Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (861)

Search Parameters:
Keywords = sustainable landscape design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2776 KiB  
Article
A Bibliometric Evaluation of the Use of Biomimicry as a Nature-Compatible Design Approach in Landscape Architecture Within the Context of Sustainability and Ecology
by Rayan Ali and Deryanur Dinçer
Biomimetics 2025, 10(9), 559; https://doi.org/10.3390/biomimetics10090559 - 22 Aug 2025
Abstract
Background: The growing environmental crisis, driven by population increases and rapid urban development, has amplified the need for sustainable and ecological design approaches. Biomimicry, drawing inspiration from nature’s forms, processes, and systems, offers promising solutions in this context. Particularly in landscape architecture, biomimicry [...] Read more.
Background: The growing environmental crisis, driven by population increases and rapid urban development, has amplified the need for sustainable and ecological design approaches. Biomimicry, drawing inspiration from nature’s forms, processes, and systems, offers promising solutions in this context. Particularly in landscape architecture, biomimicry supports the integration of esthetics with ecological responsibility. Methods: This study presents a bibliometric analysis using the Scopus database to quantitatively assess the relationship between biomimicry and sustainable/ecological design within landscape architecture. A stepwise search strategy was applied, and the Biblioshiny tool within the version 4.2.1 of Bibliometrix package in RStudio 2024.04.1+748 software was used for data analysis and visualization. Results: A total of 1634 documents were identified under the keyword “biomimicry,” among which 210 addressed sustainability and/or ecological design. However, only three studies explicitly connected biomimicry, sustainable/ecological principles, and landscape architecture. Keyword trends, publication years, and country-level contributions were also examined. Conclusions: The findings highlight a substantial gap in the literature on the integration of biomimicry within sustainable landscape architecture. This underscores the need for further interdisciplinary research and practice that incorporates biomimetic principles to promote ecological innovation in landscape design. Full article
(This article belongs to the Section Development of Biomimetic Methodology)
25 pages, 10608 KiB  
Article
Integrating Energy Transition into Protected Landscapes: Geoinformatic Solution for Low Visual Impact of Energy Infrastructure Development—A Case Study from Roztoczański National Park (Poland)
by Szymon Chmielewski
Energies 2025, 18(16), 4414; https://doi.org/10.3390/en18164414 - 19 Aug 2025
Viewed by 243
Abstract
Energy transition, encompassing the development of renewable energy sources and associated power transmission grids, may significantly impact landscape visual resources, particularly those legally protected. Large-scale energy transitions require a mandatory visual impact assessment procedure, which utilises proximity and visibility analyses to comply with [...] Read more.
Energy transition, encompassing the development of renewable energy sources and associated power transmission grids, may significantly impact landscape visual resources, particularly those legally protected. Large-scale energy transitions require a mandatory visual impact assessment procedure, which utilises proximity and visibility analyses to comply with legal regulations and achieve minimal visual impact. While design stage proximity provides full compliance with the given country’s legal acts, the following visual impact analysis is more about demonstrating the low visual impact of design variants. Notably, at the energy infrastructure planning stage, the information on visual landscape resources remains insufficient; hence, avoiding conflicts is particularly challenging. To address this issue, a geoinformatic framework for Visual Landscape Absorption Capacity (VLAC) is proposed to support the sustainable planning of energy infrastructure right before the visual impact assessment. The framework involves identifying sensitive and valuable vantage points across the analysed landscape and determining the dimensions of energy infrastructure to be developed in a sustainable way regarding visual landscape resources. This paper presents a case study from Roztocze National Park in Poland, a protected area under significant pressure from solar farms and accompanying power transmission lines development. The results provide a critical assessment of the existing transmission lines (110 kV) and solar farms in relation to landscape visual resources, while also identifying three key areas where further infrastructure development can occur without landscape resource degradation. The framework geocomputation is based on digital elevation models, enabling easy replication in other locations to support the decision-making process and facilitate sustainable energy facility planning, thereby minimising potential conflicts with landscape resources. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy: 2nd Edition)
Show Figures

