Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (220)

Search Parameters:
Keywords = synchronous data acquisition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 8222 KiB  
Article
Application of Dynamic Time Warping (DTW) in Comparing MRT Signals of Steel Ropes
by Justyna Tomaszewska, Mirosław Witoś and Jerzy Kwaśniewski
Appl. Sci. 2025, 15(14), 7924; https://doi.org/10.3390/app15147924 - 16 Jul 2025
Abstract
Steel wire ropes used in transport and aerospace applications are critical components whose failure can lead to significant safety, operational, and environmental consequences. Current diagnostic practices based on magnetic rope testing (MRT) often suffer from signal misalignment and subjective interpretation, particularly under varying [...] Read more.
Steel wire ropes used in transport and aerospace applications are critical components whose failure can lead to significant safety, operational, and environmental consequences. Current diagnostic practices based on magnetic rope testing (MRT) often suffer from signal misalignment and subjective interpretation, particularly under varying operational conditions or in polymer-impregnated ropes with delayed damage indicators. This study explores the application of the Dynamic Time Warping (DTW) algorithm to enhance the reliability of MRT diagnostics. The research involved analyzing long-term MRT recordings of wire ropes used in mining operations, including different scanning resolutions and signal acquisition methods. A mathematical formulation of DTW is provided along with its implementation code in R and Python. The DTW algorithm was applied to synchronize diagnostic signals with their baseline recordings, as recommended by ISO 4309:2017 and EN 12927:2019 standards. Results show that DTW enables robust alignment of time series with slowly varying spectra, thereby improving the comparability and interpretation of MRT data. This approach reduces the risk of unnecessary rope discard and increases the effectiveness of degradation monitoring. The findings suggest that integrating DTW into existing diagnostic protocols can contribute to safer operation, lower maintenance costs, and reduced environmental impact. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 67
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

21 pages, 1682 KiB  
Article
Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems
by Yadong Wang, Shuliang Jia, Mingze Guo, Yan Zhang and Yongjun Wang
Processes 2025, 13(7), 2214; https://doi.org/10.3390/pr13072214 - 10 Jul 2025
Viewed by 305
Abstract
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static [...] Read more.
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static empirical parameters and environmental interference. This study proposes an integrated methodology that combines multi-path airflow analysis with dynamic longitudinal dispersion coefficient correction to enhance the accuracy of air leakage detection. Utilizing sulfur hexafluoride (SF6) as the tracer gas, a phased release protocol with temporal isolation was implemented across five strategic points in a coal mine ventilation network. High-precision detectors (Bruel & Kiaer 1302) and the MIVENA system enabled synchronized data acquisition and 3D network modeling. Theoretical models were dynamically calibrated using field-measured airflow velocities and dispersion coefficients. The results revealed three deviation patterns between simulated and measured tracer peaks: Class A deviation showed 98.5% alignment in single-path scenarios, Class B deviation highlighted localized velocity anomalies from Venturi effects, and Class C deviation identified recirculation vortices due to abrupt cross-sectional changes. Simulation accuracy improved from 70% to over 95% after introducing wind speed and dispersion adjustment coefficients, resolving concealed leakage pathways between critical nodes and key nodes. The study demonstrates that the dynamic correction of dispersion coefficients and multi-path decomposition effectively mitigates errors caused by turbulence and geometric irregularities. This approach provides a robust framework for optimizing ventilation systems, reducing invalid airflow losses, and advancing intelligent ventilation management through real-time monitoring integration. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

