Combined Edge Loss UNet for Optimized Segmentation in Total Knee Arthroplasty Preoperative Planning
Abstract
:1. Introduction
1.1. State of the Art
1.2. Work Contribution
2. Materials and Methods
2.1. Dataset Description
2.2. Training Set Preparation
2.3. Network Trainings and Architectures
2.4. Segmentation and 3D Reconstruction Result Analysis
2.5. Quantification of PSI-Based Surgical Planning Feasibility
2.6. Test in Operational Environment
3. Results
3.1. Impact of Non-Architectural Factors on the CEL-UNet
3.2. CNN Architecture Comparison for Segmentation and 3D Reconstruction
3.3. Quantification of PSI-Based Surgical Planning Feasibility
3.4. Test in Operational Environment
4. Discussion
4.1. Main Findings
4.2. Literature Comparison
4.3. Technical Challenges and Work Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CEL | Combined Edge Loss |
CNN | Convolutional Neural Network |
CT | Computed Tomography |
DCE | Distance Cross-Entropy |
DICOM | Digital Imaging and Communications in Medicine |
FOC | Focal |
HU | Hounsfield Unit |
IQR | Interquartile range |
MRI | Magnetic Resonance Imaging |
PSIs | Personalized Surgery Instruments |
RMSE | Root Mean Squared Error |
TKA | Total knee arthroplasty |
TRL | Technology Readiness Level |
References
- Gademan, M.G.; Hofstede, S.N.; Vliet Vlieland, T.P.; Nelissen, R.G.; Marang-Van de Mheen, P.J. Indication criteria for total hip or knee arthroplasty in osteoarthritis: A state-of-the-science overview. BMC Musculoskelet. Disord. 2016, 17, 463. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Watters, T.S.; Mather, R.C., 3rd; Browne, J.A.; Berend, K.R.; Lombardi, A.V., Jr.; Bolognesi, M.P. Analysis of procedure-related costs and proposed benefits of using patient-specific approach in total knee arthroplasty. J. Surg. Orthop. Adv. 2011, 20, 112–116. [Google Scholar] [PubMed]
- Bozic, K.J.; Kurtz, S.M.; Lau, E.; Ong, K.; Chiu, V.; Vail, T.P.; Rubash, H.E.; Berry, D.J. The epidemiology of revision total knee arthroplasty in the United States. Clin. Orthop. Relat. Res.® 2010, 468, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Seon, J.K.; Park, H.W.; Yoo, S.H.; Song, E.K. Assessing the accuracy of patient-specific guides for total knee arthroplasty. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 3678–3683. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.W., Jr.; Moore, C.A.; Liu, N. The value of patient-matched instrumentation in total knee arthroplasty. J. Arthroplast. 2012, 27, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Mattei, L.; Pellegrino, P.; Calò, M.; Bistolfi, A.; Castoldi, F. Patient specific instrumentation in total knee arthroplasty: A state of the art. Ann. Transl. Med. 2016, 4, 126. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; Djahani, O.; Hochegger, M.; Plattner, F.; Hofmann, S. Patient-specific total knee arthroplasty: The importance of planning by the surgeon. Knee Surg. Sport. Traumatol. Arthrosc. 2013, 21, 2220–2226. [Google Scholar] [CrossRef]
- Cerveri, P.; Sacco, C.; Olgiati, G.; Manzotti, A.; Baroni, G. 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: A feasibility analysis. Int. J. Med. Robot. Comput. Assist. Surg. 2017, 13, e1823. [Google Scholar] [CrossRef]
- Lombardi, A.V., Jr.; Berend, K.R. Patient-specific approach in total knee arthroplasty. Orthop. (Online) 2008, 31, 927. [Google Scholar]
