Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,378)

Search Parameters:
Keywords = synergistic reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3316 KiB  
Article
Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction
by Waleed M. Alamier, Emad M. El-Telbani, Imam Saheb Syed and Ayyob M. Bakry
Ceramics 2025, 8(3), 102; https://doi.org/10.3390/ceramics8030102 - 6 Aug 2025
Abstract
This study introduces an efficient and sustainable catalytic system utilizing cobalt ferrite nanoparticles (CoFe2O4-NPs) for the synthesis of valuable 6-amino-2-oxo-4-phenyl (or 4-chlorophenyl)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Recognizing the limitations of traditional methods for the Biginelli reaction, we thoroughly characterized CoFe2O [...] Read more.
This study introduces an efficient and sustainable catalytic system utilizing cobalt ferrite nanoparticles (CoFe2O4-NPs) for the synthesis of valuable 6-amino-2-oxo-4-phenyl (or 4-chlorophenyl)-1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Recognizing the limitations of traditional methods for the Biginelli reaction, we thoroughly characterized CoFe2O4-NPs, alongside individual iron oxide nanoparticles (Fe2O3-NPs) and cobalt oxide nanoparticles (CoO-NPs), using FTIR, XRD, TEM, SEM, XPS, TGA, and BET analysis. These characterizations revealed the unique structural, morphological, and physicochemical properties of CoFe2O4-NPs, including an optimized porous structure and significant bimetallic synergy between Fe and Co ions. Catalytic studies demonstrated that CoFe2O4-NPs significantly outperformed individual Fe2O3-NPs and CoO-NPs under mild conditions. While the latter only catalyzed the Knoevenagel condensation, CoFe2O4-NPs uniquely facilitated the complete Biginelli reaction. This superior performance is attributed to the synergistic electronic environment within CoFe2O4-NPs, which enhances reactant activation, intermediate stabilization, and proton transfer during the multi-step reaction. This work highlights the potential of CoFe2O4-NPs as highly efficient and selective nanocatalysts for synthesizing biologically relevant 1,2,3,4-tetrahydropyrimidines, offering a greener synthetic route in organic chemistry. Full article
Show Figures

Figure 1

14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

14 pages, 3666 KiB  
Review
Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites
by Ping Li, Ziyu Cui, Mengshuang Wang, Junxian Yang, Mingli Hu, Qiqing Cheng and Shi Wang
Electrochem 2025, 6(3), 28; https://doi.org/10.3390/electrochem6030028 - 4 Aug 2025
Viewed by 45
Abstract
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with [...] Read more.
Metal–organic frameworks (MOFs) have characteristics such as a large specific surface area, distinct functional sites, and an adjustable pore size. However, the inherent low conductivity of MOFs significantly affects the charge transfer efficiency when they are used for electrocatalytic sensing. Combining MOFs with conductive materials can compensate for these deficiencies. For MOF/metal nanoparticle composites (e.g., composites with gold, silver, platinum, and bimetallic nanoparticles), the high electrical conductivity and catalytic activity of metal nanoparticles are utilized, and MOFs can inhibit the agglomeration of nanoparticles. MOF/carbon-based material composites integrate the high electrical conductivity and large specific surface area of carbon-based materials. MOF/conductive polymer composites offer good flexibility and tunability. MOF/multiple conductive material composites exhibit synergistic effects. Although MOF composites provide an ideal platform for electrocatalytic reactions, current research still suffers from several issues, including a lack of comparative studies, insufficient research on structure–property correlations, limited practical applications, and high synthesis costs. In the future, it is necessary to explore new synthetic pathways and seek; inexpensive alternative raw materials. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

26 pages, 1165 KiB  
Review
Maillard Reaction in Flour Product Processing: Mechanism, Impact on Quality, and Mitigation Strategies of Harmful Products
by Yajing Qi, Wenjun Wang, Tianxiang Yang, Wangmin Ding and Bin Xu
Foods 2025, 14(15), 2721; https://doi.org/10.3390/foods14152721 - 3 Aug 2025
Viewed by 271
Abstract
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A [...] Read more.
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A moderate Maillard reaction contributes to desirable color and flavor profiles in flour products, whereas an excessive reaction leads to amino acid loss and the formation of harmful substances, posing potential health risks. This review summarizes the substrate sources, reaction stages, influencing factors, impact on quality, and mitigation strategies of harmful products, aiming to provide a reference for regulating the Maillard reaction in flour product processing. Currently, most existing mitigation strategies focus on inhibiting harmful products, while research on the synergistic optimization of color and flavor remains insufficient. Future research should focus on elucidating the molecular mechanisms of reaction pathways, understanding multi-factor synergistic effects, and developing composite regulation technologies to balance the sensory quality and safety of flour products. Full article
Show Figures

