Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = surgical planning prototypes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6029 KB  
Article
Mimicking Alveolar Lung Structures with Lattice Designs
by Aniello Riccio, Angela Russo, Andrea Sellitto, Maria Rosaria Barillari, Alfonso Reginelli and Salvatore Cappabianca
Polymers 2025, 17(19), 2572; https://doi.org/10.3390/polym17192572 - 23 Sep 2025
Viewed by 509
Abstract
Advances in additive manufacturing (AM) have revolutionized various sectors, including aerospace engineering, where the use of lattice structures has enabled the development of lightweight high-performance components with optimized mechanical properties. Building on these engineering principles, this study explores the application of aerospace-derived lattice [...] Read more.
Advances in additive manufacturing (AM) have revolutionized various sectors, including aerospace engineering, where the use of lattice structures has enabled the development of lightweight high-performance components with optimized mechanical properties. Building on these engineering principles, this study explores the application of aerospace-derived lattice design strategies to the biomedical field, specifically for the replication of human lung alveolar structures. The objective is to create anatomically accurate 3D-printed lung models suitable for surgical planning. Finite element analyses have been conducted using a CAD model of adult lungs, including the application of lattice structures generated through nTopology software, to evaluate the elasticity and density, critical for simulating lung mechanics. A preliminary prototype has been produced using stereolithography and flexible resin, showing the potential for realistic tactile feedback. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

37 pages, 12112 KB  
Article
Protocol for Converting DICOM Files to STL Models Using 3D Slicer and Ultimaker Cura
by Malena Pérez-Sevilla, Fernando Rivas-Navazo, Pedro Latorre-Carmona and Darío Fernández-Zoppino
J. Pers. Med. 2025, 15(3), 118; https://doi.org/10.3390/jpm15030118 - 19 Mar 2025
Cited by 3 | Viewed by 4412
Abstract
Background/Objectives: 3D printing has become an invaluable tool in medicine, enabling the creation of precise anatomical models for surgical planning and medical education. This study presents a comprehensive protocol for converting DICOM files into three-dimensional models and their subsequent transformation into GCODE [...] Read more.
Background/Objectives: 3D printing has become an invaluable tool in medicine, enabling the creation of precise anatomical models for surgical planning and medical education. This study presents a comprehensive protocol for converting DICOM files into three-dimensional models and their subsequent transformation into GCODE files ready for 3D printing. Methods: We employed the open-source software “3D Slicer” for the initial conversion of the DICOM files, capitalising on its robust capabilities in segmentation and medical image processing. An optimised workflow was developed for the precise and efficient conversion of medical images into STL models, ensuring high fidelity in anatomical structures. The protocol was validated through three case studies, achieving elevated structural fidelity based on deviation analysis between the STL models and the original DICOM data. Furthermore, the segmentation process preserved morphological accuracy within a narrow deviation range, ensuring the reliable replication of anatomical features for medical applications. Our protocol provides an effective and accessible approach to generating 3D anatomical models with enhanced accuracy and reproducibility. In later stages, we utilised the “Ultimaker Cura” software to generate customised GCODE files tailored to the specifications of the 3D printer. Results: Our protocol offers an effective, accessible, and more accurate solution for creating 3D anatomical models from DICOM images. Furthermore, the versatility of this approach allows for its adaptation to various 3D printers and materials, expanding its utility in the medical and scientific community. Conclusions: This study presents a robust and reproducible approach for converting medical data into physical three-dimensional objects, paving the way for a wide range of applications in personalised medicine and advanced clinical practice. The selection of sample datasets from the 3D Slicer repository ensures standardisation and reproducibility, allowing for independent validation of the proposed workflow without ethical or logistical constraints related to patient data access. However, we acknowledge that future work could expand upon this by incorporating real patient datasets and benchmarking the protocol against alternative segmentation methods and software packages to further assess performance across different clinical scenarios. Essentially, this protocol can be particularly characterised by its commitment to open-source software and low-cost solutions, making advanced 3D modelling accessible to a wider audience. By leveraging open-access tools such as “3D Slicer” and “Ultimaker Cura”, we democratise the creation of anatomical models, ensuring that institutions with limited resources can also benefit from this technology, promoting innovation and inclusivity in medical sciences and education. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