25 pages, 4232 KiB  
Article
Multimodal Fusion Image Stabilization Algorithm for Bio-Inspired Flapping-Wing Aircraft
by Zhikai Wang, Sen Wang, Yiwen Hu, Yangfan Zhou, Na Li and Xiaofeng Zhang
Biomimetics 2025, 10(7), 448; https://doi.org/10.3390/biomimetics10070448 - 7 Jul 2025
Viewed by 355
Abstract
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable [...] Read more.
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable support for multimodal modeling. Based on this, to address the issue of poor image acquisition quality due to severe vibrations in aerial vehicles, this paper proposes a multi-modal signal fusion video stabilization framework. This framework effectively integrates image features and inertial sensor features to predict smooth and stable camera poses. During the video stabilization process, the true camera motion originally estimated based on sensors is warped to the smooth trajectory predicted by the network, thereby optimizing the inter-frame stability. This approach maintains the global rigidity of scene motion, avoids visual artifacts caused by traditional dense optical flow-based spatiotemporal warping, and rectifies rolling shutter-induced distortions. Furthermore, the network is trained in an unsupervised manner by leveraging a joint loss function that integrates camera pose smoothness and optical flow residuals. When coupled with a multi-stage training strategy, this framework demonstrates remarkable stabilization adaptability across a wide range of scenarios. The entire framework employs Long Short-Term Memory (LSTM) to model the temporal characteristics of camera trajectories, enabling high-precision prediction of smooth trajectories. Full article
Show Figures

Figure 1

36 pages, 11404 KiB  
Article
Synchronous Acquisition and Processing of Electro- and Phono-Cardiogram Signals for Accurate Systolic Times’ Measurement in Heart Disease Diagnosis and Monitoring
by Roberto De Fazio, Ilaria Cascella, Şule Esma Yalçınkaya, Massimo De Vittorio, Luigi Patrono, Ramiro Velazquez and Paolo Visconti
Sensors 2025, 25(13), 4220; https://doi.org/10.3390/s25134220 - 6 Jul 2025
Viewed by 352
Abstract
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient [...] Read more.
Cardiovascular diseases remain one of the leading causes of mortality worldwide, highlighting the importance of effective monitoring and early diagnosis. While electrocardiography (ECG) is the standard technique for evaluating the heart’s electrical activity and detecting rhythm and conduction abnormalities, it alone is insufficient for identifying certain conditions, such as valvular disorders. Phonocardiography (PCG) allows the recording and analysis of heart sounds and improves the diagnostic accuracy when combined with ECG. In this study, ECG and PCG signals were simultaneously acquired from a resting adult subject using a compact system comprising an analog front-end (model AD8232, manufactured by Analog Devices, Wilmington, MA, USA) for ECG acquisition and a digital stethoscope built around a condenser electret microphone (model HM-9250, manufactured by HMYL, Anqing, China). Both the ECG electrodes and the microphone were positioned on the chest to ensure the spatial alignment of the signals. An adaptive segmentation algorithm was developed to segment PCG and ECG signals based on their morphological and temporal features. This algorithm identifies the onset and peaks of S1 and S2 heart sounds in the PCG and the Q, R, and S waves in the ECG, enabling the extraction of the systolic time intervals such as EMAT, PEP, LVET, and LVST parameters proven useful in the diagnosis and monitoring of cardiovascular diseases. Based on the segmented signals, the measured averages (EMAT = 74.35 ms, PEP = 89.00 ms, LVET = 244.39 ms, LVST = 258.60 ms) were consistent with the reference standards, demonstrating the reliability of the developed method. The proposed algorithm was validated on synchronized ECG and PCG signals from multiple subjects in an open-source dataset (BSSLAB Localized ECG Data). The systolic intervals extracted using the proposed method closely matched the literature values, confirming the robustness across different recording conditions; in detail, the mean Q–S1 interval was 40.45 ms (≈45 ms reference value, mean difference: −4.85 ms, LoA: −3.42 ms and −6.09 ms) and the R–S1 interval was 14.09 ms (≈15 ms reference value, mean difference: −1.2 ms, LoA: −0.55 ms and −1.85 ms). In conclusion, the results demonstrate the potential of the joint ECG and PCG analysis to improve the long-term monitoring of cardiovascular diseases. Full article
Show Figures

