Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Printing Technologies
2.1.1. Fused Filament Fabrication (FFF)
2.1.2. Selective Laser Sintering (SLS)
2.1.3. Material Jetting (MJ)
2.1.4. Stereolithography (SLA)
2.1.5. Indirect 3D Printing
2.1.6. Hybridization of AM Technologies
2.2. Materials
2.2.1. FFF
2.2.2. SLS
2.2.3. MJ
2.2.4. SLA
2.3. 3D printing Software
2.4. 3D Printing Time
2.5. 3D Printing Costs
3. Results
3.1. 3D-Printed Realistic Models
3.1.1. SLA
3.1.2. FFF
3.1.3. FFF Multi-Material
3.1.4. SLS
3.1.5. Hybridization of FFF and SLS
3.1.6. Indirect 3D Printing
3.1.7. Material Jetting
3.1.8. Multi-Material Jetting
3.2. 3D Printing and Processing Time
- Low: FFF—remove support material. Soak in water or soda.
- Medium: SLA—model curing, washing and removing support material.
- Medium–High: SLS post-processing
- High: Indirect 3D printing (casting, molding, etc.)
Strategy (Figure 3) | Technology | Production and 3D Printing Time * | Post-Processing Time (PpT) without Personnel | PpT Dedicated by Tech. Personnel | Labor Complexity | Total Time * |
---|---|---|---|---|---|---|
1 | SLA | 12 h–18 h | 50 min | 10 min | Medium | 13 h–19 h |
2 | FFF | 12 h–18 h | - | 30 min | Low | 12 h–18 h 30 min |
3 | Customized FFF printer | 45–50 h | 4 h | 30 min | Low | 49 h–54 h 30 min |
4 | SLS | 12 h–18 h | 12 h | 1 h 30 min | Medium/High | 25 h–30 h 30 min |
5 | MJ Bi-material | 24 h–36 h | 24 h | 30 min | Medium | 48 h–60 h 30 min |
6 | MJ Multi-material | 24 h–36 h | 24 h | 30 min | Medium | 48 h–60 h 30 min |
7 | Hybridization of FFF + SLS | 38 h–45 h | 16 h | 2 h | Medium/High | 56 h–61 h |
8 | Indirect 3D Printing (casting) | 34 h–40 h | 2 h | 3 h | High | 38 h–45 h |
3.3. Costs
3.4. Comparison of Material Properties
4. Discussion
4.1. 3D Printing and Processing Time
4.2. Costs
4.3. Properties and Applications
4.4. Mechanical Properties: Seeking to Mimic Real Tissue
4.5. Comparison of Applications by AM Technologies
4.6. Summary and Future Perspectives
4.7. Limitations of the Present Study
5. Conclusions
- All the AM technologies and strategies presented can be used for the manufacture of 3D-printed models, but each one has both advantages and disadvantages. Thus, the decision on which strategy to choose will depend on clinical needs and available resources.
- Assuming access to all technologies presented and production capacity to reproduce the eight strategies of the present work, we conclude that if there is no need for hands-on training in a particular case, the best option may be FFF due to its simplicity in printing, multi-material printing capacity and accessibility in terms of costs.
- In case of complex surgery with hands-on planning and preparation needed, or in the case of surgical hands-on training and simulation in need of high accuracy models, MJ multi-material or indirect 3D printing should be used, as they allow for a combination of colors, hardness values and textures to provide a more realistic outcome.
- Among the different technologies, indirect 3DP is faster and cheaper in terms of material cost, but more expensive in terms of machinery, as it requires having two technologies available, and it needs trained personnel to dedicate significant time to the post-processing. MJ multi-material, on the other hand, requires less training and just one machine. For its part, MJ may be a better option for high-end, quasi-realistic surgical planning prototypes.