- Mandolini, M.; Brunzini, A.; Facco, G.; Mazzoli, A.; Forcellese, A.; Gigante, A. Comparison of three 3D segmentation software tools for hip surgical planning. Sensors 2022, 22, 5242. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.I.; Greenspan, M.; Ellis, R. Validation of bone segmentation and improved 3-D registration using contour coherency in CT data. IEEE Trans. Med. Imaging 2006, 25, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Tamez-Pena, J.G.; Farber, J.; Gonzalez, P.C.; Schreyer, E.; Schneider, E.; Totterman, S. Unsupervised segmentation and quantification of anatomical knee features: Data from the Osteoarthritis Initiative. IEEE Trans. Biomed. Eng. 2012, 59, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Le, K.; Merkely, G.; Bryant, T.; Minas, T. A high level of satisfaction after bicompartmental individualized knee arthroplasty with patient-specific implants and instruments. Knee Surg. Sport. Traumatol. Arthrosc. 2019, 27, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Anderl, W.; Pauzenberger, L.; Kölblinger, R.; Kiesselbach, G.; Brandl, G.; Laky, B.; Kriegleder, B.; Heuberer, P.; Schwameis, E. Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 102–111. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.Y.; Hong, J.; Baek, S.H.; Kim, S.Y. CT-based navigation system using a patient-specific instrument for femoral component positioning: An experimental in vitro study with a sawbone model. Yonsei Med. J. 2018, 59, 769. [Google Scholar] [CrossRef]
- Miura, M.; Hagiwara, S.; Nakamura, J.; Wako, Y.; Kawarai, Y.; Ohtori, S. Interobserver and Intraobserver Reliability of Computed Tomography—Based Three-Dimensional Preoperative Planning for Primary Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 1572–1578. [Google Scholar] [CrossRef]
- Shimizu, H.; Nakayama, K.I. Artificial intelligence in oncology. Cancer Sci. 2020, 111, 1452–1460. [Google Scholar] [CrossRef]
- Pedersen, M.; Verspoor, K.; Jenkinson, M.; Law, M.; Abbott, D.F.; Jackson, G.D. Artificial intelligence for clinical decision support in neurology. Brain Commun. 2020, 2, fcaa096. [Google Scholar] [CrossRef]
- Myers, T.G.; Ramkumar, P.N.; Ricciardi, B.F.; Urish, K.L.; Kipper, J.; Ketonis, C. Artificial intelligence and orthopaedics: An introduction for clinicians. J. Bone Jt. Surgery. Am. Vol. 2020, 102, 830. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, J.; Zhao, Z.; Zhu, M.; Liao, H. Three-dimensional feature-enhanced network for automatic femur segmentation. IEEE J. Biomed. Health Inform. 2017, 23, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Norman, B.; Pedoia, V.; Majumdar, S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 2018, 288, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, S.; Nishio, M.; Yakami, M.; Nakagomi, K.; Togashi, K. Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques. Comput. Biol. Med. 2020, 121, 103767. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Warszawski, J.; Hillengaß, J.; Maier-Hein, K.H. Automatic bone segmentation in whole-body CT images. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 21–29. [Google Scholar] [CrossRef]
- Zhou, A.; Zhao, Q.; Zhu, J. Automatic segmentation algorithm of femur and tibia based on Vnet-C network. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 3066–3069. [Google Scholar] [CrossRef]
- Shen, W.; Xu, W.; Zhang, H.; Sun, Z.; Ma, J.; Ma, X.; Zhou, S.; Guo, S.; Wang, Y. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Probl. Imaging 2020, 15, 1333–1346. [Google Scholar] [CrossRef]
- Marzorati, D.; Sarti, M.; Mainardi, L.; Manzotti, A.; Cerveri, P. Deep 3D Convolutional Networks to Segment Bones Affected by Severe Osteoarthritis in CT Scans for PSI-Based Knee Surgical Planning. IEEE Access 2020, 8, 196394–196407. [Google Scholar] [CrossRef]