Figure 1

17 pages, 4643 KiB  
Article
Semiconductor Wafer Flatness and Thickness Measurement Using Frequency Scanning Interferometry Technology
by Weisheng Cheng, Zexiao Li, Xuanzong Wu, Shuangxiong Yin, Bo Zhang and Xiaodong Zhang
Photonics 2025, 12(7), 663; https://doi.org/10.3390/photonics12070663 - 30 Jun 2025
Viewed by 258
Abstract
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can [...] Read more.
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can seriously affect subsequent processing. Fast, accurate, and comprehensive detection of thickness, thickness variation, and flatness (including bow and warpage) of SiC and Si wafers is an industry-recognized challenge. Frequency scanning interferometry (FSI) can synchronize the upper and lower surfaces and thickness information of transparent parallel thin wafers, but it is still affected by multiple interfacial harmonic reflections, reflectivity asymmetry, and phase modulation uncertainty when measuring SiC thin wafers, which leads to thickness calculation errors and face reconstruction deviations. To this end, this paper proposes a high-precision facet reconstruction method for SiC/Si structures, which combines harmonic spectral domain decomposition, refractive index gradient constraints, and partitioning optimization strategy, and introduces interferometric signal “oversampling” and weighted fusion of multiple sets of data to effectively suppress higher-order harmonic interferences, and to enhance the accuracy of phase resolution. The multi-layer iterative optimization model further enhances the measurement accuracy and robustness of the system. The flatness measurement system constructed based on this method can realize the simultaneous acquisition of three-dimensional top and bottom surfaces on 6-inch Si/SiC wafers, and accurately reconstruct the key parameters, such as flatness, warpage, and thickness variation (TTV). A comparison with the Corning Tropel FlatMaster commercial system shows that this method has high consistency and good applicability. Full article
(This article belongs to the Special Issue Emerging Topics in Freeform Optics)
Show Figures

Figure 1

24 pages, 8549 KiB  
Article
A Novel High-Precision Workpiece Self-Positioning Method for Improving the Convergence Ratio of Optical Components in Magnetorheological Finishing
by Yiang Zhang, Pengxiang Wang, Chaoliang Guan, Meng Liu, Xiaoqiang Peng and Hao Hu
Micromachines 2025, 16(7), 730; https://doi.org/10.3390/mi16070730 - 22 Jun 2025
Viewed by 301
Abstract
Magnetorheological finishing is widely used in the high-precision processing of optical components, but due to the influence of multi-source system errors, the convergence of single-pass magnetorheological finishing (MRF) is limited. Although iterative processing can improve the surface accuracy, repeated tool paths tend to [...] Read more.
Magnetorheological finishing is widely used in the high-precision processing of optical components, but due to the influence of multi-source system errors, the convergence of single-pass magnetorheological finishing (MRF) is limited. Although iterative processing can improve the surface accuracy, repeated tool paths tend to deteriorate mid-spatial frequency textures, and for complex surfaces such as aspheres, traditional manual alignment is time-consuming and lacks repeatability, significantly restricting the processing efficiency. To address these issues, firstly, this study systematically analyzes the effect of six-degree-of-freedom positioning errors on convergence behavior, establishes a positioning error-normal contour error transmission model, and obtains a workpiece positioning error tolerance threshold that ensures that the relative convergence ratio is not less than 80%. Further, based on these thresholds, a hybrid self-positioning method combining machine vision and a probing module is proposed. A composite data acquisition method using both a camera and probe is designed, and a stepwise global optimization model is constructed by integrating a synchronous iterative localization algorithm with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The experimental results show that, compared with the traditional alignment, the proposed method improves the convergence ratio of flat workpieces by 41.9% and reduces the alignment time by 66.7%. For the curved workpiece, the convergence ratio is improved by 25.7%, with an 80% reduction in the alignment time. The proposed method offers both theoretical and practical support for high-precision, high-efficiency MRF and intelligent optical manufacturing. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