- Limitations exist in the presented and known strategies focusing on the production of models using synthetic materials (polymers, ceramics, etc.), especially for their inability to reflect important physiological features and the natural mechanical behavior of tissues. However, there are promising improvements in research using new technologies and materials based on hydrogels and silicones with advanced rheological and mechanical properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valls-Esteve, A.; Adell-Gómez, N.; Pasten, A.; Barber, I.; Munuera, J.; Krauel, L. Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery. Children 2023, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Chheang, V.; Saalfeld, P.; Joeres, F.; Boedecker, C.; Huber, T.; Huettl, F.; Lang, H.; Preim, B.; Hansen, C. Computers & Graphics Special Section on VCBM 2020 A collaborative virtual reality environment for liver surgery planning. Comput. Graph. 2021, 99, 234–246. [Google Scholar] [CrossRef]
- Schiavina, R.; Bianchi, L.; Lodi, S.; Cercenelli, L.; Chessa, F.; Bortolani, B.; Gaudiano, C.; Casablanca, C.; Droghetti, M.; Porreca, A.; et al. Real-time Augmented Reality Three-dimensional Guided Robotic Radical Prostatectomy: Preliminary Experience and Evaluation of the Impact on Surgical Planning. Eur. Urol. Focus 2020, 7, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Diment, L.E.; Thompson, M.S.; Bergmann, J.H.M. Clinical efficacy and effectiveness of 3D printing: A systematic review. BMJ Open 2017, 7, e016891. [Google Scholar] [CrossRef] [PubMed]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- ISO/ASTM 52900; Additive Manufacturing—General Principles—Terminology. ISO/ASTM International Standard: Geneva, Switzerland, 2015. [CrossRef]
- Tejo-Otero, A.; Buj-Corral, I.; Fenollosa-Artés, F. 3D Printing in Medicine for Preoperative Surgical Planning: A Review. Ann. Biomed. Eng. 2020, 48, 536–555. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, J.-C.; Isotani, S.; Matsugasumi, T.; Duddalwar, V.; Hung, A.J.; Suer, E.; Baco, E.; Satkunasivam, R.; Djaladat, H.; Metcalfe, C.; et al. Personalized 3D printed model of kidney and tumor anatomy: A useful tool for patient education. World J. Urol. 2015, 34, 337–345. [Google Scholar] [CrossRef] [PubMed]
- van de Belt, T.H.; Nijmeijer, H.; Grim, D.; Engelen, L.J.; Vreeken, R.; van Gelder, M.M.; ter Laan, M. Patient-Specific Actual-Size Three-Dimensional Printed Models for Patient Education in Glioma Treatment: First Experiences. World Neurosurg. 2018, 117, e99–e105. [Google Scholar] [CrossRef]
- Lee, H.; Nguyen, N.H.; Hwang, S.I.; Lee, H.J.; Hong, S.K.; Byun, S.-S. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. Int. Braz. J. Urol. 2018, 44, 952–957. [Google Scholar] [CrossRef]
- Ardila, C.M.; González-Arroyave, D.; Zuluaga-Gómez, M. Efficacy of three-dimensional models for medical education: A systematic scoping review of randomized clinical trials. Heliyon 2023, 9, e13395. [Google Scholar] [CrossRef]
- Wake, N.; Alexander, A.E.; Christensen, A.M.; Liacouras, P.C.; Schickel, M.; Pietila, T.; Matsumoto, J. Creating patient-specific anatomical models for 3D printing and AR/VR: A supplement for the 2018 Radiological Society of North America (RSNA) hands-on course. 3D Print. Med. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Medical Manufacturing Innovations. The Rise of Point-of-Care Manufacturing. Available online: https://www.sme.org/smemedia/white-papers-and-reports/3d-printing-fuels-the-rise-of-point-of-care-manufacturing/ (accessed on 16 May 2023).
- Tejo, A.; Castellví, A.; Lustig, P.; Fenollosa, F.; Uceda, R.; Buj, I.; Krauel, L.; Valls, A.; Munuera, J. 3D printed surgical planning prototype manufactured by a hybrid multi-material 3D printer 3D printed surgical planning prototype manufactured by a hybrid multi-material 3D printer. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1193, 012116. [Google Scholar] [CrossRef]