22 pages, 9803 KB  
Article
Guidelines for Design and Additive Manufacturing Specify the Use of Surgical Templates with Improved Accuracy Using the Masked Stereolithography Technique in the Zygomatic Bone Region
by Paweł Turek, Paweł Kubik, Dominika Ruszała, Natalia Dudek and Jacek Misiura
Designs 2025, 9(2), 33; https://doi.org/10.3390/designs9020033 - 12 Mar 2025
Viewed by 1278
Abstract
The zygomatic bone area experiences frequent mechanical damage in the middle craniofacial region, including the orbital floor. The orbital floor bone is very thin, ranging from 0.74 mm to 1.5 mm. Enhancing digitization, reconstruction, and CAD modeling procedures is essential to improving the [...] Read more.
The zygomatic bone area experiences frequent mechanical damage in the middle craniofacial region, including the orbital floor. The orbital floor bone is very thin, ranging from 0.74 mm to 1.5 mm. Enhancing digitization, reconstruction, and CAD modeling procedures is essential to improving the visualization of this structure. Achieving a homogeneous surface with high manufacturing accuracy is crucial for developing precise surgical models and tools for creating titanium mesh implants to reconstruct the orbital floor geometry. This article improved the accuracy of reconstruction and CAD modeling using the example of the development of a prototype implant to replace the zygomatic bone and a tool to form the geometry of the titanium mesh within the geometry of the orbital floor. The masked stereolithography (mSLA) method was used in the model manufacturing process because it is low-cost and highly accurate. Two manufacturing modes (standard and ultra-light) were tested on an Anycubic Photon M3 Premium 3D printer to determine which mode produced a more accurate representation of the geometry. To verify the geometric accuracy of the manufactured models, a GOM Scan1 structured light scanner was used. In the process of evaluating the accuracy of the model preparation, the maximum deviation, mean deviation, range and standard deviation were determined. The maximum deviations for anatomical structures created using the normal mode ranged from ±0.6 mm to ±0.7 mm. In contrast, models produced with the ultra-light mode showed deviations of ±0.5 mm to ±0.6 mm. Furthermore, the results indicate that the ultra-light mode offers better surface accuracy for die and stamp models. More than 70% of the surface of the models is within the deviation range of ±0.3 mm, which is sufficient for planning surgical procedures. However, the guidelines developed in the presented publication need to optimize the CAD process and select 3D-printing parameters to minimize deviations, especially at the edges of manufactured models. Full article
(This article belongs to the Special Issue Design Process for Additive Manufacturing)
Show Figures

Figure 1

15 pages, 7443 KB  
Article
The Process of Digital Data Flow in RE/CAD/RP/CAI Systems Concerning Planning Surgical Procedures in the Craniofacial Area
by Paweł Turek, Ewelina Dudek, Mateusz Grzywa and Kacper Więcek
Knowledge 2024, 4(2), 265-279; https://doi.org/10.3390/knowledge4020014 - 15 May 2024
Cited by 1 | Viewed by 1350
Abstract
This paper presents the process of digital data flow in RE/CAD/RP/CAI systems to develop models for planning surgical procedures in the craniofacial area. At the first RE modeling stage, digital data processing, segmentation, and the reconstruction of the geometry of the anatomical structures [...] Read more.
This paper presents the process of digital data flow in RE/CAD/RP/CAI systems to develop models for planning surgical procedures in the craniofacial area. At the first RE modeling stage, digital data processing, segmentation, and the reconstruction of the geometry of the anatomical structures were performed. During the CAD modeling stage, three different concepts were utilized. The first concept was used to create a tool that could mold the geometry of the cranial vault. The second concept was created to prepare a prototype implant that would complement the anterior part of the mandibular geometry. And finally, the third concept was used to design a customized prototype surgical plate that would match the mandibular geometry accurately. Physical models were made using a rapid prototyping technique. A Bambu Lab X1 3D printer was used for this purpose. The process of geometric accuracy evaluation was carried out on manufactured prototypes of surgical plates made of ABS+, CPE, PLA+, and PETG material. In the geometric accuracy evaluation process, the smallest deviation values were obtained for the ABS plus material, within a tolerance of ±0.1 mm, and the largest were obtained for CPE (±0.2 mm) and PLA plus (±0.18 mm). In terms of the surface roughness evaluation, the highest value of the Sa parameter was obtained for the PLA plus material, which was 4.15 µm, and the lowest was obtained for the CPE material, equal to 3.62 µm. The knowledge of the flow of digital data and the identification of factors determining the accuracy of mapping the geometry of anatomical structures allowed for the development of a procedure that improves the modeling and manufacturing of anatomical structures within the craniofacial region. Full article
Show Figures