Figure 1

13 pages, 1608 KiB  
Article
Enhanced Antioxidant and Anti-Inflammatory Activities of Diospyros lotus Leaf Extract via Enzymatic Conversion of Rutin to Isoquercitrin
by Yeong-Su Kim, Chae Sun Na and Kyung-Chul Shin
Antioxidants 2025, 14(8), 950; https://doi.org/10.3390/antiox14080950 (registering DOI) - 2 Aug 2025
Viewed by 131
Abstract
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of [...] Read more.
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of rutin to isoquercitrin using α-l-rhamnosidase and to evaluate the changes in biological activities after conversion. A sugar-free D. lotus leaf extract was prepared and subjected to enzymatic hydrolysis with α-l-rhamnosidase under optimized conditions (pH 5.5, 55 °C, and 0.6 U/mL). Isoquercitrin production was monitored via high-performance liquid chromatography. Antioxidant and anti-inflammatory activities were assessed using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging and lipoxygenase (LOX) inhibition assays, respectively. The enzymatic reaction resulted in complete conversion of 30 mM rutin into isoquercitrin within 180 min, increasing isoquercitrin content from 9.8 to 39.8 mM. The enzyme-converted extract exhibited significantly enhanced antioxidant activity, with a 48% improvement in IC50 value compared with the untreated extract. Similarly, LOX inhibition increased from 39.2% to 48.3% after enzymatic conversion. Both extracts showed higher inhibition than isoquercitrin alone, indicating synergistic effects of other phytochemicals present in the extract. This study is the first to demonstrate that α-l-rhamnosidase-mediated conversion of rutin to isoquercitrin in D. lotus leaf extract significantly improves its antioxidant and anti-inflammatory activities. The enzymatically enhanced extract shows potential as a functional food or therapeutic ingredient. Full article
Show Figures

Figure 1

12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 - 2 Aug 2025
Viewed by 162
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

18 pages, 1390 KiB  
Review
Fantastic Ferulic Acid Esterases and Their Functions
by Savvina Leontakianakou, Patrick Adlercreutz and Eva Nordberg Karlsson
Int. J. Mol. Sci. 2025, 26(15), 7474; https://doi.org/10.3390/ijms26157474 - 2 Aug 2025
Viewed by 218
Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester [...] Read more.
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids found in plant cell walls. Its dehydrodimers play an important role in maintaining the structural rigidity of the plant cell wall. Ferulic acid esterases (FAEs) act as debranching enzymes, cleaving the ester bond between FA and the substituted carbohydrate moieties in FA-containing polysaccharides in the plant cell wall. This enzymatic reaction facilitates the degradation of lignocellulosic materials and is crucial for the efficient utilization of biomass resources. This review focuses on the occurrence of ferulic acid in nature and its different forms and outlines the various classification systems of FAEs, their substrate specificity, and the synergistic interactions of these enzymes with other CAZymes. Additionally, it highlights the various methods that have been developed for detecting hydroxycinnamic acids and estimating the enzyme activity, as well as the versatile applications of ferulic acid. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Graphical abstract

31 pages, 6351 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 - 1 Aug 2025
Viewed by 114
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

16 pages, 1212 KiB  
Article
Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate
by Imane Aarab, Khalid El Amari, Abdelrani Yaacoubi, Abdelaziz Baçaoui and Abderahman Etahiri
Minerals 2025, 15(8), 822; https://doi.org/10.3390/min15080822 - 1 Aug 2025
Viewed by 85
Abstract
Maximizing the efficient utilization of critical apatite resources through flotation necessitates the exploration of effective and innovative collectors. This study investigates the potential of a fatty acid mixture (FAM) synthesized from saturated palmitic and stearic acids, monounsaturated oleic and palmitoleic acids, and polyunsaturated [...] Read more.
Maximizing the efficient utilization of critical apatite resources through flotation necessitates the exploration of effective and innovative collectors. This study investigates the potential of a fatty acid mixture (FAM) synthesized from saturated palmitic and stearic acids, monounsaturated oleic and palmitoleic acids, and polyunsaturated linoleic acid. The saponified collector FAM and the depressant sodium alginate (NaAl) achieved a direct flotation of apatite from calcite and quartz (97% apatite, 10% calcite, and 7% quartz). The flotation performance with the tested combination exhibited a highly effective enrichment of apatite, mainly from calcite, which aligns with the surface chemistry assessments. Adsorption tests and zeta potential measurements confirmed the micro-flotation results. They provided compelling evidence of a chemisorption interaction between Ca2+ sites on calcite and the carboxyl and hydroxyl groups of NaAl. FTIR analyses suggested a reaction between the apatite surface and the carboxyl groups of saturated and unsaturated acid groups in FAM, even those conditioned with NaAl before, facilitating the complex formation. Remarkably, the synergistic effect of the functional groups demonstrates dual functionality, serving as both a hydrophilic entity for calcite and a hydrophobic entity for apatite flotation. The universal mechanism unveils substantial potential for the extensive application of FAM within apatite flotation. Full article
(This article belongs to the Special Issue Surface Chemistry and Reagents in Flotation)
Show Figures