- Chen, J.V.; Dang, A.B.C.; Dang, A. Comparing cost and print time estimates for six commercially-available 3D printers obtained through slicing software for clinically relevant anatomical models. 3D Print. Med. 2021, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Adams, F.; Qiu, T.; Mark, A.; Fritz, B.; Kramer, L.; Schlager, D.; Wetterauer, U.; Miernik, A.; Fischer, P. Soft 3D-Printed Phantom of the Human Kidney with Collecting System. Ann. Biomed. Eng. 2017, 45, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Xavior, M.A.; Patil, M.; Maiti, A.; Raj, M.; Lohia, N. Machinability studies on INCONEL 718. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012019. [Google Scholar] [CrossRef]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef]
- Sun, Z.; Wong, Y.H.; Yeong, C.H. Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice. Micromachines 2023, 14, 464. [Google Scholar] [CrossRef]
- Nguyen, P.; Stanislaus, I.; McGahon, C.; Pattabathula, K.; Bryant, S.; Pinto, N.; Jenkins, J.; Meinert, C. Quality assurance in 3D-printing: A dimensional accuracy study of patient-specific 3D-printed vascular anatomical models. Front. Med. Technol. 2023, 5, 1097850. [Google Scholar] [CrossRef]
- Salazar, D.; Huff, T.J.; Cramer, J.; Wong, L.; Linke, G.; Zuniga, J. Use of a three-dimensional printed anatomical model for tumor management in a pediatric patient. SAGE Open Med. Case Rep. 2020, 8, 2050313X20927600. [Google Scholar] [CrossRef]
- Zein, N.N.; Hanouneh, I.A.; Bishop, P.D.; Samaan, M.; Eghtesad, B.; Quintini, C.; Miller, C.; Yerian, L.; Klatte, R. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplant. 2013, 19, 1304–1310. [Google Scholar] [CrossRef]
- Liaw, C.-Y.; Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication 2017, 9, 024102. [Google Scholar] [CrossRef]
- Forte, A.E.; Galvan, S.; Manieri, F.; Rodriguez y Baena, F.; Dini, D. A composite hydrogel for brain tissue phantoms. Mater. Des. 2016, 112, 227–238. [Google Scholar] [CrossRef]
- Tejo-Otero, A.; Lustig-Gainza, P.; Fenollosa-Artés, F.; Valls, A.; Krauel, L.; Buj-Corral, I. 3D printed soft surgical planning prototype for a biliary tract rhabdomyosarcoma. J. Mech. Behav. Biomed. Mater. 2020, 109, 103844. [Google Scholar] [CrossRef] [PubMed]
- Christou, C.D.; Vasileiadou, S.; Sotiroudis, G.; Tsoulfas, G. Three-Dimensional Printing and Bioprinting in Renal Transplantation and Regenerative Medicine: Current Perspectives. J. Clin. Med. 2023, 12, 6520. [Google Scholar] [CrossRef] [PubMed]
- Riedle, H.; Seitz, V.; Schraudolf, L.; Franke, J. Generation of 3D Silicone Models of Anatomic Soft Tissue Structures-A Comparison of Direct 3D Printing and Molding Techniques. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; IEEE: New York, NY, USA, 2018; pp. 539–543. [Google Scholar]
- Jaksa, L.; Aryeetey, O.J.; Hatamikia, S.; Nägl, K.; Buschmann, M.; Pahr, D.H.; Kronreif, G.; Lorenz, A. 3D-Printed multi-material liver model with simultaneous mechanical and radiological tissue-mimicking features for improved realism. Int. J. Bioprint. 2023, 9, 721. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Tan, T.; Yang, J.; Pan, J.; Hu, C.; Li, J.; Zou, Y. The impact of using three-dimensional printed liver models for patient education. J. Int. Med. Res. 2018, 46, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Valls-Esteve, A.; Lustig-Gainza, P.; Adell-Gomez, N.; Tejo-Otero, A.; Englí-Rueda, M.; Julian-Alvarez, E.; Navarro-Sureda, O.; Fenollosa-Artés, F.; Rubio-Palau, J.; Krauel, L.; et al. A state-of-the-art guide about the effects of sterilization processes on 3D-printed materials for surgical planning and medical applications: A comparative study. Int. J. Bioprint. 2023, 9, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Krauel, L.; Fenollosa, F.; Riaza, L.; Pérez, M.; Tarrado, X.; Morales, A.; Gomà, J.; Mora, J. Use of 3D Prototypes for Complex Surgical Oncologic Cases. Mol. Med. 2016, 40, 889–894. [Google Scholar] [CrossRef]
- Tejo-Otero, A.; Fenollosa-Artés, F.; Achaerandio, I.; Rey-Vinolas, S.; Buj-Corral, I.; Mateos-Timoneda, M.Á.; Engel, E. Soft-tissue-mimicking using hydrogels for the development of phantoms. Gels 2022, 8, 40. [Google Scholar] [CrossRef]
- Wang, K.; Wu, C.; Qian, Z.; Zhang, C.; Wang, B.; Vannan, M.A. Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit. Manuf. 2016, 12, 31–37. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Y.; Chang, Y.-H.; Qian, Z.; Zhang, C.; Wang, B.; Vannan, M.A.; Wang, M.-J. Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater. Des. 2016, 90, 704–712. [Google Scholar] [CrossRef]
