Y.-Q.; Liu, X.-C.; Lo, K.; Liu, L.; Yu, Y.-L.; Chen, C.-L.; Huang, J.-Y.; Feng, Y.-Q.; Zhang, B. The U Shaped Relationship Between High-Density Lipoprotein Cholesterol and All-Cause or Cause-Specific Mortality in Adult Population. Clin. Interv. Aging 2020, 15, 1883–1896. [Google Scholar] [CrossRef]
- Davidson, W.S.; Silva, R.A.G.D.; Chantepie, S.; Lagor, W.R.; Chapman, M.J.; Kontush, A. Proteomic Analysis of Defined HDL Subpopulations Reveals Particle-Specific Protein Clusters. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 870–876. [Google Scholar] [CrossRef]
- Maïga, S.F.; Kalopissis, A.-D.; Chabert, M. Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 2014, 96, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Morris, J.; You, Y.; Sexmith, H.; Street, S.E.; Thibert, S.M.; Attah, I.K.; Hutchinson Bunch, C.M.; Novikova, I.V.; Evans, J.E.; et al. APOA2 increases cholesterol efflux capacity to plasma HDL by displacing the C-terminus of resident APOA1. J. Lipid Res. 2024, 65, 100686. [Google Scholar] [CrossRef] [PubMed]
- Zvintzou, E.; Xepapadaki, E.; Kalogeropoulou, C.; Filou, S.; Kypreos, K.E. Pleiotropic effects of apolipoprotein A-Ⅱ on high-density lipoprotein functionality, adipose tissue metabolic activity and plasma glucose homeostasis. J. Biomed. Res. 2020, 34, 14–26. [Google Scholar] [CrossRef]
- Wang, F.; Kohan, A.B.; Lo, C.-M.; Liu, M.; Howles, P.; Tso, P. Apolipoprotein A-IV: A protein intimately involved in metabolism. J. Lipid Res. 2015, 56, 1403–1418. [Google Scholar] [CrossRef]
- Hubacek, J.A. Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology. Gene 2016, 592, 193–199. [Google Scholar] [CrossRef]
- Block, R.; Corsetti, J.; Goldenberg, I.; Vorobiof, G.; McNitt, S.; Ryan, D.; Zareba, W.; Moss, A.J. The Common Apolipoprotein A-1 Polymorphism -75A>G is Associated with Ethnic Differences in Recurrent Coronary Events after Recovery from an Acute Myocardial Infarction. Heart Int. 2009, 4, e8. [Google Scholar] [CrossRef] [PubMed]
- Bolanos-Garcia, V.M.; Miguel, R.N. On the structure and function of apolipoproteins: More than a family of lipid-binding proteins. Prog. Biophys. Mol. Biol. 2003, 83, 47–68. [Google Scholar] [CrossRef]
- Cheng, A.M.; Handa, P.; Tateya, S.; Schwartz, J.; Tang, C.; Mitra, P.; Oram, J.F.; Chait, A.; Kim, F. Apolipoprotein A-I Attenuates Palmitate-Mediated NF-κB Activation by Reducing Toll-Like Receptor-4 Recruitment into Lipid Rafts. PLoS ONE 2012, 7, e33917. [Google Scholar] [CrossRef]
- Yin, K.; Deng, X.; Mo, Z.C.; Zhao, G.J.; Jiang, J.; Cui, L.B.; Tan, C.Z.; Wen, G.B.; Fu, Y.; Tang, C.K. Tristetraprolin-dependent post-transcriptional regulation of inflammatory cytokine mRNA expression by apolipoprotein A-I: Role of ATP-binding membrane cassette transporter A1 and signal transducer and activator of transcription 3. J. Biol. Chem. 2011, 286, 13834–13845. [Google Scholar] [CrossRef]
- Iqbal, A.J.; Barrett, T.J.; Taylor, L.; McNeill, E.; Manmadhan, A.; Recio, C.; Carmineri, A.; Brodermann, M.H.; White, G.E.; Cooper, D.; et al. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo. eLife 2016, 5, e15190. [Google Scholar] [CrossRef]
- De Seny, D.; Cobraiville, G.; Charlier, E.; Neuville, S.; Lutteri, L.; Le Goff, C.; Malaise, D.; Malaise, O.; Chapelle, J.-P.; Relic, B.; et al. Apolipoprotein-A1 as a Damage-Associated Molecular Patterns Protein in Osteoarthritis: Ex Vivo and In Vitro Pro-Inflammatory Properties. PLoS ONE 2015, 10, e0122904. [Google Scholar] [CrossRef]
- Li, D.; Weng, S.; Yang, B.; Zander, D.S.; Saldeen, T.; Nichols, W.W.; Khan, S.; Mehta, J.L. Inhibition of Arterial Thrombus Formation by ApoA1 Milano. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yi, Y.; Deng, Y.; Peng, D. Abstract 4142394: HDL/ApoA1 inhibits macrophage ferroptosis via upregulating NRF2/SLC7A11/GSH pathway. Circulation 2024, 150 (Suppl. S1), A4142394. [Google Scholar] [CrossRef]
- Garbuzova-Davis, S.; Willing, A.E.; Borlongan, C.V. Apolipoprotein A1 Enhances Endothelial Cell Survival in an In Vitro Model of ALS. Eneuro 2022, 9, ENEURO.0140-22.2022. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, B.; Liu, Y.; Wang, D.; Fields, L.; Zhang, H.; Li, M.; Shi, X.; Zetterberg, H.; Li, L. DiLeu Isobaric Labeling Coupled with Limited Proteolysis Mass Spectrometry for High-Throughput Profiling of Protein Structural Changes in Alzheimer’s Disease. Anal. Chem. 2023, 95, 9746–9753. [Google Scholar] [CrossRef]
- Thompson, P.A.; Berbée, J.F.; Rensen, P.C.; Kitchens, R.L. Apolipoprotein A-II augments monocyte responses to LPS by suppressing the inhibitory activity of LPS-binding protein. Innate Immun. 2008, 14, 365–374. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhang, Y.; Chang, L.; Wei, Y.; Huang, N.; Zhou, J.-T.; Cheng, C.; Zhang, J.; Xu, J.; Li, Z.; et al. Apolipoprotein A-IV reduced metabolic inflammation in white adipose tissue by inhibiting IKK and JNK signaling in adipocytes. Mol. Cell. Endocrinol. 2023, 559, 111813. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Zhang, Y.; Cheng, C.; Fan, J.; Zhou, J.; Garstka, M.A.; Li, Z. Hepatoprotective effect of apolipoprotein A4 against carbon tetrachloride induced acute liver injury through mediating hepatic antioxidant and inflammation response in mice. Biochem. Biophys. Res. Commun. 2021, 534, 659–665. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Bicchiega, V.; Curatola, G. Effect of human Apo AIV against lipid peroxidation of very low density lipoproteins. Chem. Phys. Lipids 2002, 114, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yu, L.; Cheng, N.; Liu, X.; Fang, C.; Liu, S.; Zhu, L. Exercise Alleviates the Apolipoprotein A5-Toll-Like Receptor 4 Axis Impairment in Mice With High-Fat Diet-Induced Non-alcoholic Steatohepatitis. Front. Physiol. 2021, 12, 783341. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Luo, J.; Qiu, H.; Tang, Y.; Yang, X.; Chen, Y.; Li, Z.; Li, J. Apolipoprotein A5 ameliorates MCT induced pulmonary hypertension by inhibiting ER stress in a GRP78 dependent mechanism. Lipids Health Dis. 2022, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Xiang, Z.; Zhang, B.Y.; Zou, Y.W.; Chen, G.L.; Yin, L.; Shi, Y.L.; Xu, L.L.; Bi, J.; Wang, Q. APOA5 alleviates reactive oxygen species to promote oxaliplatin resistance in PIK3CA-mutated colorectal cancer. Aging 2024, 16, 9410–9436. [Google Scholar] [CrossRef]