Figure 1

36 pages, 6171 KiB  
Review
Atomistic Modeling of Microstructural Defect Evolution in Alloys Under Irradiation: A Comprehensive Review
by Yue Fan
Appl. Sci. 2025, 15(16), 9110; https://doi.org/10.3390/app15169110 - 19 Aug 2025
Viewed by 165
Abstract
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates [...] Read more.
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates recent advancements in atomistic modeling, emphasizing its transformative potential to decipher fundamental mechanisms driving microstructural evolution in irradiated alloys. Atomistic simulations, such as molecular dynamics (MD), have successfully unveiled initial defect formation processes at picosecond scales. However, the inherent temporal limitations of conventional MD necessitate advanced methodologies capable of exploring slower, thermally activated defect kinetics. We specifically traced the development of powerful potential energy landscape (PEL) exploration algorithms, which enable the simulation of high-barrier, rare events of defect evolution processes that govern long-term material degradation. The review systematically examines point defect behaviors in various crystal structures—BCC, FCC, and HCP metals—and elucidates their characteristic defect dynamics, respectively. Additionally, it highlights the pronounced effects of chemical complexity in concentrated solid-solution alloys and high-entropy alloys, notably their sluggish diffusion and enhanced defect recombination, underpinning their superior radiation tolerance. Further, the interaction of extended defects with mechanical stresses and their mechanistic implications for material properties are discussed, highlighting the critical interplay between thermal activation and strain rate in defect evolution. Special attention is dedicated to the diverse mechanisms of dislocation–obstacle interactions, as well as the behaviors of metastable grain boundaries under far-from-equilibrium environments. The integration of data-driven methods and machine learning with atomistic modeling is also explored, showcasing their roles in developing quantum-accurate potentials, automating defect analysis, and enabling efficient surrogate models for predictive design. This comprehensive review also outlines future research directions and fundamental questions, paving the way toward autonomous materials’ discovery in extreme environments. Full article
Show Figures

Figure 1

18 pages, 3989 KiB  
Article
Multifunctional Greenway Approach for Landscape Planning and Reclamation of a Post-Mining District: Cartagena-La Unión, SE Spain
by Angel Faz, Sebla Kabas, Raul Zornoza, Silvia Martínez-Martínez and Jose A. Acosta
Land 2025, 14(8), 1657; https://doi.org/10.3390/land14081657 - 15 Aug 2025
Viewed by 170
Abstract
Establishing a sustainable framework for remediating environmental degradation caused by historical mining operations in the Sierra Minera of Cartagena-La Unión, southeastern Spain, is a critical imperative. When the reclamation requirements of the post-mining district are considered in the context of its critical location, [...] Read more.
Establishing a sustainable framework for remediating environmental degradation caused by historical mining operations in the Sierra Minera of Cartagena-La Unión, southeastern Spain, is a critical imperative. When the reclamation requirements of the post-mining district are considered in the context of its critical location, nested among conflicting land uses, the development of practical solutions to restore ecological and cultural functions emerge as a landscape planning challenge. The greenway approach emphasizes the primary ecological and functional corridors that sustain the vitality of the region; therefore, it is essential to preserve and enhance these critical lifelines. This study aimed to design a localized greenway network to support the conservation of key ecological, agricultural, and cultural resources within the area, while simultaneously promoting reclamation activities in degraded zones. The greenway corridor is built upon key elements: conservation areas, post-mining cultural resources, dry riverbeds, and agricultural zones. In the light of greenway approach, planners and land managers can make their decisions more judiciously by considering the priority zones. The protection, leveraging, and reclamation of significant resources can be provided through a multifunctional greenway approach as seen in the case of Cartagena-La Unión Post-Mining District. Full article
(This article belongs to the Special Issue Landscapes Across the Mediterranean)
Show Figures

Figure 1

24 pages, 53539 KiB  
Article
Gender Differences in Visual Perception of Park Landscapes Based on Eye-Tracking Technology: A Case Study of Beihai Park in Beijing
by Guaini Jiang, Shangwu Cao, Si Chen, Xin Tian and Min Cao
Buildings 2025, 15(16), 2858; https://doi.org/10.3390/buildings15162858 - 13 Aug 2025
Viewed by 324
Abstract
Previous landscape design mostly relies on general standards, failing to fully consider gender differences in landscape visual perception, with relevant research still needing further exploration. This study takes Beijing’s Beihai Park as the research object, using five types of on-site-collected photos (water landscape, [...] Read more.
Previous landscape design mostly relies on general standards, failing to fully consider gender differences in landscape visual perception, with relevant research still needing further exploration. This study takes Beijing’s Beihai Park as the research object, using five types of on-site-collected photos (water landscape, plant landscape, architectural landscape, path landscape, and square landscape) as stimuli. Twenty males and twenty females participated in an eye-tracking experiment and a questionnaire survey to analyze gender differences in the visual perception of these five landscapes. The results show the following: (1) females show a “core–radiation” pattern, focusing on mid-short vision and environmental details; males focus on distant views and functional areas. (2) Females have slightly higher APD and fixation counts, with stronger cognitive/emotional fluctuations; males have longer total fixation time and more sustained attention. (3) Males prefer architectural/square landscapes, emphasizing functionality; females favor water/plant landscapes, prioritizing emotional connection with nature. (4) The total fixation time significantly impacts subjective evaluations; the average fixation duration is gender-neutral but uniquely affects evaluations of certain landscape types. This study has guiding significance for enhancing park landscapes’ inclusiveness and attractiveness, promoting different genders’ participation and satisfaction, and boosting space vitality and utilization efficiency. Full article
(This article belongs to the Special Issue Research on Health, Wellbeing and Urban Design)
Show Figures