- Beger, O.; Karagül, M.I.; Koç, T.; Kayan, G.; Cengiz, A.; Yılmaz, Ş.N.; Olgunus, Z.K. Effects of different cadaver preservation methods on muscles and tendons: A morphometric, biomechanical and histological study. Anat. Sci. Int. 2020, 95, 174–189. [Google Scholar] [CrossRef] [PubMed]
- Van Ee, C.A.; Chasse, A.L.; Myers, B.S. Quantifying skeletal muscle properties in cadaveric test specimens: Effects of mechanical loading, postmortem time, and freezer storage. J. Biomech. Eng. 2000, 122, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, L.J.; Alperin, M.; Lieber, R.L. Post-mortem timing of skeletal muscle biochemical and mechanical degradation. J. Biomech. 2014, 47, 1506–1509. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.H.A.; Loo, Z.Y.; Goldie, S.J.; Adams, J.W.; McMenamin, P.G. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat. Sci. Educ. 2016, 9, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Tee, Y.L.; Tran, P.; Leary, M.; Pille, P.; Brandt, M. 3D Printing of polymer composites with material jetting: Mechanical and fractographic analysis. Addit. Manuf. 2020, 36, 101558. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, B.; Song, J.; Bi, G.; Wang, P.; Wei, J. The effect of processing conditions on the mechanical properties of polyethylene produced by selective laser sintering. Polym. Test. 2016, 52, 89–93. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Krishnamurthy, R.; Ostendorf, A.; Shinoka, T.; Krishnamurthy, R. 3D printing with MRI in pediatric applications. J. Magn. Reson. Imaging 2020, 51, 1641–1658. [Google Scholar] [CrossRef]
- Melnyk, R.; Ezzat, B.; Belfast, E.; Saba, P.; Farooq, S.; Campbell, T.; McAleavey, S.; Buckley, M.; Ghazi, A. Mechanical and functional validation of a perfused, robot-assisted partial nephrectomy simulation platform using a combination of 3D printing and hydrogel casting. World J. Urol. 2020, 38, 1631–1641. [Google Scholar] [CrossRef]
- Valls-Esteve, A.; Tejo-Otero, A.; Lustig-Gainza, P.; Buj-Corral, I.; Fenollosa-Artés, F.; Rubio-Palau, J.; de la Torre, I.B.-M.; Munuera, J.; Fondevila, C.; Krauel, L. Patient-Specific 3D Printed Soft Models for Liver Surgical Planning and Hands-On Training. Gels 2023, 9, 339. [Google Scholar] [CrossRef]
- Jaksa, L.; Pahr, D.; Kronreif, G.; Lorenz, A. Development of a Multi-Material 3D Printer for Functional Anatomic Models. Int. J. Bioprint. 2021, 7, 420. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Koh, J.J.; Wang, F.; Li, Z.; He, C. Silicon Containing Hybrid Copolymers. In 3D Printing Silicone Materials and Devices; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2020; Volume 2020, pp. 239–263. [Google Scholar] [CrossRef]
- Luis, E.; Pan, H.M.; Sing, S.L.; Bastola, A.K.; Goh, G.D.; Goh, G.L.; Tan, H.K.J.; Bajpai, R.; Song, J.; Yeong, W.Y. Silicone 3D Printing: Process Optimization, Product Biocompatibility, and Reliability of Silicone Meniscus Implants. 3D Print. Addit. Manuf. 2019, 6, 319–332. [Google Scholar] [CrossRef]
- Preis, A.; Riedle, H.; Benke, E.; Franke, J. Matching of Mechanical Properties of Biological Tissues and Technical Materials for the Fabrication of Anatomical Models by Material Jetting. In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2021), Virtual Event, 11–13 February 2021; pp. 189–194. [Google Scholar]
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D638-10; Standards Test Method for Tensile Propeties of Plastics: Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2010.
- ISO 527-2; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- ISO178; Plastics—Determination of Flexural Properties. ISO: Geneva, Switzerland, 2019.
- ISO 868; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2003.
- DIN ISO 7619-1:2012-02; Rubber, Vulcanized or Thermoplastic—Determination of Indentation Hardness—Part 1: Durometer method (Shore hardness). ISO: Geneva, Switzerland, 2012.
- DIN 53504:2009-10; Testing of Rubber—Determination of Tensile Strength at Break, Tensile Stress at Yield, Elongation at Break and Stress Values in a Tensile Test. ISO: Geneva, Switzerland, 2009.
- ASTM D2240; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM D412; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D395; Standard Test Methods for Rubber Property—Compression Set. ASTM International: West Conshohocken, PA, USA, 2018.