Figure 1

25 pages, 6033 KB  
Article
Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases
by Arnau Valls-Esteve, Aitor Tejo-Otero, Núria Adell-Gómez, Pamela Lustig-Gainza, Felip Fenollosa-Artés, Irene Buj-Corral, Josep Rubio-Palau, Josep Munuera and Lucas Krauel
Bioengineering 2024, 11(1), 31; https://doi.org/10.3390/bioengineering11010031 - 27 Dec 2023
Cited by 8 | Viewed by 3443
Abstract
The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient–professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality [...] Read more.
The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient–professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality (VR/AR) cannot provide. However, there are many technologies and strategies for the production of 3D models. Therefore, the aim of the present study is to show and compare eight different strategies for the manufacture of surgical planning and training prototypes. The eight strategies for creating complex abdominal oncological anatomical models, based on eight common pediatric oncological cases, were developed using four common technologies (stereolithography (SLA), selectie laser sinterning (SLS), fused filament fabrication (FFF) and material jetting (MJ)) along with indirect and hybrid 3D printing methods. Nine materials were selected for their properties, with the final models assessed for application suitability, production time, viscoelastic mechanical properties (shore hardness and elastic modulus) and cost. The manufacturing and post-processing of each strategy is assessed, with times ranging from 12 h (FFF) to 61 h (hybridization of FFF and SLS), as labor times differ significantly. Cost per model variation is also significant, ranging from EUR 80 (FFF) to EUR 600 (MJ). The main limitation is the mimicry of physiological properties. Viscoelastic properties and the combination of materials, colors and textures are also substantially different according to the strategy and the intended use. It was concluded that MJ is the best overall option, although its use in hospitals is limited due to its cost. Consequently, indirect 3D printing could be a solid and cheaper alternative. Full article
Show Figures

Graphical abstract

18 pages, 27457 KB  
Article
Combined Edge Loss UNet for Optimized Segmentation in Total Knee Arthroplasty Preoperative Planning
by Luca Marsilio, Andrea Moglia, Matteo Rossi, Alfonso Manzotti, Luca Mainardi and Pietro Cerveri
Bioengineering 2023, 10(12), 1433; https://doi.org/10.3390/bioengineering10121433 - 16 Dec 2023
Cited by 11 | Viewed by 2992
Abstract
Bone segmentation and 3D reconstruction are crucial for total knee arthroplasty (TKA) surgical planning with Personalized Surgical Instruments (PSIs). Traditional semi-automatic approaches are time-consuming and operator-dependent, although they provide reliable outcomes. Moreover, the recent expansion of artificial intelligence (AI) tools towards various medical [...] Read more.
Bone segmentation and 3D reconstruction are crucial for total knee arthroplasty (TKA) surgical planning with Personalized Surgical Instruments (PSIs). Traditional semi-automatic approaches are time-consuming and operator-dependent, although they provide reliable outcomes. Moreover, the recent expansion of artificial intelligence (AI) tools towards various medical domains is transforming modern healthcare. Accordingly, this study introduces an automated AI-based pipeline to replace the current operator-based tibia and femur 3D reconstruction procedure enhancing TKA preoperative planning. Leveraging an 822 CT image dataset, a novel patch-based method and an improved segmentation label generation algorithm were coupled to a Combined Edge Loss UNet (CEL-UNet), a novel CNN architecture featuring an additional decoding branch to boost the bone boundary segmentation. Root Mean Squared Errors and Hausdorff distances compared the predicted surfaces to the reference bones showing median and interquartile values of 0.26 (0.19–0.36) mm and 0.24 (0.18–0.32) mm, and of 1.06 (0.73–2.15) mm and 1.43 (0.82–2.86) mm for the tibia and femur, respectively, outperforming previous results of our group, state-of-the-art, and UNet models. A feasibility analysis for a PSI-based surgical plan revealed sub-millimetric distance errors and sub-angular alignment uncertainties in the PSI contact areas and the two cutting planes. Finally, operational environment testing underscored the pipeline’s efficiency. More than half of the processed cases complied with the PSI prototyping requirements, reducing the overall time from 35 min to 13.1 s, while the remaining ones underwent a manual refinement step to achieve such PSI requirements, performing the procedure four to eleven times faster than the manufacturer standards. To conclude, this research advocates the need for real-world applicability and optimization of AI solutions in orthopedic surgical practice. Full article
(This article belongs to the Special Issue Artificial Intelligence in Surgery)
Show Figures