- Georgila, K.; Vyrla, D.; Drakos, E. Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers 2019, 11, 1097. [Google Scholar] [CrossRef]
- Thomas, M.J.; Bhat, S.; Sorci-Thomas, M.G. Three-dimensional models of HDL apoA-I: Implications for its assembly and function. J. Lipid Res. 2008, 49, 1875–1883. [Google Scholar] [CrossRef]
- Lund-Katz, S.; Phillips, M.C. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell. Biochem. 2010, 51, 183–227. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Dayer, J.M.; von Eckardstein, A.; Roux-Lombard, P. Pro- or anti-inflammatory role of apolipoprotein A-1 in high-density lipoproteins? Swiss Med. Wkly. 2013, 143, w13781. [Google Scholar] [CrossRef]
- Bhale, A.S.; Venkataraman, K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed. Pharmacother. 2022, 154, 113634. [Google Scholar] [CrossRef]
- Bhale, A.S.; Meilhac, O.; D’Hellencourt, C.L.; Vijayalakshmi, M.A.; Venkataraman, K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. BioFactors 2024, 50, 922–956. [Google Scholar] [CrossRef]
- Lu, C.; Zuo, K.; Lu, Y.; Liang, S.; Huang, X.; Zeng, C.; Zhang, J.; An, Y.; Wang, J. Apolipoprotein A-1-related amyloidosis 2 case reports and review of the literature. Medicine 2017, 96, e8148. [Google Scholar] [CrossRef] [PubMed]
- Melchior, J.T.; Walker, R.G.; Cooke, A.L.; Morris, J.; Castleberry, M.; Thompson, T.B.; Jones, M.K.; Song, H.D.; Rye, K.-A.; Oda, M.N.; et al. A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nat. Struct. Mol. Biol. 2017, 24, 1093–1099. [Google Scholar] [CrossRef]
- Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and Reverse Cholesterol Transport. Circ. Res. 2019, 124, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Hashim, I.A. Lipids Metabolism and Cardiac Biomarkers; Elsevier: Amsterdam, The Netherlands, 2024; pp. 181–211. [Google Scholar]
- Chen, L.; Zhen-Wang, Z.; Peng-Hui, Z.; Ying-Jie, Z.; and Yin, W.-J. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 2022, 21, 1121–1139. [Google Scholar] [CrossRef]
- Wang, S.; Smith, J.D. ABCA1 and nascent HDL biogenesis. BioFactors 2014, 40, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, L.; Ossoli, A.F.; Freeman, L.; Vaisman, B.; Amar, M.J.; Shamburek, R.D.; Remaley, A.T. Role of Lecithin; Elsevier: Amsterdam, The Netherlands, 2014; pp. 159–194. [Google Scholar]
- Rosenson, R.S.; Brewer, H.B.; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.-C.; Phillips, M.C.; Rader, D.J.; et al. Cholesterol Efflux and Atheroprotection. Circulation 2012, 125, 1905–1919. [Google Scholar] [CrossRef]
- Mahley, R.W. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arter. Thromb. Vasc. Biol. 2016, 36, 1305–1315. [Google Scholar] [CrossRef]
- Yui, Y.; Aoyama, T.; Morishita, H.; Takahashi, M.; Takatsu, Y.; Kawai, C. Serum prostacyclin stabilizing factor is identical to apolipoprotein A-I (Apo A-I). A novel function of Apo A-I. J. Clin. Invest. 1988, 82, 803–807. [Google Scholar] [CrossRef]
- Robert, J.; Osto, E.; von Eckardstein, A. The Endothelium Is Both a Target and a Barrier of HDL’s Protective Functions. Cells 2021, 10. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Maaninka, K.; Lappalainen, J.; Nurmi, K.; Metso, J.; Öörni, K.; Navab, M.; Fogelman, A.M.; Jauhiainen, M.; Lee-Rueckert, M.; et al. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 274–284. [Google Scholar] [CrossRef] [PubMed]
- NobéCourt, E.; Tabet, F.; Lambert, G.; Puranik, R.; Bao, S.; Yan, L.; Davies, M.J.; Brown, B.E.; Jenkins, A.J.; Dusting, G.J.; et al. Nonenzymatic Glycation Impairs the Antiinflammatory Properties of Apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Hewing, B.; Parathath, S.; Barrett, T.; Chung, W.K.K.; Astudillo, Y.M.; Hamada, T.; Ramkhelawon, B.; Tallant, T.C.; Yusufishaq, M.S.S.; Didonato, J.A.; et al. Effects of Native and Myeloperoxidase-Modified Apolipoprotein A-I on Reverse Cholesterol Transport and Atherosclerosis in Mice. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-T.; Shen, M.-Y.; Hsieh, J.-Y.; Chang, C.-M.; Liao, H.-Y.; Chen, F.-Y.; Hsu, C.Y.; Yang, C.-Y.; Chen, C.-J. Increased electronegativity of high-density lipoprotein in uremia patients impairs its functional properties and is associated with the risk of coronary artery disease. Atherosclerosis 2018, 278, 147–155. [Google Scholar] [CrossRef]
- Gibson, C.M.; Duffy, D.; Korjian, S.; Bahit, M.C.; Chi, G.; Alexander, J.H.; Lincoff, A.M.; Heise, M.; Tricoci, P.; Deckelbaum, L.I.; et al. Apolipoprotein A1 Infusions and Cardiovascular Outcomes after Acute Myocardial Infarction. N. Eng. J. Med. 2024, 390, 1560–1571. [Google Scholar] [CrossRef]
- Lim, G.B. No benefit of apoA-I infusion after myocardial infarction. Nat. Rev. Cardiol. 2024, 21, 354. [Google Scholar] [CrossRef]
- Weiss, H.J.; Turitto, V.T. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. Blood 1979, 53, 244–250. [Google Scholar] [CrossRef]
- Fung, K.Y.Y.; Ho, T.W.W.; Xu, Z.; Neculai, D.; Beauchemin, C.A.A.; Lee, W.L.; Fairn, G.D. Apolipoprotein A1 and high-density lipoprotein limit low-density lipoprotein transcytosis by binding SR-B1. J. Lipid Res. 2024, 65, 100530. [Google Scholar] [CrossRef]