- Estermann, S.-J.; Pahr, D.H.; Reisinger, A. Quantifying tactile properties of liver tissue, silicone elastomers, and a 3D printed polymer for manufacturing realistic organ models. J. Mech. Behav. Biomed. Mater. 2020, 104, 103630. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.C.; Lee, J.S.; Park, S.U.; Kwon, J.H.; Hong, T.H.; Kim, D.G. 610 Quantitative assessment of liver fibrosis using shore durometer. Ann. Surg. Treat. Res. 2017, 93, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Haghiashtiani, G.; McAlpine, M.C. 3D Printed Organ Models for Surgical Applications. Annu. Rev. Anal. Chem. 2018, 11, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Amador Carrascal, C. Measurement of Kidney Viscoelasticity with Shearwave Dispersion Ultrasound Vibrometry. Ph.D. Thesis, College of Medicine-Mayo Clinic, Rochester, MN, USA, 2011; p. 167. [Google Scholar]
- Arm, R.; Shahidi, A.; Clarke, C.; Alabraba, E. Synthesis and characterisation of a cancerous liver for presurgical planning and training applications. BMJ Open Gastroenterol. 2022, 9, e000909. [Google Scholar] [CrossRef] [PubMed]
- Camasão, D.B.; Mantovani, D.J.M.T.B. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater. Today Bio 2021, 10, 100106. [Google Scholar] [CrossRef]
- Zhang, X.; Kinnick, R.; Fatemi, M.; Greenleaf, J. Noninvasive method for estimation of complex elastic modulus of arterial vessels. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52, 642–652. [Google Scholar] [CrossRef]
- Monferrer, E.; Martín-Vañó, S.; Carretero, A.; García-Lizarribar, A.; Burgos-Panadero, R.; Navarro, S.; Samitier, J.; Noguera, R. A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior. Sci. Rep. 2020, 10, 6370. [Google Scholar] [CrossRef]
- Kawano, S.; Kojima, M.; Higuchi, Y.; Sugimoto, M.; Ikeda, K.; Sakuyama, N.; Takahashi, S.; Hayashi, R.; Ochiai, A.; Saito, N. Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance. Cancer Sci. 2015, 106, 1232–1239. [Google Scholar] [CrossRef]
- Kurtz, T.; Woitrain, T.; Godio-Raboutet, Y.; Ribeiro, F.L.B.; Arnoux, P.-J.; Tailhan, J.-L. Method for Evaluating Cortical Bone Young’s Modulus: Numerical Twin Reconstruction, Fe Calculation and Microstructure Analysis. J. Biomech. Eng. 2023, 145, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Keaveny, T.M.; Hayes, W.C. Mechanical properties of cortical and trabecular bone. Bone 1993, 7, 285–344. [Google Scholar]
- Zysset, P.K.; Guo, X.E.; Hoffler, C.E.; E Moore, K.; A Goldstein, S. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 1999, 32, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Schiffer, A.; Jang, I.G.; Lee, S.; Kim, T.-Y. Predictions of the elastic modulus of trabecular bone in the femoral head and the intertrochanter: A solitary wave-based approach. Biomech. Model. Mechanobiol. 2021, 20, 1733–1749. [Google Scholar] [CrossRef]
- Lefèvre, E.; Farlay, D.; Bala, Y.; Subtil, F.; Wolfram, U.; Rizzo, S.; Baron, C.; Zysset, P.; Pithioux, M.; Follet, H. Compositional and mechanical properties of growing cortical bone tissue: A study of the human fibula. Sci. Rep. 2019, 9, 17629. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone mechanical properties in healthy and diseased states. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Wang, F.; Metzner, F.; Osterhoff, G.; Zheng, L.; Schleifenbaum, S. The role of bone marrow on the mechanical properties of trabecular bone: A systematic review. Biomed. Eng. Online 2022, 21, 80. [Google Scholar] [CrossRef]