Figure 1

20 pages, 9173 KB  
Article
Design and Simulate Intracranial Support to Guide Maxillo Surgery: A Study Based on Bioengineering
by Maria Giulia Cristofaro, Elvis Kallaverja, Francesco Ferragina and Ida Barca
Diagnostics 2023, 13(24), 3672; https://doi.org/10.3390/diagnostics13243672 - 14 Dec 2023
Cited by 1 | Viewed by 1641
Abstract
Background: Intraoperative navigation allows for the creation of a real-time relationship between the anatomy imagined during diagnosis/planning and the site of surgical interest. This procedure takes place by identifying and registering trustworthy anatomical markers on planning images and using a point locator during [...] Read more.
Background: Intraoperative navigation allows for the creation of a real-time relationship between the anatomy imagined during diagnosis/planning and the site of surgical interest. This procedure takes place by identifying and registering trustworthy anatomical markers on planning images and using a point locator during the operation. The locator is calibrated in the workspace by placing a Dynamic Reference Frame (DRF) sensor. Objective: This study aims to calculate the localization accuracy of an electromagnetic locator of neuro-maxillofacial surgery, moving the standard sensor position to a different position more suitable for maxillofacial surgery. Materials and Methods: The upper dental arch was chosen as an alternative fixed point for the positioning of the sensor. The prototype of a bite support device was designed and generated via 3D printing. CT images of a skull phantom with 10 anatomical landmarks were acquired. The testing procedure consisted of 10 measurements for each position of the sensor: precisely 10 measurements with the sensor placed on the forehead and 10 measurements with the sensor placed on the bite support device. It also evaluated the localization error by comparing the two procedures. Results: The localization error, when the sensor was placed on the bite support device, was lower in the sphere located on the temporal bone. It was the same in the spheres located on the maxillary bone. The test analysis of the data of the new device showed that it is reliable; the tests are reproducible and can be considered as accurate as the traditional ones. In addition, the sensor mounted on this device has proven to be slightly superior in terms of accuracy and accuracy in areas such as the middle third of the face and jaw. Discussion and Conclusion: The realization of the bite support device allowed the sensor to change position concerning its natural site. This procedure allows us to explore structures, such as the frontal site, which were initially difficult to approach with neuronavigation and improves the approach to midface structures, already studied with neuronavigation. The new calibration, with the position of the sensor on the support device in the same reference points sphere, highlighted the reduction in the location error. We can say that the support proposed in this study lays the foundations for a new navigation approach for patients in maxillofacial surgery, by changing the position of the sensor. It has strong points in improving the localization error for some reference points without determining disadvantages both in the calibration and in the surgical impediment. Full article
(This article belongs to the Section Point-of-Care Diagnostics and Devices)
Show Figures