Figure 1

33 pages, 2003 KiB  
Review
Polyacrylamide-Based Solutions: A Comprehensive Review on Nanomaterial Integration, Supramolecular Design, and Sustainable Approaches for Integrated Reservoir Management
by Moamen Hassan Mohamed and Mysara Eissa Mohyaldinn Elhaj
Polymers 2025, 17(16), 2202; https://doi.org/10.3390/polym17162202 - 12 Aug 2025
Viewed by 729
Abstract
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically [...] Read more.
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically analyzes advancements in PAM-based materials for enhanced oil recovery (EOR), conformance control, and sand management. We show that nanomaterial integration (e.g., magnetic NPs, nanoclays) significantly augments PAM’s rheological control, thermal and salinity stability, interfacial properties, and wettability alteration. Furthermore, the emergence of supramolecular chemistry has endowed PAM systems with unprecedented resilience, enabling self-healing and adaptive performance under extreme subsurface conditions. The review highlights a crucial paradigm shift towards integrated reservoir management, synergizing these advanced chemical designs with mechanical strategies and leveraging sophisticated monitoring and predictive analytics. Critically, innovations in sustainable and bio-inspired PAM materials offer environmentally responsible solutions with enhanced biodegradability. This synthesis provides a holistic understanding of the state of the art. Despite persistent challenges in scalability and predictability, continually re-engineered PAM systems are positioned as an indispensable and increasingly sustainable cornerstone for future hydrocarbon recovery in the complex energy landscape. Full article
Show Figures