- Blanco-Vaca, F.; Escolà-Gil, J.C.; Martín-Campos, J.M.; Julve, J. Role of apoA-II in lipid metabolism and atherosclerosis: Advances in the study of an enigmatic protein. J. Lipid Res. 2001, 42, 1727–1739. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W.; Innerarity, T.L.; Rall, S.C.; Weisgraber, K.H. Plasma lipoproteins: Apolipoprotein structure and function. J. Lipid Res. 1984, 25, 1277–1294. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Baur, J.; Ugrina, M.; Pfeiffer, P.B.; Hartmann, M.; Wiese, S.; Miyahara, H.; Higuchi, K.; Schwierz, N.; Schmidt, M.; et al. Insights into the Structural Basis of Amyloid Resistance Provided by Cryo-EM Structures of AApoAII Amyloid Fibrils. J. Mol. Biol. 2024, 436, 168441. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Florea, G.; Tudorache, I.F.; Fuior, E.V.; Ionita, R.; Dumitrescu, M.; Fenyo, I.M.; Bivol, V.G.; Gafencu, A.V. Apolipoprotein A-II, a Player in Multiple Processes and Diseases. Biomedicines 2022, 10, 1578. [Google Scholar] [CrossRef]
- Xie, G.; Jiang, G.; Huang, L.; Sun, S.; Wan, Y.; Li, F.; Wu, B.; Zhang, Y.; Li, X.; Xiong, B.; et al. The Role of APOA-I in Alzheimer’s Disease: Bridging Peripheral Tissues and the Central Nervous System. Pharmaceuticals 2025, 18, 790. [Google Scholar] [CrossRef]
- Fournier, N.; Cogny, A.; Atger, V.R.; Pastier, D.L.; Goudouneche, D.; Nicoletti, A.; Moatti, N.; Chambaz, J.; Paul, J.-L.; Kalopissis, A.-D. Opposite Effects of Plasma From Human Apolipoprotein A-II Transgenic Mice on Cholesterol Efflux From J774 Macrophages and Fu5AH Hepatoma Cells. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 638–643. [Google Scholar] [CrossRef]
- Wang, Y.; Niimi, M.; Nishijima, K.; Waqar, A.B.; Yu, Y.; Koike, T.; Kitajima, S.; Liu, E.; Inoue, T.; Kohashi, M.; et al. Human Apolipoprotein A-II Protects Against Diet-Induced Atherosclerosis in Transgenic Rabbits. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 224–231. [Google Scholar] [CrossRef]
- Melchior, J.T.; Street, S.E.; Andraski, A.B.; Furtado, J.D.; Sacks, F.M.; Shute, R.L.; Greve, E.I.; Swertfeger, D.K.; Li, H.; Shah, A.S.; et al. Apolipoprotein A-II alters the proteome of human lipoproteins and enhances cholesterol efflux from ABCA1. J. Lipid Res. 2017, 58, 1374–1385. [Google Scholar] [CrossRef]
- Chiesa, G.; Parolini, C.; Canavesi, M.; Colombo, N.; Sirtori, C.R.; Fumagalli, R.; Franceschini, G.; Bernini, F. Human Apolipoproteins A-I and A-II in Cell Cholesterol Efflux. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1417–1423. [Google Scholar] [CrossRef]
- Zvintzou, E.; Kekou, G.; Xepapadaki, E.; Kypreos, K.E.; Giannopoulou, P.C. Functional interaction between apolipoproteins A2 and E in the triglyceride rich lipoprotein metabolism: Is LDLR involved? Atherosclerosis 2021, 331, e123. [Google Scholar] [CrossRef]
- Zhao, G.J.; Yin, K.; Fu, Y.C.; Tang, C.K. The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids. Mol. Med. 2012, 18, 149–158. [Google Scholar] [CrossRef]
- Aldridge, W.N. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem. J. 1953, 53, 117–124. [Google Scholar] [CrossRef]
- Mulder, M.; Koopmans, G.; Wassink, G.; Al Mansouri, G.; Simard, M.L.; Havekes, L.M.; Prickaerts, J.; Blokland, A. LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci. Res. 2007, 59, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Huang, M.; He, Y.; Zhang, S.; Luo, Y. Genetic ablation of apolipoprotein A-IV accelerates Alzheimer’s disease pathogenesis in a mouse model. Am. J. Pathol. 2011, 178, 1298–1308. [Google Scholar] [CrossRef]
- Obinata, H.; Kuo, A.; Wada, Y.; Swendeman, S.; Liu, C.H.; Blaho, V.A.; Nagumo, R.; Satoh, K.; Izumi, T.; Hla, T. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J. Lipid Res. 2019, 60, 1912–1921. [Google Scholar] [CrossRef]
- Vasishta, S.; Ammankallu, S.; Umakanth, S.; Keshava Prasad, T.S.; Joshi, M.B. DNA methyltransferase isoforms regulate endothelial cell exosome proteome composition. Biochimie 2024, 223, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Obinata, H.; Hla, T. Sphingosine 1-phosphate and inflammation. Int. Immunol. 2019, 31, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.B.; Cook, V.R.; Beckstead, J.A.; Martin, D.D.O.; Gallagher, J.W.; Shelness, G.S.; Ryan, R.O. Structure and Interfacial Properties of Human Apolipoprotein A-V. J. Biol. Chem. 2003, 278, 34438–34444. [Google Scholar] [CrossRef]
- Narayanaswami, V.; Kiss, R.S.; Weers, P.M. The helix bundle: A reversible lipid binding motif. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 155, 123–133. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Hua, Z.; Xue, X.; Wang, X.; Pang, M.; Wang, T.; Lyu, A.; Liu, Y. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis. Int. J. Biol. Sci. 2023, 19, 4493–4510. [Google Scholar] [CrossRef]
- Stankov, S.; Vitali, C.; Park, J.; Nguyen, D.; Mayne, L.; Englander, S.W.; Levin, M.G.; Vujkovic, M.; Hand, N.J.; Phillips, M.C.; et al. Comparison of the structure-function properties of wild-type human apoA-V and a C-terminal truncation associated with elevated plasma triglycerides. medRxiv 2023. [Google Scholar] [CrossRef]
- Wong-Mauldin, K.; Raussens, V.; Forte, T.M.; Ryan, R.O. Apolipoprotein A-V N-terminal domain lipid interaction properties in vitro explain the hypertriglyceridemic phenotype associated with natural truncation mutants. J. Biol. Chem. 2009, 284, 33369–33376. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Chan, J.; Ryan, R.O.; Forte, T.M. Apolipoprotein A-V association with intracellular lipid droplets. J. Lipid Res. 2007, 48, 1445–1450. [Google Scholar] [CrossRef]
- Nilsson, S.K.; Heeren, J.; Olivecrona, G.; Merkel, M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011, 219, 15–21. [Google Scholar] [CrossRef]
- Yang, Y.; Konrad, R.J.; Ploug, M.; Young, S.G. APOA5 deficiency causes hypertriglyceridemia by reducing amounts of lipoprotein lipase in capillaries. J. Lipid Res. 2024, 65, 100578. [Google Scholar] [CrossRef]
- Tao, Y.C.; Wang, M.L.; Wu, D.B.; Luo, C.; Tang, H.; Chen, E.Q. Apolipoprotein A5 alleviates LPS/D-GalN-induced fulminant liver failure in mice by inhibiting TLR4-mediated NF-κB pathway. J. Transl. Med. 2019, 17, 151. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Yang, Q. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J. Cardiol. 2013, 5, 164–174. [Google Scholar] [CrossRef]