- Rossi, M.; Marsilio, L.; Mainardi, L.; Manzotti, A.; Cerveri, P. CEL-Unet: Distance weighted maps and multi-scale pyramidal edge extraction for accurate osteoarthritic bone segmentation in CT scans. Front. Signal Process. 2022, 2, 1–16. [Google Scholar] [CrossRef]
- De Raad, K.; van Garderen, K.A.; Smits, M.; van der Voort, S.R.; Incekara, F.; Oei, E.; Hirvasniemi, J.; Klein, S.; Starmans, M.P. The effect of preprocessing on convolutional neural networks for medical image segmentation. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; IEEE: New York, NY, USA, 2021; pp. 655–658. [Google Scholar]
- Parmar, B.; Parikh, M. Brain tumor segmentation and survival prediction using patch based modified 3D U-Net. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Proceedings of the 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, 4 October 2020; Revised Selected Papers, Part II 6; Springer: Cham, Switzerland, 2021; pp. 398–409. [Google Scholar]
- Heller, N.; Dean, J.; Papanikolopoulos, N. Imperfect segmentation labels: How much do they matter? In Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, Proceedings of the 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16 September 2018; Proceedings 3; Springer: Cham, Switzerland, 2018; pp. 112–120. [Google Scholar]
- Schneider, U.; Pedroni, E.; Lomax, A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys. Med. Biol. 1996, 41, 111. [Google Scholar] [CrossRef]
- DenOtter, T.D.; Schubert, J. Hounsfield Unit; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Gong, S.; Xu, W.; Wang, R.; Wang, Z.; Wang, B.; Han, L.; Chen, G. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty. Knee Surg. Sport. Traumatol. Arthrosc. 2019, 27, 1083–1095. [Google Scholar] [CrossRef]
- Cerveri, P.; Marchente, M.; Bartels, W.; Corten, K.; Simon, J.P.; Manzotti, A. Towards automatic computer-aided knee surgery by innovative methods for processing the femur surface model. Int. J. Med. Robot. Comput. Assist. Surg. 2010, 6, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Yuan, Y.; Guo, C.; Wang, Y.; Cheng, Y.; Tamura, S. Accurate pelvis and femur segmentation in hip CT with a novel patch-based refinement. IEEE J. Biomed. Health Inform. 2018, 23, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.J.; Ahn, B.C.; Kavitha, M.S.; Chien, S.I. An efficient region precise thresholding and direct hough transform in femur and femoral neck segmentation using pelvis CT. IEEE Access 2020, 8, 110048–110058. [Google Scholar] [CrossRef]
- Minnema, J.; van Eijnatten, M.; Kouw, W.; Diblen, F.; Mendrik, A.; Wolff, J. CT image segmentation of bone for medical additive manufacturing using a convolutional neural network. Comput. Biol. Med. 2018, 103, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, F.P.; Tanaka, H.; Nobuhara, K.; Kobashi, S. Automatic segmentation of the humerus region in 3-D shoulder CT images using U-Net. Int. J. Biomed. Soft Comput. Hum. Sci. Off. J. Biomed. Fuzzy Syst. Assoc. 2020, 25, 67–74. [Google Scholar]
- Almajalid, R.; Zhang, M.; Shan, J. Fully automatic knee bone detection and segmentation on three-dimensional MRI. Diagnostics 2022, 12, 123. [Google Scholar] [CrossRef]
- Sánchez, J.C.G.; Magnusson, M.; Sandborg, M.; Tedgren, Å.C.; Malusek, A. Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Phys. Med. 2020, 69, 241–247. [Google Scholar] [CrossRef]