Figure 1

33 pages, 10859 KiB  
Article
Advancing Integrated Fire Management and Closer-to-Nature Forest Management: A Holistic Approach to Wildfire Risk Reduction and Ecosystem Resilience in Quinta da França, Portugal
by Tiago Domingos, Nikolaos Kalapodis, Georgios Sakkas, Krishna Chandramouli, Ivo Gama, Vânia Proença, Inês Ribeiro and Manuel Pio
Forests 2025, 16(8), 1306; https://doi.org/10.3390/f16081306 - 11 Aug 2025
Viewed by 549
Abstract
The escalating threat of climate-driven wildfires, land abandonment, wildland–urban interface expansion, and inadequate forest management poses an existential challenge to Mediterranean oak ecosystems, for which traditional fire suppression has proven insufficient. This paper presents a combination of integrated fire management (IFM) and closer-to-nature [...] Read more.
The escalating threat of climate-driven wildfires, land abandonment, wildland–urban interface expansion, and inadequate forest management poses an existential challenge to Mediterranean oak ecosystems, for which traditional fire suppression has proven insufficient. This paper presents a combination of integrated fire management (IFM) and closer-to-nature forest management (CTNFM) in a representative mixed Pyrenean oak (Quercus pyrenaica) forest at Quinta da França (QF), in Portugal. It is structured around three main objectives designed to evaluate this pioneer integrated approach: (1) to describe the integration of IFM and CTNFM within an agro-silvo-pastoral landscape; (2) to qualitatively assess its ecological, operational, and socio-economic outcomes; and (3) to quantitatively evaluate the effectiveness of two key nature-based solutions (NbSs), that is, prescribed burning and planned grazing, in reducing wildfire risk and enhancing forest resilience and biodiversity. By strategically combining proactive fuel reduction with biodiversity-oriented silviculture, the QF case provides a replicable model for managing analogous Mediterranean forested areas facing similar risks. This integrated approach supports forest multifunctionality, advancing both prevention and adaptation goals, and directly contributes to the ambitious targets set by the European Union’s New Forest and Biodiversity Strategies for 2030, marking a significant step towards a more sustainable and fire-resilient future for such Mediterranean landscapes. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 835 KiB  
Article
Development and Initial Validation of Healing and Therapeutic Design Indices and Scale for Measuring Health of Sub-Healthy Tourist Populations in Hot Spring Tourism
by Wencan Shen, Sirong Chen, Rob Law, Xiaoyu Wang, Yifan Zuo and Mu Zhang
Buildings 2025, 15(16), 2837; https://doi.org/10.3390/buildings15162837 - 11 Aug 2025
Viewed by 309
Abstract
The built environment, technology, human health and well-being, and sustainable development are closely related, and human-centered therapeutic design in environmental, architectural, spatial, and landscape domains demonstrates human health promotion potential. This study examines health promotion design measurement indices and develops a scale for [...] Read more.
The built environment, technology, human health and well-being, and sustainable development are closely related, and human-centered therapeutic design in environmental, architectural, spatial, and landscape domains demonstrates human health promotion potential. This study examines health promotion design measurement indices and develops a scale for sub-healthy tourists in a hot spring tourism destination. Recent research mainly emphasized the development and utilization of hot spring resources and their economic benefits. It rarely provided a systematic discussion on the health-promoting impact of environmental design and evaluation criteria. Thus, this study employs the literature review method and the Delphi expert method to construct an index system and measurement scale that comprises 20 evaluation indices of physical, mental, and social health. Moreover, this study conducts a questionnaire survey to measure the physical, mental, and social health of sub-healthy tourists and non-sub-healthy tourists (observation and control groups) and the sub-healthy tourists before and after their visit to the hot spring tourism destination (pre-test group and post-test group). The scale demonstrates satisfactory reliability and validity, and the health–healing design measurement indices for the sub-healthy tourists consist of three subscales: physical, mental, and social health. The evaluation index system and measurement scale can comprehensively and effectively measure the effects of healing and therapeutic design (HTD) and can be used as reliable tools for sub-healthy tourists in hot spring tourism. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 6891 KiB  
Article
Small Scale–Big Impact: Temporary Small-Scale Architecture as a Catalyst for Community-Driven Development of Green Urban Spaces
by Diana Giurea, Vasile Gherheș and Claudiu Coman
Sustainability 2025, 17(16), 7220; https://doi.org/10.3390/su17167220 - 9 Aug 2025
Viewed by 464
Abstract
Temporary architecture, as an expression of the concept of impermanence, offers adaptable and time-sensitive spatial interventions that promote community engagement and encourage experimentation within the urban environment. Beyond its physical and functional qualities, this architectural approach acts as a social mediator, fostering dialogue, [...] Read more.
Temporary architecture, as an expression of the concept of impermanence, offers adaptable and time-sensitive spatial interventions that promote community engagement and encourage experimentation within the urban environment. Beyond its physical and functional qualities, this architectural approach acts as a social mediator, fostering dialogue, networking, and the exchange of ideas between local communities and professionals, while contributing to the development of a socio-cultural common ground. This paper explores the Greenfeel Architecture wooden pavilion as a case study of small-scale architecture embedded within a landscape dedicated to urban agriculture and community-driven activities. The design process was guided by the need to balance functional requirements—providing shelter from the sun and rain and facilitating social interactions—with the protection of the existing vegetation and the enhancement of local biodiversity, with particular emphasis on supporting bee populations. In line with sustainable construction principles, the pavilion was built through the reuse of recovered materials, including used bricks for pavement, wooden slabs for the facade and roof, and several structural components sourced from previous building projects. Since its completion, the pavilion has acted as an urban acupuncture point within the surrounding area and has become a host for various outdoor activities and educational workshops aimed at diverse groups, including children, adults, professionals, and laypersons alike. The duality between the scale of the pavilion and the scale of its social, cultural, or ecological influence highlights the potential of temporary architecture to become a tool for both physical and socio-cultural sustainability in an urban environment. Full article
(This article belongs to the Special Issue Green Landscape and Ecosystem Services for a Sustainable Urban System)
Show Figures