- Basavaraju, P.; Balasubramani, R.; Kathiresan, D.S.; Devaraj, I.; Babu, K.; Alagarsamy, V.; Puthamohan, V.M. Genetic Regulatory Networks of Apolipoproteins and Associated Medical Risks. Front. Cardiovasc. Med. 2021, 8, 788852. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Li, L.; Deng, S.; He, Z. The association between apolipoprotein A1-C3-A5 gene cluster promoter polymorphisms and risk of ischemic stroke in the northern Chinese Han population. J. Int. Med. Res. 2017, 45, 2042–2052. [Google Scholar] [CrossRef]
- Xiao, R.; Sun, S.; Zhang, J.; Ouyang, Y.; Zhang, N.; Yang, M.; Jin, T.; Xia, Y. Association analysis of APO gene polymorphisms with ischemic stroke risk: A case-control study in a Chinese Han population. Oncotarget 2017, 8, 60496–60503. [Google Scholar] [CrossRef] [PubMed]
- Au, A.; Griffiths, L.R.; Irene, L.; Kooi, C.W.; Wei, L.K. The impact of APOA5, APOB, APOC3 and ABCA1 gene polymorphisms on ischemic stroke: Evidence from a meta-analysis. Atherosclerosis 2017, 265, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, J.; Paz–Aragón, E.; Vega–Rodríguez, L.H.; Benítez Sanfeliz, M.A.; Estrada–Rodríguez, H.; González–Figueroa, E.; Liceaga–Craviotto, M.G.; Gutiérrez–Cuevas, J.; Valladares–Salgado, A.; Cruz, M. The Methylenetetrahydrofolate Reductase C677T (rs1801133) and Apolipoprotein A5-1131T>C (rs662799) Polymorphisms, and Anemia Are Independent Risk Factors for Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Montañola, A.; De Retana, S.F.; López-Rueda, A.; Merino-Zamorano, C.; Penalba, A.; Fernández-Álvarez, P.; Rodríguez-Luna, D.; Malagelada, A.; Pujadas, F.; Montaner, J.; et al. ApoA1, ApoJ and ApoE Plasma Levels and Genotype Frequencies in Cerebral Amyloid Angiopathy. NeuroMolecular Med. 2016, 18, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.-H.; Bai, X.-D.; Zhang, H.-J.; Li, Y.-M.; Hu, L.; Liu, L.-Y.; Mao, J.-P.; Yang, X.-Y.; Dila, N.-M. Gene Polymorphisms Affect the Effectiveness of Atorvastatin in Treating Ischemic Stroke Patients. Cell. Physiol. Biochem. 2016, 39, 630–638. [Google Scholar] [CrossRef]
- Hong, C.-J.; Chen, T.-T.; Bai, Y.M.; Liou, Y.-J.; Tsai, S.-J. Impact of apolipoprotein A5 (APOA5) polymorphisms on serum triglyceride levels in schizophrenic patients under long-term atypical antipsychotic treatment. World J. Biol. Psychiatry 2012, 13, 22–29. [Google Scholar] [CrossRef]
- Ouatou, S.; Ajjemami, M.; Charoute, H.; Sefri, H.; Ghalim, N.; Rhaissi, H.; Benrahma, H.; Barakat, A.; Rouba, H. Association of APOA5 rs662799 and rs3135506 polymorphisms with arterial hypertension in Moroccan patients. Lipids Health Dis. 2014, 13, 60. [Google Scholar] [CrossRef]
- Cui, G.; Li, Z.; Li, R.; Huang, J.; Wang, H.; Zhang, L.; Ding, H.; Wang, D.W. A Functional Variant in APOA5/A4/C3/A1 Gene Cluster Contributes to Elevated Triglycerides and Severity of CAD by Interfering With MicroRNA 3201 Binding Efficiency. J. Am. Coll. Cardiol. 2014, 64, 267–277. [Google Scholar] [CrossRef]
- Swanson, C.R.; Li, K.; Unger, T.L.; Gallagher, M.D.; Van Deerlin, V.M.; Agarwal, P.; Leverenz, J.; Roberts, J.; Samii, A.; Gross, R.G.; et al. Lower plasma apolipoprotein A1 levels are found in Parkinson’s disease and associate with apolipoprotein A1 genotype. Mov. Disord. 2015, 30, 805–812. [Google Scholar] [CrossRef]
- Hsu, L.-C.; Hsu, L.-S.; Lee, T.-H. Association of apolipoprotein A1 and A5 polymorphisms with stroke subtypes in Han Chinese people in Taiwan. Gene 2019, 684, 76–81. [Google Scholar] [CrossRef]
- Guven, G.; Vurgun, E.; Bilgic, B.; Hanagasi, H.; Gurvit, H.; Ozer, E.; Lohmann, E.; Erginel-Unaltuna, N. Association between selected cholesterol-related gene polymorphisms and Alzheimer’s disease in a Turkish cohort. Mol. Biol. Rep. 2019, 46, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.A.F.; De Labio, R.W.; De Oliveira, S.; Rigolin, V.; Minett, T.; Bertolucci, P.H.F.; De Arruda Cardoso Smith, M.; Payão, S.L.M. Apolipoprotein A-V gene polymorphism –1131T>C and Alzheimer’s disease. J. Alzheimer’s Dis. 2006, 10, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Can Demirdöğen, B.; Şahin, E.; Türkanoğlu Özçelik, A.; Bek, S.; Demirkaya, Ş.; Adali, O. Apolipoprotein A5 polymorphisms in Turkish population: Association with serum lipid profile and risk of ischemic stroke. Mol. Biol. Rep. 2012, 39, 10459–10468. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Wu, Y.-H.; Zhang, Y.; Zhang, L.; Song, Y.; Bai, W.; Li, Y.; Yu, Y.; Kou, C. Effects of polymorphisms in APOA5 on the plasma levels of triglycerides and risk of coronary heart disease in Jilin, northeast China: A case–control study. BMJ Open 2018, 8, e020016. [Google Scholar] [CrossRef]
- Tsujita, M.; Melchior, J.T.; Yokoyama, S. Lipoprotein Particles in Cerebrospinal Fluid. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1042–1052. [Google Scholar] [CrossRef]
- Tsujita, M.; Vaisman, B.; Chengyu, L.; Vickers, K.C.; Okuhira, K.I.; Braesch-Andersen, S.; Remaley, A.T. Apolipoprotein A-I in mouse cerebrospinal fluid derives from the liver and intestine via plasma high-density lipoproteins assembled by ABCA1 and LCAT. FEBS Lett. 2021, 595, 773–788. [Google Scholar] [CrossRef]
- Wang, H.; Eckel, R.H. What are lipoproteins doing in the brain? Trends Endocrinol. Metab. 2014, 25, 8–14. [Google Scholar] [CrossRef]
- Martinez, A.E.; Weissberger, G.; Kuklenyik, Z.; He, X.; Meuret, C.; Parekh, T.; Rees, J.C.; Parks, B.A.; Gardner, M.S.; King, S.M.; et al. The small HDL particle hypothesis of Alzheimer’s disease. Alzheimer’s Dement. 2023, 19, 391–404. [Google Scholar] [CrossRef]