22 pages, 6243 KiB  
Review
A Review on UAS Trajectory Estimation Using Decentralized Multi-Sensor Systems Based on Robotic Total Stations
by Lucas Dammert, Tomas Thalmann, David Monetti, Hans-Berndt Neuner and Gottfried Mandlburger
Sensors 2025, 25(13), 3838; https://doi.org/10.3390/s25133838 - 20 Jun 2025
Viewed by 391
Abstract
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where [...] Read more.
In our contribution, we conduct a thematic literature review on trajectory estimation using a decentralized multi-sensor system based on robotic total stations (RTS) with a focus on unmanned aerial system (UAS) platforms. While RTS are commonly used for trajectory estimation in areas where GNSS is not sufficiently accurate or is unavailable, they are rarely used for UAS trajectory estimation. Extending the RTS with integrated camera images allows for UAS pose estimation (position and orientation). We review existing research on the entire RTS measurement processes, including time synchronization, atmospheric refraction, prism interaction, and RTS-based image evaluation. Additionally, we focus on integrated trajectory estimation using UAS onboard measurements such as IMU and laser scanning data. Although many existing articles address individual steps of the decentralized multi-sensor system, we demonstrate that a combination of existing works related to UAS trajectory estimation and RTS calibration is needed to allow for trajectory estimation at sub-cm and sub-0.01 gon accuracies, and we identify the challenges that must be addressed. Investigations into the use of RTS for kinematic tasks must be extended to realistic distances (approx. 300–500 m) and speeds (>2.5 m s−1). In particular, image acquisition with the integrated camera must be extended by a time synchronization approach. As to the estimation of UAS orientation based on RTS camera images, the results of initial simulation studies must be validated by field tests, and existing approaches for integrated trajectory estimation must be adapted to optimally integrate RTS data. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

23 pages, 16865 KiB  
Article
MOT: A Low-Latency, Multichannel Wireless Surface Electromyography Acquisition System Based on the AD8232 Front-End
by Augusto Tetsuo Prado Inafuco, Pablo Machoski, Daniel Prado Campos, Sergio Francisco Pichorim and José Jair Alves Mendes Junior
Sensors 2025, 25(12), 3600; https://doi.org/10.3390/s25123600 - 7 Jun 2025
Viewed by 689
Abstract
Commercial wearable systems for surface electromyography (sEMG) acquisition often trade bandwidth, synchronization, and battery life for miniaturization, and their proprietary designs inhibit reproducibility and cost-effective customization. To address these limitations, we developed MOT, a fully wireless, multichannel platform built from commodity components that [...] Read more.
Commercial wearable systems for surface electromyography (sEMG) acquisition often trade bandwidth, synchronization, and battery life for miniaturization, and their proprietary designs inhibit reproducibility and cost-effective customization. To address these limitations, we developed MOT, a fully wireless, multichannel platform built from commodity components that can be replicated in academic laboratories. Each sensor node integrates an AD8232 analog front-end configured for 19–690 Hz bandwidth (59 dB mid-band gain) with a 12-bit successive approximation ADC sampling at 1 kS/s. Packets of 120 samples are broadcast via the low-latency ESP-NOW 2.45 GHz protocol to a central hub, which timestamps and streams data to a host PC over USB-UART. Bench tests confirmed the analog response and showed mains interference at least 40 dB below voluntary contraction levels; the cumulative packet loss remained below 0.5% for six simultaneous channels at 100 m line-of-sight, with end-to-end latency under 3 ms. A 180 mAh Li-ion cell was used to power each node for 1.8 h of continuous operation at 100 mA average draw, and the complete sensor, including enclosure, was found to weigh 22 g. MOT reduced a 60 Hz artifact magnitude by up to 22 dB while preserving signal bandwidth. The hardware, therefore, provides a compact and economical solution for biomechanics, rehabilitation, and human–machine interface research that demands mobile, high-fidelity sEMG acquisition. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 5936 KiB  
Article
Research on Intelligent Control Technology for a Rail-Based High-Throughput Crop Phenotypic Platform Based on Digital Twins
by Haishen Liu, Weiliang Wen, Wenbo Gou, Xianju Lu, Hanyu Ma, Lin Zhu, Minggang Zhang, Sheng Wu and Xinyu Guo
Agriculture 2025, 15(11), 1217; https://doi.org/10.3390/agriculture15111217 - 2 Jun 2025
Viewed by 570
Abstract
Rail-based crop phenotypic platforms operating in open-field environments face challenges such as environmental variability and unstable data quality, highlighting the urgent need for intelligent, online data acquisition strategies. This study proposes a digital twin-based data acquisition strategy tailored to such platforms. A closed-loop [...] Read more.
Rail-based crop phenotypic platforms operating in open-field environments face challenges such as environmental variability and unstable data quality, highlighting the urgent need for intelligent, online data acquisition strategies. This study proposes a digital twin-based data acquisition strategy tailored to such platforms. A closed-loop architecture “comprising connection, computation, prediction, decision-making, and execution“ was developed to build DT-FieldPheno, a digital twin system that enables real-time synchronization between physical equipment and its virtual counterpart, along with dynamic device monitoring. Weather condition standards were defined based on multi-source sensor requirements, and a dual-layer weather risk assessment model was constructed using the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation by integrating weather forecasts and real-time meteorological data to guide adaptive data acquisition scheduling. Field deployment over 27 consecutive days in a maize field demonstrated that DT-FieldPheno reduced the manual inspection workload by 50%. The system successfully identified and canceled two high-risk tasks under wind-speed threshold exceedance and optimized two others affected by gusts and rainfall, thereby avoiding ineffective operations. It also achieved sub-second responses to trajectory deviation and communication anomalies. The synchronized digital twin interface supported remote, real-time visual supervision. DT-FieldPheno provides a technological paradigm for advancing crop phenotypic platforms toward intelligent regulation, remote management, and multi-system integration. Future work will focus on expanding multi-domain sensing capabilities, enhancing model adaptability, and evaluating system energy consumption and computational overhead to support scalable field deployment. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