Figure 1

18 pages, 4062 KB  
Article
A New Approach to Virtual Occlusion in Orthognathic Surgery Planning Using Mixed Reality—A Technical Note and Review of the Literature
by Max Wilkat, Shufang Liu, Michael Schwerter, Felix Schrader, Leonardo Saigo, Nadia Karnatz, Norbert R. Kübler and Majeed Rana
J. Pers. Med. 2023, 13(12), 1709; https://doi.org/10.3390/jpm13121709 - 14 Dec 2023
Cited by 9 | Viewed by 3165
Abstract
Orthognathic surgery plays a vital role in correcting various skeletal discrepancies of the maxillofacial region. Achieving optimal occlusion is a fundamental aspect of orthognathic surgery planning, as it directly influences postoperative outcomes and patient satisfaction. Traditional methods for setting final occlusion involve the [...] Read more.
Orthognathic surgery plays a vital role in correcting various skeletal discrepancies of the maxillofacial region. Achieving optimal occlusion is a fundamental aspect of orthognathic surgery planning, as it directly influences postoperative outcomes and patient satisfaction. Traditional methods for setting final occlusion involve the use of dental casts which are time-consuming, prone to errors and cannot be easily shared among collaborating specialties. In recent years, advancements in digital technology have introduced innovative approaches, such as virtual occlusion, which may offer enhanced accuracy and efficiency in orthognathic surgery planning. Furthermore, the emergence of mixed reality devices and their 3D visualization capabilities have brought about novel benefits in the medical field, particularly in computer-assisted planning. This paper presents for the first time a prototype tool for setting virtual occlusion during orthognathic surgery planning using mixed reality technology. A complete walkthrough of the workflow is presented including an explanation of the implicit advantages of this novel tool. The new approach to defining virtual occlusion is set into context with other published methods of virtual occlusion setting, discussing advantages and limitations as well as concepts of surgical occlusion for orthognathic surgery. Full article
Show Figures

Figure 1

10 pages, 9971 KB  
Case Report
3D Model Artificial Intelligence-Guided Automatic Augmented Reality Images during Robotic Partial Nephrectomy
by Michele Sica, Pietro Piazzolla, Daniele Amparore, Paolo Verri, Sabrina De Cillis, Federico Piramide, Gabriele Volpi, Alberto Piana, Michele Di Dio, Stefano Alba, Cecilia Gatti, Mariano Burgio, Giovanni Busacca, Angelo Giordano, Cristian Fiori, Francesco Porpiglia and Enrico Checcucci
Diagnostics 2023, 13(22), 3454; https://doi.org/10.3390/diagnostics13223454 - 16 Nov 2023
Cited by 10 | Viewed by 2780
Abstract
More than ever, precision surgery is making its way into modern surgery for functional organ preservation. This is possible mainly due to the increasing number of technologies available, including 3D models, virtual reality, augmented reality, and artificial intelligence. Intraoperative surgical navigation represents an [...] Read more.
More than ever, precision surgery is making its way into modern surgery for functional organ preservation. This is possible mainly due to the increasing number of technologies available, including 3D models, virtual reality, augmented reality, and artificial intelligence. Intraoperative surgical navigation represents an interesting application of these technologies, allowing to understand in detail the surgical anatomy, planning a patient-tailored approach. Automatic superimposition comes into this context to optimally perform surgery as accurately as possible. Through a dedicated software (the first version) called iKidney, it is possible to superimpose the images using 3D models and live endoscopic images during partial nephrectomy, targeting the renal mass only. The patient is 31 years old with a 28 mm totally endophytic right-sided renal mass, with a PADUA score of 9. Thanks to the automatic superimposition and selective clamping, an enucleoresection of the renal mass alone was performed with no major postoperative complication (i.e., Clavien–Dindo < 2). iKidney-guided partial nephrectomy is safe, feasible, and yields excellent results in terms of organ preservation and functional outcomes. Further validation studies are needed to improve the prototype software, particularly to improve the rotational axes and avoid human help. Furthermore, it is important to reduce the costs associated with these technologies to increase its use in smaller hospitals. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