Figure 1

52 pages, 5052 KiB  
Review
A Comprehensive Review of Sustainable and Green Additive Manufacturing: Technologies, Practices, and Future Directions
by Sudip Dey Dipta, Md. Mahbubur Rahman, Md. Jonaet Ansari and Md. Nizam Uddin
J. Manuf. Mater. Process. 2025, 9(8), 269; https://doi.org/10.3390/jmmp9080269 - 9 Aug 2025
Viewed by 920
Abstract
Additive manufacturing (AM), commonly known as 3D printing, has emerged as a transformative technology across various industries due to its potential for design flexibility, material efficiency, and reduced production lead times. As global attention increasingly shifts toward environmental sustainability, there is a growing [...] Read more.
Additive manufacturing (AM), commonly known as 3D printing, has emerged as a transformative technology across various industries due to its potential for design flexibility, material efficiency, and reduced production lead times. As global attention increasingly shifts toward environmental sustainability, there is a growing need to evaluate the ecological implications and opportunities associated with AM. This comprehensive review explores the current state of sustainable and green additive manufacturing (SGAM) technologies and practices, highlighting innovations that reduce energy consumption, minimize material waste, and incorporate renewable or recyclable materials. This study focuses on the utilization of recyclable thermoplastics combined with biodegradable polymers, exploring sustainable source materials, cold fabrication techniques, and cyclic lifecycle strategies integrated with renewable energy systems. Despite its potential, SGAM faces key challenges such as material compatibility, scalability of manufacturing processes, mechanical property optimization, and the need for standardized production protocols. Nevertheless, this work finds that SGAM devices are effective in minimizing environmental impact across the entire manufacturing process, aligning with predominant research trends that emphasize strategic predictive models to guide future developments in AM system implementation. The review concludes with future directions and research opportunities to enhance the environmental performance of AM technologies, ultimately contributing to a more sustainable manufacturing landscape. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing, 2nd Edition)
Show Figures

Figure 1

19 pages, 10210 KiB  
Article
Evaluating Landscape Fragmentation and Consequent Environmental Impact of Solar Parks Installation in Natura 2000 Protected Areas: The Case of the Thessaly Region, Central Greece
by Ioannis Faraslis, Vassiliki Margaritopoulou, Christos Christakis and Efthimios Providas
Sustainability 2025, 17(15), 7158; https://doi.org/10.3390/su17157158 - 7 Aug 2025
Viewed by 409
Abstract
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean [...] Read more.
This study examines the adverse environmental impacts of solar photovoltaic parks located in established protected areas, aiming to determine the level of landscape fragmentation through the calculation of relevant landscape metrics. For this purpose, a case study was carried out in a Mediterranean Natura 2000 Special Protection Area (SPA), and landscape metrics were calculated using Geographic Information System spatial analysis tools. The analysis of metrics showed that the installation of renewable energy parks within the designated protected area negatively affect landscape fragmentation and the absence of carefully defined and evidence-based mitigation measures. The land cover categories that are significantly affected are those considered critical habitats of bird species that have been designated as SPAs. The results of this study highlight the need to integrate, in the National Renewable Energy Spatial Plans, specific biodiversity objectives, such as conservation objectives and the suspension of the installation of photovoltaic parks in certain areas that are important for conservation of biodiversity, in order to ensure the overall sustainability of renewable energy production. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

18 pages, 1388 KiB  
Review
Simulation in the Built Environment: A Bibliometric Analysis
by Saman Jamshidi
Metrics 2025, 2(3), 13; https://doi.org/10.3390/metrics2030013 - 4 Aug 2025
Viewed by 331
Abstract
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes [...] Read more.
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes prior to construction. Applications span energy consumption, airflow, thermal comfort, lighting, structural behavior, and human interactions within buildings and urban contexts. This study maps the scientific landscape of simulation research in the built environment through a bibliometric analysis of 12,220 publications indexed in Scopus. Using VOSviewer 1.6.20, it conducted citation and keyword co-occurrence analyses to identify key research themes, leading countries and journals, and central publications in the field. The analysis revealed seven primary thematic clusters: (1) human-focused simulation, (2) building-scale energy performance simulation, (3) urban-scale energy performance simulation, (4) sustainable design and simulation, (5) indoor environmental quality simulation, (6) building aerodynamics simulation, and (7) computing in building simulation. By synthesizing these trends and domains, this study provides an overview of the field, facilitating greater accessibility to the simulation literature and informing future interdisciplinary research and practice in the built environment. Full article
Show Figures