- Emamzadeh, F.N. Role of Apolipoproteins and α-Synuclein in Parkinson’s Disease. J. Mol. Neurosci. 2017, 62, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Fantini, J.; Carlus, D.; Yahi, N. The fusogenic tilted peptide (67–78) of α-synuclein is a cholesterol binding domain. Biochim. Biophys. Acta (BBA)-Biomembr. 2011, 1808, 2343–2351. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wan, X.; Liu, B.; Rong, X.; Zhu, L.; Li, P.; Li, J.; Wang, L.; Cui, L.; Wang, X. Specific Changes of Serum Proteins in Parkinson’s Disease Patients. PLoS ONE 2014, 9, e95684. [Google Scholar] [CrossRef]
- Cho, K.-H. Structural and Functional Changes of Reconstituted High-Density Lipoprotein (HDL) by Incorporation of α-synuclein: A Potent Antioxidant and Anti-Glycation Activity of α-synuclein and apoA-I in HDL at High Molar Ratio of α-synuclein. Molecules 2021, 26, 7485. [Google Scholar] [CrossRef]
- Zuin, M.; Cervellati, C.; Trentini, A.; Passaro, A.; Rosta, V.; Zimetti, F.; Zuliani, G. Association between Serum Concentrations of Apolipoprotein A-I (ApoA-I) and Alzheimer’s Disease: Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 984. [Google Scholar] [CrossRef]
- Akiyama, T.; Ikegami, R.; Kubota, N.; Takano, T.; Yoneyama, S.; Okubo, T.; Hoyano, M.; Ozaki, K.; Inomata, T. Abstract 15093: Serum Apolipoprotein-A2 Levels Are a Stronger Predictor of the Residual Cardiovascular Event Risk After Percutaneous Coronary Intervention. Circulation 2023, 148 (Suppl. S1), A15093. [Google Scholar] [CrossRef]
- Lin, Q.; Cao, Y.; Gao, J. Decreased expression of the APOA1–APOC3–APOA4 gene cluster is associated with risk of Alzheimer’s disease. Drug Des. Dev. Ther. 2015, 9, 5421–5431. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.; Cao, X.; Wang, Y.; Zhu, C.; Guan, J. Identification of Serum Biomarkers in Patients with Alzheimer’s Disease by 2D-DIGE Proteomics. Gerontology 2022, 68, 686–698. [Google Scholar] [CrossRef]
- Lewis, T.L.; Cao, D.; Lu, H.; Mans, R.A.; Su, Y.R.; Jungbauer, L.; Linton, M.F.; Fazio, S.; Ladu, M.J.; Li, L. Overexpression of Human Apolipoprotein A-I Preserves Cognitive Function and Attenuates Neuroinflammation and Cerebral Amyloid Angiopathy in a Mouse Model of Alzheimer Disease. J. Biol. Chem. 2010, 285, 36958–36968. [Google Scholar] [CrossRef]
- Hottman, D.A.; Chernick, D.; Cheng, S.; Wang, Z.; Li, L. HDL and cognition in neurodegenerative disorders. Neurobiol. Dis. 2014, 72 Pt A, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, L.; Shi, C.; Di Lorenzo, D.; Van Baelen, A.-C.; Tonali, N. The Positive Side of the Alzheimer’s Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020, 25, 2439. [Google Scholar] [CrossRef]
- Choi, M.; Kim, D.; Youn, Y.-J.; Ryu, J.; Jeong, Y.H. Effect of Obesity and High-Density Lipoprotein Concentration on the Pathological Characteristics of Alzheimer’s Disease in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 2022, 23, 12296. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, L.; Wang, T.; Liu, W.; Wang, L.; Ju, M.; Feng, W.; Xiao, R. 27-Hydroxycholesterol-Induced Dysregulation of Cholesterol Metabolism Impairs Learning and Memory Ability in ApoE ε4 Transgenic Mice. Int. J. Mol. Sci. 2022, 23, 11639. [Google Scholar] [CrossRef] [PubMed]
- Fernández-De Retana, S.; Montañola, A.; Marazuela, P.; De La Cuesta, M.; Batlle, A.; Fatar, M.; Grudzenski, S.; Montaner, J.; Hernández-Guillamon, M. Intravenous treatment with human recombinant ApoA-I Milano reduces beta amyloid cerebral deposition in the APP23-transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 2017, 60, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Gardner, L.A.; Levin, M.C. Importance of Apolipoprotein A-I in Multiple Sclerosis. Front. Pharmacol. 2015, 6, 278. [Google Scholar] [CrossRef]
- McComb, M.; Krikheli, M.; Uher, T.; Browne, R.W.; Srpova, B.; Oechtering, J.; Maceski, A.M.; Tyblova, M.; Jakimovski, D.; Ramasamy, D.P.; et al. Neuroprotective associations of apolipoproteins A-I and A-II with neurofilament levels in early multiple sclerosis. J. Clin. Lipidol. 2020, 14, 675–684.e672. [Google Scholar] [CrossRef] [PubMed]
- Koutsis, G.; Panas, M.; Giogkaraki, E.; Karadima, G.; Sfagos, C.; Vassilopoulos, D. An APOA1 promoter polymorphism is associated with cognitive performance in patients with multiple sclerosis. Mult. Scler. J. 2009, 15, 174–179. [Google Scholar] [CrossRef]
- Umemoto, T.; Han, C.Y.; Mitra, P.; Averill, M.M.; Tang, C.; Goodspeed, L.; Omer, M.; Subramanian, S.; Wang, S.; Den Hartigh, L.J.; et al. Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ. Res. 2013, 112, 1345–1354. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Dong, H.; Chen, W.; Wang, X.; Pi, F.; Wu, Y.; Pang, S.; Xie, Y.; Xia, F.; Zhang, Q. Apolipoprotein A1, B levels, and their ratio and the risk of a first stroke: A meta-analysis and case–control study. Metab. Brain Dis. 2015, 30, 1319–1330. [Google Scholar] [CrossRef]
- Toth, P.P.; Keech, A.C.; Januszewski, A.S.; O’Connell, R.L.; Lee, L.P.; Sullivan, D.; Taskinen, M.R.; Drury, P.L.; Watts, G.F.; Best, J.D.; et al. Abstract WP219: Lipoprotein Subfractions Are Associated With Stroke Among 9,795 Patients in the Field Trial. Stroke 2020, 51 (Suppl. S1), AWP219. [Google Scholar] [CrossRef]
- Plubell, D.L.; Fenton, A.M.; Rosario, S.; Bergstrom, P.; Wilmarth, P.A.; Clark, W.M.; Zakai, N.A.; Quinn, J.F.; Minnier, J.; Alkayed, N.J.; et al. High-Density Lipoprotein Carries Markers That Track With Recovery From Stroke. Circ. Res. 2020, 127, 1274–1287. [Google Scholar] [CrossRef]
- Li, L.; Dong, L.; Xiao, Z.; He, W.; Zhao, J.; Pan, H.; Chu, B.; Cheng, J.; Wang, H. Integrated analysis of the proteome and transcriptome in a MCAO mouse model revealed the molecular landscape during stroke progression. J. Adv. Res. 2020, 24, 13–27. [Google Scholar] [CrossRef]
- Diakite, B.; Hamzi, K.; Hmimech, W.; Nadifi, S.; Gmravc. Genetic polymorphisms of T-1131C APOA5 and ALOX5AP SG13S114 with the susceptibility of ischaemic stroke in Morocco. J. Genet. 2016, 95, 303–309. [Google Scholar] [CrossRef]
- Sheppard, O.; Coleman, M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis; Exon Publications: Brisbane, Australia, 2020; pp. 1–21. [Google Scholar]