11 pages, 7274 KB  
Technical Note
Computer Aided Full Arch Restoration by Means of One-Piece Implants and Stackable Guide: A Technical Note
by Mattia Manfredini, Pier Paolo Poli, Carlo Maiorana, Federica Eugenia Salina, Marco Tandurella and Mario Beretta
Dent. J. 2023, 11(11), 256; https://doi.org/10.3390/dj11110256 - 1 Nov 2023
Cited by 8 | Viewed by 4238
Abstract
This technical note aims to present a recently developed computer-guided protocol characterized by titanium-reinforced stackable surgical guides during post-extractive implant placement and subsequent immediate loading. A full maxillary edentulism was rehabilitated with one-piece implants, starting from a pre-existing removable denture. 3D digital scans [...] Read more.
This technical note aims to present a recently developed computer-guided protocol characterized by titanium-reinforced stackable surgical guides during post-extractive implant placement and subsequent immediate loading. A full maxillary edentulism was rehabilitated with one-piece implants, starting from a pre-existing removable denture. 3D digital scans of the removable denture and upper and lower arches were performed. On this basis, a prototype with ideal esthetic and functional outcomes was realized and replicated into a custom-made radiological stent with markers. The superimposition of STL and DICOM files allowed virtual planning of one-piece implants in the ideal prosthetically driven position. The stackable guides, composed of a fixed base template and additional removable components, were then realized. The fixed template, initially secured with anchor pins to the bone, was no longer removed. The removable components, which were screwed to the base template, were used to perform implant surgery and immediate prosthetic loading. No surgical complications occurred, the implants achieved a minimum insertion torque of 35 Ncm, and immediate prosthetic loading was performed. The base template allowed for the maintenance of a fixed reference during the entire workflow, improving the transition between the digital project, the surgical procedure, and the prosthetic rehabilitation. Full article
(This article belongs to the Special Issue Oral Implantology and Rehabilitation)
Show Figures

Figure 1

7 pages, 1723 KB  
Case Report
Custom-Made 3D Titanium Plate for Mandibular Reconstruction in Surgery of Ameloblastoma: A Novel Case Report
by Somangshu Chakraborty, Rajdeep P. Guha, Sukanya Naskar and Rajarshi Banerjee
Surg. Tech. Dev. 2022, 11(3), 98-104; https://doi.org/10.3390/std11030009 - 31 Oct 2022
Cited by 4 | Viewed by 9305
Abstract
Ameloblastoma is a benign yet locally invasive odontogenic neoplasm, characterised by slow growth and painless swelling. The treatment for ameloblastoma varies from curettage to en bloc resection, with recurrence commonly occurring. The safety margin of resection is hence essential to avoid recurrence. Understanding [...] Read more.
Ameloblastoma is a benign yet locally invasive odontogenic neoplasm, characterised by slow growth and painless swelling. The treatment for ameloblastoma varies from curettage to en bloc resection, with recurrence commonly occurring. The safety margin of resection is hence essential to avoid recurrence. Understanding the three-dimensional anatomy for reconstruction of mandibular defects after tumour resection often poses problems for head and neck surgeons. Historically, various autografts and alloplastic materials have been used in the reconstruction of these types of defects. Over time, advances in technology with computed tomography scanners and three-dimensional images enhance the surgical planning and management of maxillofacial tumours. The development of new prototyping systems provides accurate 3D biomodels on which surgery can be simulated, especially in cases of ameloblastoma, in which the safety margin is vital for the clinical outcome. The objective of this paper was to report a clinical case of employing these methodologies for reconstruction after an extensive mandibular resection. The clinical outcomes were observed. A case of follicular ameloblastoma of the mandible is depicted in the following paper, where a 3D biomodel was used throughout the surgery. A 3D printed patient-specific titanium implant was manufactured and placed intraoperatively for reconstruction. The treatment had satisfactory postoperative results without complications. Titanium implants being bioinert, customisable and easily workable, especially with the help of 3D virtual planning techniques, can be considered as ideal alloplastic materials for mandibular reconstruction. Full article
(This article belongs to the Special Issue At the Frontiers of Plastic and Aesthetic Surgery)
Show Figures