Figure 1

17 pages, 4072 KiB  
Article
Experimental Investigation of Mechanical Properties and Microstructure in Cement–Soil Modified with Waste Brick Powder and Polyvinyl Alcohol Fibers
by Xiaosan Yin, Md. Mashiur Rahman, Hongke Pan, Yongchun Ma, Yuzhou Sun and Jian Wang
Materials 2025, 18(15), 3586; https://doi.org/10.3390/ma18153586 - 30 Jul 2025
Viewed by 325
Abstract
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) [...] Read more.
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) and PVA fiber content (0–1%), evaluating mechanical properties based on unconfined compressive strength (UCS) and splitting tensile strength (STS) and microstructure via scanning electron microscopy (SEM) across 3–28 days of curing. The results demonstrate that 0.75% PVA optimizes performance, enhancing UCS by 28.3% (6.87 MPa) and STS by 34.6% (0.93 MPa) at 28 days compared to unmodified cement–soil. SEM analysis revealed that PVA fibers bridged microcracks, suppressing propagation, while WBP triggered pozzolanic reactions to densify the matrix. This dual mechanism concurrently improves mechanical durability and valorizes construction waste, offering a pathway to reduce reliance on virgin materials. This study establishes empirically validated mix ratios for eco-efficient cement–soil composites, advancing scalable solutions for low-carbon geotechnical applications. By aligning material innovation with circular economy principles, this work directly supports global de-carbonization targets in the construction sector. Full article
Show Figures

Graphical abstract

22 pages, 5009 KiB  
Review
Single-Atom Catalysts for Hydrogen Evolution Reaction: The Role of Supports, Coordination Environments, and Synergistic Effects
by Zhuoying Liang, Yu Zhang, Linli Liu, Miaolun Jiao and Chenliang Ye
Nanomaterials 2025, 15(15), 1175; https://doi.org/10.3390/nano15151175 - 30 Jul 2025
Viewed by 361
Abstract
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages [...] Read more.
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages of SACs for HER still need to be summarized. This review systematically summarizes recent advances in SACs for HER. It discusses various types of SACs (including those based on Pt, Co, Ru, Ni, Cu, and other metals) applied in HER, and elaborates the critical factors influencing catalytic performance—specifically, the supports, coordination environments, and synergistic effects of these SACs. Furthermore, current research challenges and future perspectives in this rapidly developing field are also outlined. Full article
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 207
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 216
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

7 pages, 784 KiB  
Communication
Mechanoluminescent-Boosted NiS@g-C3N4/Sr2MgSi2O7:Eu,Dy Heterostructure: An All-Weather Photocatalyst for Water Purification
by Yuchen Huang, Jiamin Wu, Honglei Li, Dehao Liu, Qingzhe Zhang and Kai Li
Processes 2025, 13(8), 2416; https://doi.org/10.3390/pr13082416 - 30 Jul 2025
Viewed by 255
Abstract
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi [...] Read more.
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi2O7:Eu,Dy phosphors is combined with NiS@g-C3N4 composite to construct a ternary heterogeneous photocatalytic system, denoted as NCS. In addition to the enhanced separation efficiency of photogenerated charge carriers by the formation of a heterojunction, the introduction of Sr2MgSi2O7:Eu,Dy provides an ultra-driving force for the photocatalytic reactions owing to its mechanoluminescence-induced excitation. Results show that the degradation rate of RhB increased significantly in comparison with pristine g-C3N4 and NiS@g-C3N4, indicating the obvious advantages of the ternary system for charge separation and migration. Moreover, the additional photocatalytic activity of NCS under ultrasound stimulation makes it a promising all-weather photocatalyst even in dark environments. This novel strategy opens up new horizons for the synergistic combination of light-driven and ultrasound-driven heterogeneous photocatalytic systems, and it also has important reference significance for the design and application of high-performance photocatalysts. Full article
(This article belongs to the Special Issue Green Photocatalysis for a Sustainable Future)
Show Figures

Figure 1

16 pages, 2707 KiB  
Article
Ultrasound-Activated BiOI/Ti3C2 Heterojunctions in 3D-Printed Piezocatalytic Antibacterial Scaffolds for Infected Bone Defects
by Juntao Xie, Zihao Zhang, Zhiheng Yu, Bingxin Sun, Yingxin Yang, Guoyong Wang and Cijun Shuai
Materials 2025, 18(15), 3533; https://doi.org/10.3390/ma18153533 - 28 Jul 2025
Viewed by 275
Abstract
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was [...] Read more.
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was fabricated through in situ growth of bismuth iodide oxide on titanium carbide nanosheets. Subsequently, we integrated BiOI/Ti3C2 into poly(e-caprolactone) (PCL) scaffolds using selective laser sintering. The synergistic effect between BiOI and Ti3C2 significantly facilitated the redistribution of piezo-induced charges under ultrasound irradiation, effectively suppressing electron–hole recombination. Furthermore, abundant oxygen vacancies in BiOI/Ti3C2 provide more active sites for piezocatalytic reactions. Therefore, it enables ultrahigh reactive oxygen species (ROS) yields under ultrasound irradiation, achieving eradication rates of 98.87% for Escherichia coli (E. coli) and 98.51% for Staphylococcus aureus (S. aureus) within 10 minutes while maintaining cytocompatibility for potential tissue integration. This study provides a novel strategy for the utilization of ultrasound-responsive heterojunctions in efficient PCT therapy and bone regeneration. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Back to TopTop