Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,081)

Search Parameters:
Keywords = sustainable energy planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3560 KiB  
Article
The Planning of Best Site Selection for Wind Energy in Indonesia: A Synergistic Approach Using Data Envelopment Analysis and Fuzzy Multi-Criteria Decision-Making
by Chia-Nan Wang, Yu-Chi Chung, Fajar Dwi Wibowo, Thanh-Tuan Dang and Ngoc-Ai-Thy Nguyen
Energies 2025, 18(15), 4176; https://doi.org/10.3390/en18154176 - 6 Aug 2025
Abstract
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy [...] Read more.
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy Analytic Hierarchy Process (FAHP), and Fuzzy Combined Compromise Solution (F-CoCoSo). Initially, DEA is utilized to pinpoint the most promising sites based on a variety of quantitative factors. Subsequently, these sites are evaluated against qualitative criteria such as technical, economic, environmental, and socio-political considerations using FAHP for criteria weighting and F-CoCoSo for ranking the sites. Comprehensive sensitivity analysis of the criteria weights and a comparative assessment of methodologies substantiate the robustness of the proposed framework. The results converge on consistent rankings across methods, highlighting the effectiveness of the integrated approach. Notably, the results consistently identify Lampung, Aceh, and Riau as the top-ranked provinces, showcasing their strategic suitability for wind plant development. This framework provides a systematic approach for enhancing resource efficiency and strategic planning in Indonesia’s renewable energy sector. Full article
(This article belongs to the Special Issue Progress and Challenges in Wind Farm Optimization)
Show Figures

Figure 1

21 pages, 826 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
23 pages, 782 KiB  
Article
From Local Actions to Global Impact: Overcoming Hurdles and Showcasing Sustainability Achievements in the Implementation of SDG12
by John N. Hahladakis
Sustainability 2025, 17(15), 7106; https://doi.org/10.3390/su17157106 - 5 Aug 2025
Abstract
This study examines the progress, challenges, and successes in implementing Sustainable Development Goal 12 (SDG12), focusing on responsible consumption and production, using Qatar as a case study. The State has integrated Sustainable Consumption and Production (SCP) into national policies, established coordination mechanisms, and [...] Read more.
This study examines the progress, challenges, and successes in implementing Sustainable Development Goal 12 (SDG12), focusing on responsible consumption and production, using Qatar as a case study. The State has integrated Sustainable Consumption and Production (SCP) into national policies, established coordination mechanisms, and implemented action plans aligned with SDG12 targets. Achievements include renewable energy adoption, waste management reforms, and sustainable public procurement, though challenges persist in rationalizing fossil fuel subsidies, addressing data gaps, and enhancing corporate sustainability reporting. Efforts to reduce food loss and waste through redistribution programs highlight the country’s resilience, despite logistical obstacles. The nation has also advanced hazardous waste management, environmental awareness, and sustainable tourism policies, though gaps in data systems and policy coherence remain. Qatar’s approach provides a valuable local-to-global example of balancing resource-dependent economies with sustainability goals. Its strategies and lessons offer potential adaptability for other nations, especially those facing similar challenges in achieving SDG12. By strengthening data systems, enhancing policy integration, and fostering regional and international cooperation, Qatar’s efforts underscore the importance of aligning economic growth with environmental stewardship, serving as a blueprint for global sustainability initiatives. Full article
Show Figures

Graphical abstract

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

28 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

36 pages, 5151 KiB  
Article
Flexibility Resource Planning and Stability Optimization Methods for Power Systems with High Penetration of Renewable Energy
by Haiteng Han, Xiangchen Jiang, Yang Cao, Xuanyao Luo, Sheng Liu and Bei Yang
Energies 2025, 18(15), 4139; https://doi.org/10.3390/en18154139 - 4 Aug 2025
Abstract
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning [...] Read more.
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning framework that coordinates and integrates multiple types of flexibility resources through joint optimization and network reconfiguration to enhance system adaptability and operational resilience. A novel virtual network coupling modeling approach is proposed to address topological constraints during network reconfiguration, ensuring radial operation while allowing rapid topology adjustments to isolate faults and restore power supply. Furthermore, to mitigate the uncertainty and fault risks associated with extreme weather events, a CVaR-based risk quantification framework is incorporated into a bi-level optimization model, effectively balancing investment costs and operational risks under uncertainty. In this model, the upper-level planning stage optimizes the siting and sizing of flexibility resources, while the lower-level operational stage coordinates real-time dispatch strategies through demand response, energy storage operation, and dynamic network reconfiguration. Finally, a hybrid SA-PSO algorithm combined with conic programming is employed to enhance computational efficiency while ensuring high solution quality for practical system scales. Case study analyses demonstrate that, compared to single-resource configurations, the proposed coordinated planning of multiple flexibility resources can significantly reduce the total system cost and markedly improve system resilience under fault conditions. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
22 pages, 715 KiB  
Article
Research on the Development of the New Energy Vehicle Industry in the Context of ASEAN New Energy Policy
by Yalin Mo, Lu Li and Haihong Deng
Sustainability 2025, 17(15), 7073; https://doi.org/10.3390/su17157073 - 4 Aug 2025
Abstract
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth [...] Read more.
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth of the new energy sector and enhanced energy structures across Association of Southeast Asian Nations (ASEAN). This initiative has also inspired these countries to develop corresponding industrial policies aimed at supporting the new energy vehicle (NEV) industry, resulting in significant growth in this sector within the ASEAN region. This paper analyzes the factors influencing the development of the NEV industry in the context of ASEAN’s new energy policies, drawing empirical insights from data collected across six ASEAN countries from 2013 to 2024. Following the implementation of the APAEC (2016–2025), it was observed that ASEAN countries reached a consensus on energy development and cooperation, collaboratively advancing the NEV industry through regional policies. Furthermore, factors such as national governance, financial development, education levels, and the size of the automotive market positively contribute to the growth of the NEV industry in ASEAN. Conversely, high energy consumption can hinder its progress. Additionally, further research indicates that the APAEC (2016–2025) has exerted a more pronounced impact on countries with robust automotive industry foundations or those prioritizing relevant policies. The findings of this paper offer valuable insights for ASEAN countries in the formulating policies for the NEV industry, optimizing energy structures, and achieving low-carbon energy transition and sustainable development. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