25 pages, 3655 KiB  
Article
A Multi-Sensor Fusion Approach Combined with RandLA-Net for Large-Scale Point Cloud Segmentation in Power Grid Scenario
by Tianyi Li, Shuanglin Li, Zihan Xu, Nizar Faisal Alkayem, Qiao Bao and Qiang Wang
Sensors 2025, 25(11), 3350; https://doi.org/10.3390/s25113350 - 26 May 2025
Viewed by 593
Abstract
With the continuous expansion of power grids, traditional manual inspection methods face numerous challenges, including low efficiency, high costs, and significant safety risks. As critical infrastructure in power transmission systems, power grid towers require intelligent recognition and monitoring to ensure the reliable and [...] Read more.
With the continuous expansion of power grids, traditional manual inspection methods face numerous challenges, including low efficiency, high costs, and significant safety risks. As critical infrastructure in power transmission systems, power grid towers require intelligent recognition and monitoring to ensure the reliable and stable operation of power grids. However, existing methods struggle with accuracy and efficiency when processing large-scale point cloud data in complex environments. To address these challenges, this paper presents a comprehensive approach combining multi-sensor fusion and deep learning for power grid tower recognition. A data acquisition scheme that integrates LiDAR and a binocular depth camera, implementing the FAST-LIO algorithm, is proposed to achieve the spatiotemporal synchronization and fusion of sensor data. This integration enables the construction of a colored point cloud dataset with rich visual and geometric features. Based on the RandLA-Net framework, an efficient processing method for large-scale point cloud segmentation is developed and optimized explicitly for power grid tower scenarios. Experimental validation demonstrates that the proposed method achieves 90.8% precision in tower body recognition and maintains robust performance under various environmental conditions. The proposed approach successfully processes point cloud data containing over ten million points while effectively handling challenges such as uneven point distribution and environmental interference. These results validate the reliability of the proposed method in providing technical support for intelligent inspection and the management of power grid infrastructure. Full article
(This article belongs to the Special Issue Progress in LiDAR Technologies and Applications)
Show Figures