- Jansen, L.E.; Birch, N.P.; Schiffman, J.D.; Crosby, A.J.; Peyton, S.R. Mechanics of intact bone marrow. J. Mech. Behav. Biomed. Mater. 2015, 50, 299–307. [Google Scholar] [CrossRef]
- Ratinam, R.; Quayle, M.; Crock, J.; Lazarus, M.; Fogg, Q.; McMenamin, P. Challenges in creating dissectible anatomical 3D prints for surgical teaching. J. Anat. 2019, 234, 419–437. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X. Synthetic Polymers for Organ 3D Printing. Polymers 2020, 12, 1765. [Google Scholar] [CrossRef]
- Ghazi, A. A Call for Change. Can 3D printing replace cadavers for surgical training? Urol. Clin. N. Am. 2022, 49, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, S.; Vijayavenkataraman, S. Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting 2021, 24, e00167. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Fang, G.; Zhou, J. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review. Materials 2017, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Mirkhalaf, M.; Men, Y.; Wang, R.; No, Y.; Zreiqat, H. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2023, 156, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; He, J.; Cai, Z.; Wang, F.; Zhang, J.; Wang, L.; Ling, R.; Li, D. Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater. Des. 2020, 189, 108508. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.-Y.; Turng, L.-S. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Mater. Sci. Eng. C 2017, 72, 53–61. [Google Scholar] [CrossRef]
- Fada, R.; Shahgholi, M.; Azimi, R.; Babadi, N.F. Estimation of Porosity Effect on Mechanical Properties in Calcium Phosphate Cement Reinforced by Strontium Nitrate Nanoparticles: Fabrication and FEM Analysis. Arab. J. Sci. Eng. 2023, 1–11. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, H.; Bai, S.; Wang, T.; Yang, D.; Hou, H.; Zhang, Y.; Yi, S. Meta-analyzing the efficacy of 3D printed models in anatomy education. Front. Bioeng. Biotechnol. 2023, 11, 1117555. [Google Scholar] [CrossRef]
- Soon, D.S.; Chae, M.P.; Pilgrim, C.H.; Rozen, W.M.; Spychal, R.T.; Hunter-Smith, D.J. 3D haptic modelling for preoperative planning of hepatic resection: A systematic review. Ann. Med. Surg. 2016, 10, 1–7. [Google Scholar] [CrossRef]
- Youn, J.K.; Park, H.S.; Ko, D.; Yang, H.-B.; Kim, H.-Y.; Yoon, H.B. Application of additional three-dimensional materials for education in pediatric anatomy. Sci. Rep. 2023, 13, 9973. [Google Scholar] [CrossRef] [PubMed]
- Bao, G.; Yang, P.; Yi, J.; Peng, S.; Liang, J.; Li, Y.; Guo, D.; Li, H.; Ma, K.; Yang, Z. Full-sized realistic 3D printed models of liver and tumour anatomy: A useful tool for the clinical medicine education of beginning trainees. BMC Med. Educ. 2023, 23, 574. [Google Scholar] [CrossRef] [PubMed]
- Raeker-Jordan, E.; Martinez, M.; Shimada, K. 3D Printing of Customizable Phantoms to Replace Cadaveric Models in Upper Extremity Surgical Residency Training. Materials 2022, 15, 694. [Google Scholar] [CrossRef] [PubMed]
- Saadi, M.A.S.R.; Maguire, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef]
- Golcha, U.; Praveen, A.S.; Paul, D.B. Direct ink writing of ceramics for bio medical applications–A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 912, 032041. [Google Scholar] [CrossRef]
Material | AM Technology | Manufacturer | City and Country of Origin | Printer | Manufacturer | City and Country of Origin | Printing Software |
---|---|---|---|---|---|---|---|
Surgical Guide Resin | SLA | Formlabs | Massachusetts, USA | Form 3BL | Formlabs | Massachusetts, USA | PreForm 3.31.0 |
PLA | FFF | JF Polymers | Suzhou City, Jiangsu Province, China | Sigma R19/Customized FFF printer | BCN3D | Barcelona, Spain | Stratos 2.0.0/Simplify3D 4.1.0 |