- Slot, R.E.; Van Harten, A.C.; Kester, M.I.; Jongbloed, W.; Bouwman, F.H.; Teunissen, C.E.; Scheltens, P.; Veerhuis, R.; van der Flier, W.M. Apolipoprotein A1 in Cerebrospinal Fluid and Plasma and Progression to Alzheimer’s Disease in Non-Demented Elderly. J. Alzheimers Dis. 2017, 56, 687–697. [Google Scholar] [CrossRef]
- Endres, K. Apolipoprotein A1, the neglected relative of Apolipoprotein E and its potential role in Alzheimer’s disease. Neural Regen. Res. 2021, 16, 2141. [Google Scholar] [CrossRef]
- Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis; Codon Publications: Singapore, 2018; pp. 3–26. [Google Scholar]
- Dovonou, A.; Bolduc, C.; Soto Linan, V.; Gora, C.; Peralta Iii, M.R.; Lévesque, M. Animal models of Parkinson’s disease: Bridging the gap between disease hallmarks and research questions. Transl. Neurodegener. 2023, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Saffari, S.E.; Ng, S.Y.E.; Chia, N.; Tan, J.Y.; Choi, X.; Heng, D.L.; Xu, Z.; Tay, K.-Y.; Au, W.-L.; et al. Blood Lipid Biomarkers in Early Parkinson’s Disease and Parkinson’s Disease with Mild Cognitive Impairment. J. Park. Dis. 2022, 12, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Meyers, L.; Groover, C.J.; Douglas, J.; Lee, S.; Brand, D.; Levin, M.C.; Gardner, L.A. A role for Apolipoprotein A-I in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 2014, 277, 176–185. [Google Scholar] [CrossRef]
- McComb, M.; Parambi, R.; Browne, R.W.; Bodziak, M.L.; Jakimovski, D.; Bergsland, N.; Maceski, A.; Weinstock-Guttman, B.; Kuhle, J.; Zivadinov, R.; et al. Apolipoproteins AI and E are associated with neuroaxonal injury to gray matter in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 45, 102389. [Google Scholar] [CrossRef] [PubMed]
- Everest, E.; Uygunoglu, U.; Tutuncu, M.; Bulbul, A.; Onat, U.I.; Unal, M.; Avsar, T.; Saip, S.; Bilge, U.; Turanli, E.T.; et al. Prospective outcome analysis of multiple sclerosis cases reveals candidate prognostic cerebrospinal fluid markers. PLoS ONE 2023, 18, e0287463. [Google Scholar] [CrossRef]
- Button, E.B.; Boyce, G.K.; Wilkinson, A.; Stukas, S.; Hayat, A.; Fan, J.; Wadsworth, B.J.; Robert, J.; Martens, K.M.; Wellington, C.L. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. Alzheimer’s Res. Ther. 2019, 11, 44. [Google Scholar] [CrossRef]
- Rojas, P.; Ramírez, A.I.; Fernández-Albarral, J.A.; López-Cuenca, I.; Salobrar-García, E.; Cadena, M.; Elvira-Hurtado, L.; Salazar, J.J.; de Hoz, R.; Ramírez, J.M. Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement. Front. Neurosci. 2020, 14, 566858. [Google Scholar] [CrossRef]
- Tao, X.; Tao, R.; Wang, K.; Wu, L. Anti-inflammatory mechanism of Apolipoprotein A-I. Front. Immunol. 2024, 15, 1417270. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.G.; Talbot, K.; Turner, M.R. Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.L.G.; Maximino, J.R.; Lage, L.A.D.P.C.; Gomes, H.R.; Pereira, J.; Brofman, P.R.S.; Senegaglia, A.C.; Rebelatto, C.L.K.; Daga, D.R.; Paiva, W.S.; et al. Proteomic analysis of cerebrospinal fluid of amyotrophic lateral sclerosis patients in the presence of autologous bone marrow derived mesenchymal stem cells. Stem Cell Res. Ther. 2024, 15, 301. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, Y.F.; Liu, M.; Ma, L.L.; Peng, F.H.; Huang, Q.L.; Ma, X.M.; Chen, X.H. Syphilitic dementia and lipid metabolism. Eur. J. Neurol. 2016, 23, 1541–1547. [Google Scholar] [CrossRef]
- Kim, W.S.; He, Y.; Phan, K.; Ahmed, R.M.; Rye, K.-A.; Piguet, O.; Hodges, J.R.; Halliday, G.M. Altered High Density Lipoprotein Composition in Behavioral Variant Frontotemporal Dementia. Front. Neurosci. 2018, 12, 847. [Google Scholar] [CrossRef]
- Gifford, A.; Praschan, N.; Newhouse, A.; Chemali, Z. Biomarkers in frontotemporal dementia: Current landscape and future directions. Biomark. Neuropsychiatry 2023, 8, 100065. [Google Scholar] [CrossRef]
- Geser, F.; Martinez-Lage, M.; Kwong, L.K.; Lee, V.M.; Trojanowski, J.Q. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: The TDP-43 diseases. J. Neurol. 2009, 256, 1205–1214. [Google Scholar] [CrossRef]
- Xu, X.R.; Wang, Y.; Adili, R.; Ju, L.; Spring, C.M.; Jin, J.W.; Yang, H.; Neves, M.A.D.; Chen, P.; Yang, Y.; et al. Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nat. Commun. 2018, 9, 3608. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wang, X.; Ma, B.; Liu, D.; Li, L.; Wang, L.; Ding, N.; Zou, L.; Wang, J.; Pan, J.; et al. Therapeutic potential of Simvastatin in ALS: Enhanced axonal integrity and motor neuron survival through Apoa4 and Alb modulation. Biomol. Biomed. 2024, 25, 632. [Google Scholar] [CrossRef]
- Buscema, M.; Penco, S.; Grossi, E. A Novel Mathematical Approach to Define the Genes/SNPs Conferring Risk or Protection in Sporadic Amyotrophic Lateral Sclerosis Based on Auto Contractive Map Neural Networks and Graph Theory. Neurol. Res. Int. 2012, 2012, 478560. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Sun, L.; Qing, Y.; Hu, X.; Jiang, J.; Wang, D.; Cui, G.; Gao, Y.; Zhang, E.; et al. Decreased serum apolipoprotein A4 as a potential peripheral biomarker for patients with schizophrenia. J. Psychiatr. Res. 2021, 137, 14–21. [Google Scholar] [CrossRef]
- Sadeghi, M.; Roohafza, H.; Afshar, H.; Rajabi, F.; Ramzani, M.; Shemirani, H.; Sarafzadeghan, N. Relationship between depression and apolipoproteins A and B: A case-control study. Clinics 2011, 66, 113–117. [Google Scholar] [CrossRef]
- Sun, B.; Li, D.; Hou, X.; Li, W.; Gou, Y.; Hu, F.; Li, W.; Shi, X. A novel electrochemical immunosensor for the highly sensitive and selective detection of the depression marker human apolipoprotein A4. Bioelectrochemistry 2020, 135, 107542. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, X.M.; Mao, X.J.; Deng, H.; Li, H.F.; Press, R.; Fredrikson, S.; Zhu, J. Altered cerebrospinal fluid index of prealbumin, fibrinogen, and haptoglobin in patients with Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. Acta Neurol. Scand. 2012, 125, 129–135. [Google Scholar] [CrossRef]