Figure 1

23 pages, 6050 KiB  
Article
A Digital Signal Processing-Based Multi-Channel Acoustic Emission Acquisition System with a Simplified Analog Front-End
by Gan Tang
Sensors 2025, 25(10), 3206; https://doi.org/10.3390/s25103206 - 20 May 2025
Viewed by 583
Abstract
Advanced multi-channel acoustic emission (AE) monitoring systems often rely on complex and costly architectures, especially those requiring custom FPGA-based hardware. In this work, we present a digital signal processing (DSP)-based approach to high-performance AE acquisition, implemented using a simplified analog front-end (AFE) and [...] Read more.
Advanced multi-channel acoustic emission (AE) monitoring systems often rely on complex and costly architectures, especially those requiring custom FPGA-based hardware. In this work, we present a digital signal processing (DSP)-based approach to high-performance AE acquisition, implemented using a simplified analog front-end (AFE) and a commercially available synchronous data acquisition (DAQ) card (NI USB-6356). This design eliminates the need for specialized FPGA development, improving accessibility and reducing system complexity. A key feature of the system is the replacement of traditional analog filters with a software-defined digital band-pass filtering module implemented in LabVIEW. This allows for real-time or post-processing filtering with adjustable parameters, enhancing flexibility in data analysis. The system supports 8-channel synchronous sampling at 1.25 MS/s, and performance evaluations demonstrate a dynamic range of 79.22 dB and a signal-to-noise ratio (SNR) of 85.39 dB. These results confirm the system’s ability to maintain high fidelity in AE signal acquisition without the need for dedicated hardware filtering or custom DAQ hardware. The proposed method offers a practical and validated alternative for multi-channel AE monitoring, with potential applications in structural health monitoring, materials testing, and other engineering domains. Full article
(This article belongs to the Special Issue Sensor Data-Driven Fault Diagnosis Techniques)
Show Figures

Figure 1

23 pages, 7047 KiB  
Article
UaVirBASE: A Public-Access Unmanned Aerial Vehicle Sound Source Localization Dataset
by Gabriel Jekateryńczuk, Rafał Szadkowski and Zbigniew Piotrowski
Appl. Sci. 2025, 15(10), 5378; https://doi.org/10.3390/app15105378 - 12 May 2025
Viewed by 480
Abstract
This article presents UaVirBASE, a publicly available dataset for the sound source localization (SSL) of unmanned aerial vehicles (UAVs). The dataset contains synchronized multi-microphone recordings captured under controlled conditions, featuring variations in UAV distances, altitudes, azimuths, and orientations relative to a fixed microphone [...] Read more.
This article presents UaVirBASE, a publicly available dataset for the sound source localization (SSL) of unmanned aerial vehicles (UAVs). The dataset contains synchronized multi-microphone recordings captured under controlled conditions, featuring variations in UAV distances, altitudes, azimuths, and orientations relative to a fixed microphone array. UAV orientations include front, back, left, and right-facing configurations. UaVirBASE addresses the growing need for standardized SSL datasets tailored for UAV applications, filling a gap left behind by existing databases that often lack such specific variations. Additionally, we describe the software and hardware employed for data acquisition and annotation alongside an analysis of the dataset’s structure. With its well-annotated and diverse data, UaVirBASE is ideally suited for applications in artificial intelligence, particularly in developing and benchmarking machine learning and deep learning models for SSL. Controlling the dataset’s variations enables the training of AI systems capable of adapting to complex UAV-based scenarios. We also demonstrate the architecture and results of the deep neural network (DNN) trained on this dataset, evaluating model performance across different features. Our results show an average Mean Absolute Error (MAE) of 0.5 m for distance and height, an average azimuth error of around 1 degree, and side errors under 10 degrees. UaVirBASE serves as a valuable resource to support reproducible research and foster innovation in UAV-based acoustic signal processing by addressing the need for a standardized and versatile UAV SSL dataset. Full article
(This article belongs to the Special Issue AI in Audio Analysis: Spectrogram-Based Recognition)
Show Figures