Figure 1

9 pages, 5403 KB  
Case Report
Combined Application of Virtual Simulation Technology and 3-Dimensional-Printed Computer-Aided Rapid Prototyping in Autotransplantation of a Mature Third Molar
by Hui Zhang, Min Cai, Zhiguo Liu, He Liu, Ya Shen and Xiangya Huang
Medicina 2022, 58(7), 953; https://doi.org/10.3390/medicina58070953 - 19 Jul 2022
Cited by 6 | Viewed by 3827
Abstract
The use of computer-aided rapid prototyping (CARP) models was considered to reduce surgical trauma and improve outcomes when autotransplantation of teeth (ATT) became a viable alternative for dental rehabilitation. However, ATT is considered technique-sensitive due to its series of complicated surgical procedures and [...] Read more.
The use of computer-aided rapid prototyping (CARP) models was considered to reduce surgical trauma and improve outcomes when autotransplantation of teeth (ATT) became a viable alternative for dental rehabilitation. However, ATT is considered technique-sensitive due to its series of complicated surgical procedures and unfavorable outcomes in complex cases. This study reported a novel autotransplantation technique of a 28-year-old patient with an unrestorable lower first molar (#36) with double roots. Regardless of a large shape deviation, a lower third molar (#38) with a completely single root formation was used as the donor tooth. ATT was performed with a combined use of virtual simulation, CARP model-based rehearsed surgery, and tooth replica-guided surgery. A 3D virtual model of the donor and recipient site was generated from cone-beam computed tomographic (CBCT) radiographs prior to surgery for direct virtual superimposition simulation and CARP model fabrication. The virtual simulation indicated that it was necessary to retain cervical alveolar bone during the surgical socket preparation, and an intensive surgical rehearsal was performed on the CARP models. The donor tooth replica was used during the procedure to guide precise socket preparation and avoid periodontal ligament injury. Without an additional fitting trial and extra-alveolar storage, the donor tooth settled naturally into the recipient socket within 30 s. The transplanted tooth showed excellent stability and received routine root canal treatment three weeks post-surgery, and the one-year follow-up examination verified the PDL healing outcome and normal functioning. Patient was satisfied with the transplanted tooth. This cutting-edge technology combines virtual simulation, digital surgery planning, and guided surgery implementation to ensure predictable and minimally invasive therapy in complex cases. Full article
(This article belongs to the Special Issue Outcome of Minimally Invasive Techniques in Dentistry)
Show Figures

Figure 1

9 pages, 2650 KB  
Article
3D Printed Surgical Guide for Coronary Artery Bypass Graft: Workflow from Computed Tomography to Prototype
by Ida Anna Cappello, Mara Candelari, Luigi Pannone, Cinzia Monaco, Edoardo Bori, Giacomo Talevi, Robbert Ramak, Mark La Meir, Ali Gharaviri, Gian Battista Chierchia, Bernardo Innocenti and Carlo de Asmundis
Bioengineering 2022, 9(5), 179; https://doi.org/10.3390/bioengineering9050179 - 19 Apr 2022
Cited by 14 | Viewed by 3961
Abstract
Patient-specific three-dimensional (3D) printed models have been increasingly used in many medical fields, including cardiac surgery for which they are used as planning and communication tools. To locate and plan the correct region of interest for the bypass placement during coronary artery bypass [...] Read more.
Patient-specific three-dimensional (3D) printed models have been increasingly used in many medical fields, including cardiac surgery for which they are used as planning and communication tools. To locate and plan the correct region of interest for the bypass placement during coronary artery bypass graft (CABG) surgery, cardiac surgeons can pre-operatively rely on different medical images. This article aims to present a workflow for the production of a patient-specific 3D-printed surgical guide, from data acquisition and image segmentation to final prototyping. The aim of this surgical guide is to help visualize the region of interest for bypass placement during the operation, through the use of dedicated surgical holes. The results showed the feasibility of this surgical guide in terms of design and fitting to the phantom. Further studies are needed to assess material biocompatibility and technical properties. Full article
Show Figures