- Hechmi, M.; Dallali, H.; Gharbi, M.; Jmel, H.; Fassatoui, M.; Ben Halima, Y.; Bahri, S.; Bahlous, A.; Abid, A.; Jamoussi, H.; et al. Association of rs662799 variant and APOA5 gene haplotypes with metabolic syndrome and its components: A meta-analysis in North Africa. Biosci. Rep. 2020, 40, BSR20200706. [Google Scholar] [CrossRef] [PubMed]
- Wolska, A.; Reimund, M.; Sviridov, D.O.; Amar, M.J.; Remaley, A.T. Apolipoprotein Mimetic Peptides: Potential New Therapies for Cardiovascular Diseases. Cells 2021, 10, 597. [Google Scholar] [CrossRef]
- Cochran, B.J.; Ong, K.-L.; Manandhar, B.; Rye, K.-A. APOA1: A Protein with Multiple Therapeutic Functions. Curr. Atheroscler. Rep. 2021, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Kalayci, A.; Gibson, C.M.; Ridker, P.M.; Wright, S.D.; Kingwell, B.A.; Korjian, S.; Chi, G.; Lee, J.J.; Tricoci, P.; Kazmi, S.H.; et al. ApoA-I Infusion Therapies Following Acute Coronary Syndrome: Past, Present, and Future. Curr. Atheroscler. Rep. 2022, 24, 585–597. [Google Scholar] [CrossRef]
- Mani, P.; Rohatgi, A. Niacin Therapy, HDL Cholesterol, and Cardiovascular Disease: Is the HDL Hypothesis Defunct? Curr. Atheroscler. Rep. 2015, 17, 43. [Google Scholar] [CrossRef]
- Didichenko, S.A.; Velkoska, E.; Navdaev, A.V.; Greene, B.H.; Lorkowski, S.W.; Duffy, D.; Mears, S.J.; Wright, S.D.; Gibson, C.M.; Smith, J.D.; et al. CSL112 Infusion Rapidly Increases APOA1 Exchange Rate via Specific Serum Amyloid-Poor HDL Subpopulations When Administered to Patients Post–Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 855–869. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, W.; Stonik, J.A.; Murphy, A.; Demosky, S.J.; Sethi, A.A.; Moore, X.L.; Chin-Dusting, J.; Remaley, A.T.; Sviridov, D. Structure/Function Relationships of Apolipoprotein A-I Mimetic Peptides. Circ. Res. 2010, 107, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Nankar, S.A.; Kawathe, P.S.; Pande, A.H. HDL, ApoA-I and ApoE-Mimetic Peptides: Potential Broad Spectrum Agent for Clinical Use? Int. J. Pept. Res. Ther. 2022, 28, 52. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Fx-5A in Healthy Volunteers. Available online: https://clinicaltrials.gov/study/NCT04216342 (accessed on 28 October 2024).
- Nicholls, S.J.; Gordon, A.; Johansson, J.; Wolski, K.; Ballantyne, C.M.; Kastelein, J.J.P.; Taylor, A.; Borgman, M.; Nissen, S.E. Efficacy and Safety of a Novel Oral Inducer of Apolipoprotein A-I Synthesis in Statin-Treated Patients With Stable Coronary Artery Disease. J. Am. Coll. Cardiol. 2011, 57, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sawashita, J.; Qian, J.; Zhang, B.; Fu, X.; Tian, G.; Chen, L.; Mori, M.; Higuchi, K. ApoA-I deficiency in mice is associated with redistribution of apoA-II and aggravated AApoAII amyloidosis. J. Lipid Res. 2011, 52, 1461–1470. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Pottanat, T.G.; Zhen, E.Y.; Siegel, R.W.; Ehsani, M.; Qian, Y.W.; Konrad, R.J. ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition. J. Lipid Res. 2021, 62, 100068. [Google Scholar] [CrossRef]
- Dakal, T.C.; Xiao, F.; Bhusal, C.K.; Sabapathy, P.C.; Segal, R.; Chen, J.; Bai, X. Lipids dysregulation in diseases: Core concepts, targets and treatment strategies. Lipids Health Dis. 2025, 24, 61. [Google Scholar] [CrossRef]
ApoA | Mechanistic Roles and Neurovascular Effects |
---|---|
ApoA-I | Anti-inflammatory: Inhibits TLR4/NF-κB activation, reducing neuroinflammation (e.g., microglial activation in AD) [26]. Promotes TNF-α degradation via JAK2/STAT3, potentially mitigating neuroinflammatory cascades [27]. Reduces macrophage chemotaxis and myeloperoxidase (MPO) expression, relevant to CNS injury models [28]. Pro-inflammatory: TLR4 activation increases IL-6, implicated in neuroinflammation (e.g., multiple sclerosis (MS), Parkinson’s disease (PD)) [29]. Anti-thrombotic: Stabilizes prostacyclin (PGI2), which may protect the BBB from thrombo-inflammatory damage [30]. Anti-ferroptosis: Upregulates NRF2/SLC7A11/GSH pathway, critical for neuronal survival in stroke and neurodegeneration [31]. Neuroprotective: PI3K/Akt signaling reduces endothelial cell death, supporting BBB integrity. Inhibits NF-κB-mediated VCAM-1, limiting leukocyte infiltration into the CNS [32]. Structurally modified ApoA-I in AD may impair its functional integrity, potentially reducing its ability to facilitate amyloid-β clearance and maintain lipid homeostasis [33]. |
ApoA-II | Anti-inflammatory: Suppresses TNF-α secretion from macrophages, potentially dampening neuroinflammation [21], Reduces monocyte/neutrophil counts, relevant to CNS autoimmune disorders [21]. Pro-inflammatory: Enhances LPS/TLR4-driven cytokine production, a pathway implicated in neuroinflammatory diseases [30,34]. |
ApoA-IV | Anti-inflammatory: Suppresses IL-17 and TNF-α, key cytokines in neuroinflammatory disorders (e.g., MS) [35]. Reduces monocyte infiltration and IL-6, observed in brain ischemia models [36]. Pro-inflammatory: Modulates IL-10/IFN-γ, suggesting dual roles in CNS autoimmunity [36]. Antioxidant: Prevents lipid peroxidation in VLDL, protecting against oxidative stress in neurodegenerative diseases [37]. Neuroprotective: Inhibits NF-κB in endothelial cells and upregulates DHCR24, which may reduce neuronal apoptosis [36] |
ApoA-V | Anti-inflammatory: Inhibits TLR4/NF-κB, reducing TNF-α, a target in Alzheimer’s and traumatic brain injury [38]. Modulates endoplasmic reticulum stress, implicated in protein misfolding disorders (e.g., PD) [39]. Antioxidant: PPARγ activation reduces ROS, protecting neurons from oxidative damage [40] |
Disease | Section | ApoA-I | ApoA-II | ApoA-IV | ApoA-V |
---|---|---|---|---|---|