Figure 1

16 pages, 6441 KiB  
Article
Experimental Investigation of Motion Control of a Closed-Kinematic Chain Robot Manipulator Using Synchronization Sliding Mode Method with Time Delay Estimation
by Tu T. C. Duong, Charles C. Nguyen and Thien Duc Tran
Appl. Sci. 2025, 15(9), 5206; https://doi.org/10.3390/app15095206 - 7 May 2025
Viewed by 477
Abstract
Closed-Kinematic Chain Manipulators (CKCM) have gained attention due to their precise Cartesian motion capability through coordinated active joint movements. Furthermore, ensuring synchronization among the joints of CKCMs is critical for reliable operation. An advanced control scheme for CKCMs that combines Nonsingular Fast Terminal [...] Read more.
Closed-Kinematic Chain Manipulators (CKCM) have gained attention due to their precise Cartesian motion capability through coordinated active joint movements. Furthermore, ensuring synchronization among the joints of CKCMs is critical for reliable operation. An advanced control scheme for CKCMs that combines Nonsingular Fast Terminal Sliding Mode Control (NFTSMC) with Time Delay Estimation (TDE) while utilizing synchronization errors, namely Syn-TDE-NFTSMC, to effectively address joint errors in CKCMs was developed. NFTSMC enables fast convergence through nonlinear terminal sliding while TDE eliminates the need for prior knowledge of the robot’s dynamics, thereby simplifying its implementation and reducing its computational requirements. It is known that the inclusion of TDE reduces about 98% of the computational requirement of control schemes without TDE. The newly developed control scheme was rigorously evaluated using computer simulation and its control performance was compared with that of existing control methods. This paper presents an experimental study where the newly developed control scheme and other existing control schemes were applied to a real CKCM with 2 degrees of freedom (DOF). The experimental results confirm that the control scheme performed much better than other existing control schemes in terms of synchronization and control performance, achieving a reduction in maximum tracking errors of up to 81% as compared to other existing control schemes. The results confirm the efficacy of the newly developed control scheme in enhancing control precision and system stability, making it a promising solution for improving CKCM control strategies in real-world applications. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

18 pages, 549 KiB  
Article
Adaptive Real-Time Convergence Estimation for Enhancing Reliability of Time Synchronization in Distributed Energy Monitoring System
by Fanrong Shi, Jiacheng Yang, Lili Ran and Wei Wang
Electronics 2025, 14(9), 1836; https://doi.org/10.3390/electronics14091836 - 30 Apr 2025
Viewed by 404
Abstract
In distributed energy monitoring systems, precise time synchronization is paramount for efficient data acquisition and energy management. With the high penetration of new energy sources, the distributed energy monitoring system will evolve into a complex heterogeneous network utilizing various short-range wireless communication technologies. [...] Read more.
In distributed energy monitoring systems, precise time synchronization is paramount for efficient data acquisition and energy management. With the high penetration of new energy sources, the distributed energy monitoring system will evolve into a complex heterogeneous network utilizing various short-range wireless communication technologies. Therefore, wireless communication-based time synchronization technologies will be widely applied, and it is important for the distributed energy monitoring system to be aware of the current time synchronization errors as this is crucial for accurate data processing. Our findings propose the first real-time convergence estimation method using an adaptive real-time convergence estimation (ARCE) algorithm, which can accurately estimate the current network time synchronization error and convergence status in real time. This ARCE algorithm is based on synchronization error and distribution of both synchronous and asynchronous time synchronization algorithm. The actual distributions of synchronization error are analyzed and evaluated using a significant amount of experimental results. According to the experimental results and simulations, ARCE can effectively detect the convergence state for all the comparisons. Therefore, ARCE can be used to evaluate the reliability of timestamps in data acquisition. Moreover, it can be utilized to enhance the adaptive capability of time synchronization algorithms, which could be robust and scalable for a large-scale and randomly deployed wireless networks. Full article
(This article belongs to the Special Issue Real-Time Monitoring and Intelligent Control for a Microgrid)
Show Figures

Figure 1

Back to TopTop