Graphical abstract

11 pages, 570 KB  
Review
Three-Dimensional Printed Models for Preoperative Planning and Surgical Treatment of Chest Wall Disease: A Systematic Review
by Beatrice Leonardi, Annalisa Carlucci, Antonio Noro, Mary Bove, Giovanni Natale, Giorgia Opromolla, Rosa Mirra, Davide Pica, Francesca Capasso, Vincenzo Di Filippo, Gaetana Messina, Francesco Ferrigno, Anna Cecilia Izzo, Giovanni Vicidomini, Mario Santini and Alfonso Fiorelli
Technologies 2021, 9(4), 97; https://doi.org/10.3390/technologies9040097 - 3 Dec 2021
Cited by 6 | Viewed by 4204
Abstract
Introduction: In chest wall reconstruction, the main objectives are the restoration of the chest wall integrity, function, and aesthetic, which is often achieved with the placement of implants. We aimed to evaluate whether 3D printed models can be useful for preoperative planning and [...] Read more.
Introduction: In chest wall reconstruction, the main objectives are the restoration of the chest wall integrity, function, and aesthetic, which is often achieved with the placement of implants. We aimed to evaluate whether 3D printed models can be useful for preoperative planning and surgical treatment in chest wall reconstruction to improve the outcome of the surgery and to reduce the rate of complications. Methods: We conducted a systematic review of literature using PubMed, Scopus, Embase, and Google Scholar databases until 8 November 2021 with the following keywords: (“3D printing” or “rapid prototyping” or “three-dimensional printing” or “bioprinting”) and (“chest wall” or “rib” or “sternum” or “ribcage” or “pectus excavatum”). Results were then manually screened by two independent authors to select studies relevant to 3D printing application in chest wall reconstruction. The primary outcome was morphological correction, and secondary outcomes were changes in operating time and procedure-related complication rate. Results: Eight articles were included in our review. Four studies were related to pectus excavatum correction, two studies were related to rib fracture stabilization, and two studies were related to chest wall tumor resection and reconstruction. Seven studies reported 3D printing of a thorax model or template implants for preoperative planning and implant modeling, and one study reported 3D printing of a PEEK prosthesis for direct implantation. Four studies reported comparison with a conventionally treated control group, and three of them detected a shorter operative time in the 3D printing model-assisted group. Satisfactory morphological correction was reported in all studies, and six studies reported a good implant fitting with minimal need for intraoperative adjustments. There were no major intraoperative or postoperative complications in any of the studies. Conclusions: The use of 3D printing models in chest wall reconstruction seems to be helpful for the production of personalized implants, reducing intraoperative adjustments. Results of morphological correction and postoperative recovery after the 3D printing-assisted surgery were satisfactory in all studies with a low rate of complication. Our literature review suggests good results regarding prosthesis fitting, accuracy of surgical planning, and reduction in operative time in 3D printing-assisted procedures, although more evidence is needed to prove this observation. Full article
(This article belongs to the Special Issue 3D Printing Technologies)
Show Figures

Figure 1

19 pages, 7804 KB  
Article
Procedure Increasing the Accuracy of Modelling and the Manufacturing of Surgical Templates with the Use of 3D Printing Techniques, Applied in Planning the Procedures of Reconstruction of the Mandible
by Paweł Turek, Paweł Pakla, Grzegorz Budzik, Bogumił Lewandowski, Łukasz Przeszłowski, Tomasz Dziubek, Sławomir Wolski and Jan Frańczak
J. Clin. Med. 2021, 10(23), 5525; https://doi.org/10.3390/jcm10235525 - 25 Nov 2021
Cited by 8 | Viewed by 3575
Abstract
The application of anatomical models and surgical templates in maxillofacial surgery allows, among other benefits, the increase of precision and the shortening of the operation time. Insufficiently precise anastomosis of the broken parts of the mandible may adversely affect the functioning of this [...] Read more.
The application of anatomical models and surgical templates in maxillofacial surgery allows, among other benefits, the increase of precision and the shortening of the operation time. Insufficiently precise anastomosis of the broken parts of the mandible may adversely affect the functioning of this organ. Applying the modern mechanical engineering methods, including computer-aided design methods (CAD), reverse engineering (RE), and rapid prototyping (RP), a procedure used to shorten the data processing time and increase the accuracy of modelling anatomical structures and the surgical templates with the use of 3D printing techniques was developed. The basis for developing and testing this procedure was the medical imaging data DICOM of patients treated at the Maxillofacial Surgery Clinic of the Fryderyk Chopin Provincial Clinical Hospital in Rzeszów. The patients were operated on because of malignant tumours of the floor of the oral cavity and the necrosis of the mandibular corpus, requiring an extensive resection of the soft tissues and resection of the mandible. Familiarity with and the implementation of the developed procedure allowed doctors to plan the operation precisely and prepare the surgical templates and tools in terms of the expected accuracy of the procedures. The models obtained based on this procedure shortened the operation time and increased the accuracy of performance, which accelerated the patient’s rehabilitation in the further course of events. Full article
Show Figures

Figure 1

Back to TopTop