Figure 1

48 pages, 8533 KiB  
Systematic Review
Eco-Efficient Retrofitting of Rural Heritage: A Systematic Review of Sustainable Strategies
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Anna Irene Del Monaco and Alvaro Marucci
Energies 2025, 18(15), 4065; https://doi.org/10.3390/en18154065 - 31 Jul 2025
Viewed by 309
Abstract
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural [...] Read more.
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural contexts embodies historical, cultural, and typological values worthy of preservation, while remaining adaptable to reuse through eco-efficient solutions and technological innovation. Using the PRISMA protocol, 115 scientific contributions were selected from 1711 initial records and classified into four macro-groups: landscape relationships; seismic and energy retrofitting; construction techniques and innovative materials; and morphological–typological analysis. Results show a predominance (over 50%) of passive design strategies, compatible materials, and low-impact techniques, while active systems are applied more selectively to protect cultural integrity. The study identifies replicable methodological models combining sustainability, cultural continuity, and functional adaptation, offering recommendations for future operational guidelines. Conscious eco-efficient retrofitting thus emerges as a strategic tool for the integrated valorization of rural landscapes and heritage. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment: 2nd Edition)
Show Figures

Figure 1

26 pages, 632 KiB  
Article
When Do Innovation and Renewable Energy Transition Drive Environmental Sustainability?
by Anis Omri, Fadhila Hamza and Noura Alkahtani
Sustainability 2025, 17(15), 6910; https://doi.org/10.3390/su17156910 - 30 Jul 2025
Viewed by 403
Abstract
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) [...] Read more.
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) estimator and confirming robustness through the Dynamic Common Correlated Effects Mean Group (DCCE-MG) method, the study explores both direct and indirect effects of RET and EI on two key environmental indicators: the Environmental Performance Index and the Load Capacity Factor. The results reveal that both RET and EI have a significant impact on environmental performance. Moreover, green finance and environmental governance serve as crucial channels through which RET and EI exert their influence. These findings underscore the importance of developing effective financial instruments and robust regulatory frameworks to translate energy and innovation policies into tangible environmental benefits. By highlighting the interplay between technological advancement, financial capacity, and institutional quality, this study provides novel insights into the environmental policy landscape of advanced economies and offers guidance for designing integrated strategies to achieve long-term sustainability goals. Full article
Show Figures

Figure 1

27 pages, 5548 KiB  
Article
Woody Vegetation Characteristics of Selected Rangelands Along an Aridity Gradient in Namibia: Implications for Rangeland Management
by Emilia N. Inman, Igshaan Samuels, Zivanai Tsvuura, Margaret Angula and Jesaya Nakanyala
Diversity 2025, 17(8), 530; https://doi.org/10.3390/d17080530 - 29 Jul 2025
Viewed by 590
Abstract
Rangelands form the ecological and economic backbone of Namibia, yet the woody plant dynamics that sustain these landscapes remain sporadically quantified across the semi-arid interior. We investigated the characteristics (stand structure, regeneration, richness, diversity, composition, ecological importance, and indicator species) of woody communities [...] Read more.
Rangelands form the ecological and economic backbone of Namibia, yet the woody plant dynamics that sustain these landscapes remain sporadically quantified across the semi-arid interior. We investigated the characteristics (stand structure, regeneration, richness, diversity, composition, ecological importance, and indicator species) of woody communities along a pronounced south-to-north rainfall gradient (85–346 mm yr−1) at five representative sites: Warmbad, Gibeon, Otjimbingwe, Ovitoto, and Sesfontein. Field sampling combined point-centered quarter surveys (10 points site−1) and belt transects (15 plots site−1). The basal area increased almost ten-fold along the gradient (0.4–3.4 m2 ha−1). Principal Coordinates Analysis (PCoA) arranged plots in near-perfect rainfall order, and Permutational Multivariate Analysis of Variance (PERMANOVA) confirmed significant site differences (F3,56 = 9.1, p < 0.001). Nanophanerophytes dominated hyper-arid zones, while microphanerophytes appeared progressively with increasing rainfall. Mean annual precipitation explained 45% of the variance in mean height and 34% of Shannon diversity but only 5% of stem density. Indicator value analysis highlighted Montinia caryophyllacea for Warmbad (IndVal = 100), Rhigozum trichotomum (75.8) for Gibeon, Senegalia senegal (72.6) for Otjimbingwe, and Senegalia mellifera (97.3) for Ovitoto. Rainfall significantly influences woody structure and diversity; however, other factors also modulate density and regeneration dynamics. This quantitative baseline can serve as a practical toolkit for designing site-specific management strategies across Namibia’s aridity gradient. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

Back to TopTop