Parkinson’s Disease (PD) | Pathophysiology | Binds alpha-synuclein, shifting it from toxic β-sheet aggregates to α-helical forms, reducing Lewy body formation and dopaminergic neuron loss [114,115] *. | Poorly understood; HDL-mediated lipid transport and anti-inflammatory effects might indirectly influence neuronal health, but evidence is lacking [112,113] *#. | Dysregulated (typically lower) levels may impair mitochondrial function and increase oxidative stress, exacerbating neuronal damage [116] #. | - |
Biomarker Potential | Lower serum ApoA-I correlates with earlier onset and greater motor severity, indicating potential as a marker for PD risk and progression [114,115,117] *. | No clear association with PD severity or onset, limiting biomarker utility [112,113] *#. | Reduced serum ApoA-IV could differentiate PD patients from controls or indicate severity, pending validation [116] #. | - | |
Mechanistic Insights | Acts as a chaperone to inhibit alpha-synuclein aggregation, reduces oxidative stress [114,115] *, and supports lipid-mediated neuronal repair [118] #. | May reduce inflammation or support lipid homeostasis, but effects are speculative in PD [112,113] *#. | Antioxidant properties may protect mitochondria from reactive oxygen species, though mechanisms are undefined [116] #. | - | |
Alzheimer’s Disease (AD) | Pathophysiology | Involved in lipid metabolism and Aβ clearance [33] #; lower serum levels reflect reduced HDL functionality, contributing to Aβ accumulation and plaques [118] #. | Altered subfractions (HDL-1, HDL-2) may counteract Aβ toxicity or inflammation, though its role is unclear [119] #. | Elevated levels and structural changes may exacerbate pathology by disrupting lipid dynamics or promoting Aβ aggregation, though debated [120,121] #. | No significant link to AD risk/progression (e.g., rs662799 variant) [106,107] #. |
Biomarker Potential | Decreased serum ApoA-I is consistent in AD [118]#; CSF levels vary (sometimes elevated later), offering a dual diagnostic/progression profile [122,123] *. | Lower levels linked to faster cognitive decline, suggesting prognostic potential, but specificity is limited [119] #. | Increased serum/CSF ApoA-IV could signal AD presence/progression, but reliability needs confirmation [120,121] #. | - | |
Mechanistic Insights | Binds Aβ, enhancing clearance via microglial phagocytosis or BBB transport [124]*; overexpression reduces plaque burden in mouse models [125,126,127] *. | May modulate lipid transport or reduce neuroinflammation, offering indirect neuroprotection; needs clarification [119] #. | Lipid metabolism role might impair Aβ clearance; protective vs. detrimental effect unresolved [120,121] #. | - | |
Multiple Sclerosis (MS) | Pathophysiology | Anti-inflammatory effects may reduce myelin attack; lower levels in progressive MS [128] *. | May mitigate inflammation; lower levels tied to axonal damage and disability [129] #. | - | - |
Biomarker Potential | Reduced plasma ApoA-I correlates with progressive MS and worsening [128]; -75G/A polymorphism linked to better cognition [130] #. | Decreased levels could indicate nerve damage severity, but specificity unproven [129] #. | - | - | |
Mechanistic Insights | Inhibits pro-inflammatory cytokines, supports lipid transport to preserve myelin/neuron function [131] *. | Anti-inflammatory properties might protect against demyelination; contribution speculative [132] *. | - | - | |
Stroke | Pathophysiology | Protects against ischemic stroke via cholesterol efflux and reduced inflammation; complex role in hemorrhagic stroke (higher levels may increase risk) [133] #. | Reduces stroke risk across subtypes by lowering inflammation, supporting HDL function against atherosclerosis [134] #. | Levels drop post-stroke in humans, rise in animal models [135] #, suggesting recovery role via clot regulation [136] *. | Variants (e.g., rs662799) increase ischemic stroke risk via elevated triglycerides/atherosclerosis [95,97,137] #. |
Biomarker Potential | Elevated levels predict lower ischemic stroke risk, marking vascular health [134] #. | Higher levels correlate with reduced stroke incidence, indicating protection [134] #. | Changes could track recovery/prognosis, though human–animal discrepancies complicate use [135,136] #*. | Genetic screening could identify high-risk This response continues the pattern for all listed diseases, consolidating all ApoA roles comprehensively as requested [95,97,137] #. | |
Mechanistic Insights | Promotes RCT, exerts antioxidant effects to prevent atherosclerosis [134] #. | Decreases CRP levels, enhancing vascular stability [133] #. | Inhibits platelet aggregation via αIIbβ3 integrin, reducing thrombus formation, aiding recovery [135] #. | Reduced ApoA-V function disrupts lipid metabolism, promoting vascular occlusion/stroke risk [95,97,137] #. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajha, H.E.; Hassanein, A.; Mesilhy, R.; Nurulhaque, Z.; Elghoul, N.; Burgon, P.G.; Al Saady, R.M.; Pedersen, S. Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights. Int. J. Mol. Sci. 2025, 26, 7908. https://doi.org/10.3390/ijms26167908
Rajha HE, Hassanein A, Mesilhy R, Nurulhaque Z, Elghoul N, Burgon PG, Al Saady RM, Pedersen S. Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights. International Journal of Molecular Sciences. 2025; 26(16):7908. https://doi.org/10.3390/ijms26167908
Chicago/Turabian StyleRajha, Humam Emad, Ahmed Hassanein, Rowan Mesilhy, Zainab Nurulhaque, Nebras Elghoul, Patrick G. Burgon, Rafif Mahmood Al Saady, and Shona Pedersen. 2025. "Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights" International Journal of Molecular Sciences 26, no. 16: 7908. https://doi.org/10.3390/ijms26167908
APA StyleRajha, H. E., Hassanein, A., Mesilhy, R., Nurulhaque, Z., Elghoul, N., Burgon, P. G., Al Saady, R. M., & Pedersen, S. (2025). Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights. International Journal of Molecular Sciences, 26(16), 7908. https://doi.org/10.3390/ijms26167908