33 pages, 8443 KiB  
Article
Model for Planning and Optimization of Train Crew Rosters for Sustainable Railway Transport
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Sustainability 2025, 17(15), 7069; https://doi.org/10.3390/su17157069 - 4 Aug 2025
Abstract
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a [...] Read more.
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a focus on the operational setting of the train crew depot in Česká Třebová, a city in the Czech Republic. The seven-step methodology includes identifying available train shifts, defining scheduling constraints, creating roster variants, and calculating personnel and time requirements for each option. The proposed roster reduced staffing needs by two employees, increased the average shift duration to 9 h and 42 min, and decreased non-productive time by 384 h annually. These improvements enhance sustainability by optimizing human resource use, lowering unnecessary energy consumption, and improving employees’ work–life balance. The model also provides a quantitative assessment of operational feasibility and economic efficiency. Compared to existing rosters, the proposed model offers clear advantages and remains applicable even in settings with limited technological support. The findings show that a well-designed rostering system can contribute not only to cost savings and personnel stabilization, but also to broader objectives in sustainable public transport, supporting resilient and resource-efficient rail operations. Full article
Show Figures

Figure 1

18 pages, 1388 KiB  
Review
Simulation in the Built Environment: A Bibliometric Analysis
by Saman Jamshidi
Metrics 2025, 2(3), 13; https://doi.org/10.3390/metrics2030013 - 4 Aug 2025
Abstract
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes [...] Read more.
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes prior to construction. Applications span energy consumption, airflow, thermal comfort, lighting, structural behavior, and human interactions within buildings and urban contexts. This study maps the scientific landscape of simulation research in the built environment through a bibliometric analysis of 12,220 publications indexed in Scopus. Using VOSviewer 1.6.20, it conducted citation and keyword co-occurrence analyses to identify key research themes, leading countries and journals, and central publications in the field. The analysis revealed seven primary thematic clusters: (1) human-focused simulation, (2) building-scale energy performance simulation, (3) urban-scale energy performance simulation, (4) sustainable design and simulation, (5) indoor environmental quality simulation, (6) building aerodynamics simulation, and (7) computing in building simulation. By synthesizing these trends and domains, this study provides an overview of the field, facilitating greater accessibility to the simulation literature and informing future interdisciplinary research and practice in the built environment. Full article
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 227
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Data-Driven Symmetry and Asymmetry Investigation of Vehicle Emissions Using Machine Learning: A Case Study in Spain
by Fei Wu, Jinfu Zhu, Hufang Yang, Xiang He and Qiao Peng
Symmetry 2025, 17(8), 1223; https://doi.org/10.3390/sym17081223 - 2 Aug 2025
Viewed by 231
Abstract
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and [...] Read more.
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and explainable AI techniques can effectively capture both symmetric and asymmetric emission patterns across different vehicle types, thereby contributing to more sustainable transport planning. Addressing a key gap in the existing literature, the study poses the following question: how do structural and behavioral factors contribute to asymmetric emission responses in internal combustion engine vehicles compared to new energy vehicles? Utilizing a large-scale Spanish vehicle registration dataset, the analysis classifies vehicles by powertrain type and applies five supervised learning algorithms to predict CO2 emissions. SHapley Additive exPlanations (SHAPs) are employed to identify nonlinear and threshold-based relationships between emissions and vehicle characteristics such as fuel consumption, weight, and height. Among the models tested, the Random Forest algorithm achieves the highest predictive accuracy. The findings reveal critical asymmetries in emission behavior, particularly among hybrid vehicles, which challenge the assumption of uniform policy applicability. This study provides both methodological innovation and practical insights for symmetry-aware emission modeling, offering support for more targeted eco-design and policy decisions that align with long-term sustainability goals. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 - 1 Aug 2025
Viewed by 180
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

27 pages, 1832 KiB  
Review
Breaking the Traffic Code: How MaaS Is Shaping Sustainable Mobility Ecosystems
by Tanweer Alam
Future Transp. 2025, 5(3), 94; https://doi.org/10.3390/futuretransp5030094 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and [...] Read more.
Urban areas are facing increasing traffic congestion, pollution, and infrastructure strain. Traditional urban transportation systems are often fragmented. They require users to plan, pay, and travel across multiple disconnected services. Mobility-as-a-Service (MaaS) integrates these services into a single digital platform, simplifying access and improving the user experience. This review critically examines the role of MaaS in fostering sustainable mobility ecosystems. MaaS aims to enhance user-friendliness, service variety, and sustainability by adopting a customer-centric approach to transportation. The findings reveal that successful MaaS systems consistently align with multimodal transport infrastructure, equitable access policies, and strong public-private partnerships. MaaS enhances the management of routes and traffic, effectively mitigating delays and congestion while concurrently reducing energy consumption and fuel usage. In this study, the authors examine MaaS as a new mobility paradigm for a sustainable transportation system in smart cities, observing the challenges and opportunities associated with its implementation. To assess the environmental impact, a sustainability index is calculated based on the use of different modes of transportation. Significant findings indicate that MaaS systems are proliferating in both quantity and complexity, increasingly integrating capabilities such as real-time multimodal planning, dynamic pricing, and personalized user profiles. Full article
Show Figures

Figure 1

Back to TopTop