PVA | FFF | JF Polymers | Suzhou City, Jiangsu Province, China | Customized FFF printer | BCN3D | Barcelona, Spain | Simplify3D 4.1.0 |
TPU (60A) | FFF | Recreus | Alicante, Spain | Customized FFF printer | BCN3D | Barcelona, Spain | Simplify3D 4.1.0 |
PA12 | SLS | 3D Systems | Hemel Hempstead, UK | Ricoh AM S5500P | RICOH | Tokyo, Japan | 3DPrinterOS Ver.4.24.0.0 |
Vero White | MJ | Stratasys | Minnesota, USA | Connex 3 | Stratasys | Minnesota, USA | GrabCAD 1.83 |
SUP706 | MJ | Stratasys | Minnesota, USA | Connex 3 | Stratasys | Minnesota, USA | GrabCAD 1.83 |
Vero Magenta | MJ | Stratasys | Minnesota, USA | J5 MediJet | Stratasys | Minnesota, USA | GrabCAD 1.83 |
Vero Cyan | MJ | Stratasys | Minnesota, USA | J5 MediJet | Stratasys | Minnesota, USA | GrabCAD 1.83 |
Elastico Clear | MJ | Stratasys | Minnesota, USA | J5 MediJet | Stratasys | Minnesota, USA | GrabCAD 1.83 |
SUP710 | MJ | Stratasys | Minnesota, USA | J5 MediJet | Stratasys | Minnesota, USA | GrabCAD 1.83 |
Strategy | Technology | Material | Design Software | Printing Software |
---|---|---|---|---|
1 | SLA | Surgical Guide | Materialise MIMICS v.25 | PreForm 3.31.0 |
2 | FFF | PLA | Materialise MIMICS v.25 | Stratos 2.0.0 |
3 | Customized FFF printer | PLA-TPU-PVA | Materialise MIMICS v.25 | Simplify3D 4.1.0 |
4 | SLS | PA12 | Materialise MIMICS v.25 | 3DPrinterOS 4.24.0.0 |
5 | MJ Bi-material | Vero, SUP710 | Materialise MIMICS v.25 | GrabCAD 1.83 |
6 | MJ Multi-material | Vero, SUP 706 and elastic resin | Materialise MIMICS v.25 | GrabCAD 1.83 |
7 | Hybridization of FFF + SLS | PA12—PLA—PVA | Materialise MIMICS v.25 and MeshMixer 3.5 | Stratos 2.0.0 /3DPrinterOS 4.24.0.0 |
8 | Indirect 3D Printing (casting) | PLA—TPU—PA12—silicone and hydrogel casting | Materialise MIMICS v.25 and MeshMixer 3.5 | Stratos 2.0.0 /3DPrinterOS 4.24.0.0 |
Strategy (Figure 3) | Technology | Machine Cost (EUR RRP including VAT) | Fungible Material Cost [EUR/Time] | Machine Annual Maintenance Cost [EUR] | 3D Printing Material Cost per Model * [EUR] |
---|---|---|---|---|---|
1 | SLA | 15,124 | 332.75/6 months | 500 | 80–120 |
2 | FFF | 4229 | 80/4 months | 200 | 50–80 |
3 | Customized FFF printer | 15,000 | 80/4 months | 200 | 75–100 |
4 | SLS | 635,500 | 4000/5 years | 2500 | 193–240 |
5 | MJ Bi-material | 29,800 | 1500/5 years | 2125 | 480–600 |
6 | MJ Multi-material | 75,000 | 2000/5 years | 2600 | 480–600 |
7 | Hybridization of FFF + SLS | Combination of FFF and SLS | Combination of FFF and SLS | Combination of FFF and SLS | 350–400 |
8 | Indirect 3D Printing (casting) | Combination of FFF and SLS | Combination of FFF and SLS | Combination of FFF and SLS | 156–200 |
Technology | Layer Resolution (Layer Heights) (µm) |
---|---|
SLA | 25–100 |
FFF | 50–400 |
SLS | 80–120 |
Indirect 3D Printing | 50–400 |
MJ Bi-material | 28 |
MJ Multi-Material | 18 |
Material | Technology | Manufacturer | Printer | Manufacturer | Shore Hardness | Elastic Modulus | Methods |
---|---|---|---|---|---|---|---|
Surgical Guide | SLA | Formlabs | Form 3BL | Formlabs | 67 (D) | 2900 ± 90 MPa | ASTM D790 [49], ASTM D638-10 [50] |
PLA | FFF | JF Polymers | Sigma R19/Customized FFF printer | BCN3D | 76.8 (D) | 1568 ± 45 MPa | ISO 527-2/5A/50 [51], ISO 178 [52], ISO 868 [53] |
TPU (60A) | FFF | Recreus | Customized FFF printer | BCN3D | 63 (A) | 26 ± 5 MPa | DIN ISO 7619-1 [54], DIN 53504-S2 [55] |
PA12 | SLS | 3D Systems | Ricoh AM S5500P | RICOH | 73 (D) | 1487 ± 48 MPa | ASTM D638, ASTM D790, ASTM D2240 [56] |