- Qiu, B.; Guo, J.; Kraeima, J.; Glas, H.H.; Borra, R.J.; Witjes, M.J.; van Ooijen, P.M. Automatic segmentation of the mandible from computed tomography scans for 3D virtual surgical planning using the convolutional neural network. Phys. Med. Biol. 2019, 64, 175020. [Google Scholar] [CrossRef]
- Alvand, A.; Khan, T.; Jenkins, C.; Rees, J.L.; Jackson, W.F.; Dodd, C.A.; Murray, D.W.; Price, A.J. The impact of patient-specific instrumentation on unicompartmental knee arthroplasty: A prospective randomised controlled study. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 1662–1670. [Google Scholar] [CrossRef]
- León-Muñoz, V.J.; Martínez-Martínez, F.; López-López, M.; Santonja-Medina, F. Patient-specific instrumentation in total knee arthroplasty. Expert Rev. Med. Devices 2019, 16, 555–567. [Google Scholar] [CrossRef]
- Shah, D.; Ghyar, R.; Ravi, B.; Shetty, V. 3D morphological study of the Indian arthritic knee: Comparison with other ethnic groups and conformity of current TKA implant. Open J. Rheumatol. Autoimmun. Dis. 2013, 3, 263–269. [Google Scholar] [CrossRef]
- Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing 2021, 461, 370–403. [Google Scholar] [CrossRef]
- Tung, F.; Mori, G. Deep neural network compression by in-parallel pruning-quantization. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 568–579. [Google Scholar] [CrossRef]
Tibia | ||||
---|---|---|---|---|
Dice | Jaccard | Precision | Recall | |
DCE-UNet | 0.986 (0.982–0.989) | 0.972 (0.965–0.978) | 0.995 (0.992–0.997) | 0.977 (0.970–0.985) |
FOC-UNet | 0.987 (0.983–0.989) | 0.974 (0.966–0.979) | 0.995 (0.992–0.998) | 0.979 (0.971–0.985) |
CEL-UNet | 0.991 * (0.988–0.993) | 0.982 * (0.977–0.987) | 0.997 * (0.993–0.999) | 0.986 * (0.980–0.994) |
Femur | ||||
Dice | Jaccard | Precision | Recall | |
DCE-UNet | 0.987 (0.982–0.990) | 0.974 (0.965–0.980) | 0.994 (0.989–0.997) | 0.980 (0.971–0.987) |
FOC-UNet | 0.988 (0.985–0.991) | 0.976 (0.970–0.982) | 0.995 (0.990–0.997) | 0.982 (0.976–0.989) |
CEL-UNet | 0.992 * (0.990–0.994) | 0.985 * (0.980–0.989) | 0.996 * (0.993–0.998) | 0.988 * (0.983–0.996) |
Preprocessing | Segmentation | Postprocessing | 3D Reconstruction | Overall | |
---|---|---|---|---|---|
Time (s) | 1.1 (0.7–1.3) | 4.4 (3.6–5.5) | 3.8 (3.0–5.1) | 4.2 (3.7–5.1) | 13.1 (10.7–15.8) |
Tibia | Femur | |||
---|---|---|---|---|
Frontal | Sagittal | Frontal | Sagittal | |
Error (°) | 0.33 (0.24–0.46) | 0.19 (0.13–0.35) | 0.21 (0.13–0.38) | 0.26 (0.12–0.36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsilio, L.; Moglia, A.; Rossi, M.; Manzotti, A.; Mainardi, L.; Cerveri, P. Combined Edge Loss UNet for Optimized Segmentation in Total Knee Arthroplasty Preoperative Planning. Bioengineering 2023, 10, 1433. https://doi.org/10.3390/bioengineering10121433
Marsilio L, Moglia A, Rossi M, Manzotti A, Mainardi L, Cerveri P. Combined Edge Loss UNet for Optimized Segmentation in Total Knee Arthroplasty Preoperative Planning. Bioengineering. 2023; 10(12):1433. https://doi.org/10.3390/bioengineering10121433
Chicago/Turabian StyleMarsilio, Luca, Andrea Moglia, Matteo Rossi, Alfonso Manzotti, Luca Mainardi, and Pietro Cerveri. 2023. "Combined Edge Loss UNet for Optimized Segmentation in Total Knee Arthroplasty Preoperative Planning" Bioengineering 10, no. 12: 1433. https://doi.org/10.3390/bioengineering10121433
APA StyleMarsilio, L., Moglia, A., Rossi, M., Manzotti, A., Mainardi, L., & Cerveri, P. (2023). Combined Edge Loss UNet for Optimized Segmentation in Total Knee Arthroplasty Preoperative Planning. Bioengineering, 10(12), 1433. https://doi.org/10.3390/bioengineering10121433