Vero White | MJ | Stratasys | Connex 3 | Stratasys | 86 (D) | 1492 ± 175 MPa | ASTM D638-03-04-05, D790-04, DMA E |
SUP706 | MJ | Stratasys | Connex 3 | Stratasys | 86 (D) | 1492 ± 175 MPa | ASTM D638-03-04-05, D790-04, DMA E |
Vero Magenta | MJ | Stratasys | J5 MediJet | Stratasys | 86 (D) | 1492 ± 175 MPa | ASTM D638-03-04-05, D790-04, DMA E |
Vero Cyan | MJ | Stratasys | J5 MediJet | Stratasys | 86 (D) | 1492 ± 175 MPa | ASTM D638-03-04-05, D790-04, DMA E |
Elastico Clear | MJ | Stratasys | J5 MediJet | Stratasys | 45 (A) | 4 ± 2 MPa | ASTM D412 [57], ASTM D395 [58], ASTM D2240 |
Agarose hydrogel | Indirect 3D Printing (casting) | Químics Dalmau, Spain | - | - | 17 (00) | 5.5 ± 3.1 kPa | ASTM D2240 |
Silicone | Indirect 3D Printing (casting) | Dragon Skin® | - | - | 4 (00) | 38.8 ± 18.7 kPa | ASTM D2240 |
Tissue | References | Shore Hardness | Elastic Modulus | Methods | |||
Liver | Estermann et al. (2020) [59], Yoon et al. (2017) [60], Tejo-Otero et al. [25], Forte et al. [24] | 13–30 (00) | 1.4 ± 0.8 kPa–5.49 ± 1.2 kPa | ASTM D2240 | |||
Kidney | Kaiyan et al. (2018) [61], Tejo-Otero et al. [32], Amador et al. (2011) [62] | 28–40 (00) | 4 ± 1.8 kPa–17 ± 2.5 kPa | ASTM D2240 | |||
Vessels | Arm R, et al. (2022) [63], Camasão et al. (2021) [64], Zhang et al. (2005) [65] | 40–45 (00) | 300–600 kPa | ASTM D2240 | |||
Tumor | Monferrer et al. (2020) [66], Tejo-Otero et al. [7], Kawano et al. (2015) [67] | 30 (0)–22 (A) | 0.58–45 KPa | ASTM D2240, and various experimental set-ups | |||
CorticalBone | Kurtz et al. (2023) [68], Keaveny et al. (1993) [69], Zysset et al. (1999) [70], | - | 7–35 GPa | ASTM D2240 and various experimental set-ups | |||
Trabecular bone | Yoon et al. (2021) [71], Lefèvre et al. (2019) [72], Morgan et al. (2018) [73] | - | 10–3000 MPa | Various experimental set-ups | |||
Bone marrow | Wang et al. (2022) [74], Jansen et al. (2015) [75] | - | 0.25–24.7 KPa | Various experimental set-ups |
Use | SLA | FFF | FFF MM | SLS | FFF + SLS | Indirect 3DP | MJ | MJ MM |
---|---|---|---|---|---|---|---|---|
Visualize anatomical relationships | √ | √ | √ | √ | √√ | √√ | √ | √√ |
Pre-surgical planning and adaptation of implants | √ | √ | √ | √ | √ | √ | √ | √√ |
Patient–professional communication | √ | √ | √√ | √ | √√ | √√ | √ | √√ |
Simple simulation | √ | √ | √ | √ | √ | √ | ||
Hands-on training | √ | √ | √√ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valls-Esteve, A.; Tejo-Otero, A.; Adell-Gómez, N.; Lustig-Gainza, P.; Fenollosa-Artés, F.; Buj-Corral, I.; Rubio-Palau, J.; Munuera, J.; Krauel, L. Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases. Bioengineering 2024, 11, 31. https://doi.org/10.3390/bioengineering11010031
Valls-Esteve A, Tejo-Otero A, Adell-Gómez N, Lustig-Gainza P, Fenollosa-Artés F, Buj-Corral I, Rubio-Palau J, Munuera J, Krauel L. Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases. Bioengineering. 2024; 11(1):31. https://doi.org/10.3390/bioengineering11010031
Chicago/Turabian StyleValls-Esteve, Arnau, Aitor Tejo-Otero, Núria Adell-Gómez, Pamela Lustig-Gainza, Felip Fenollosa-Artés, Irene Buj-Corral, Josep Rubio-Palau, Josep Munuera, and Lucas Krauel. 2024. "Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases" Bioengineering 11, no. 1: 31. https://doi.org/10.3390/bioengineering11010031
APA StyleValls-Esteve, A., Tejo-Otero, A., Adell-Gómez, N., Lustig-Gainza, P., Fenollosa-Artés, F., Buj-Corral, I., Rubio-Palau, J., Munuera, J., & Krauel, L. (2024). Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases. Bioengineering, 11(1), 31. https://doi.org/10.3390/bioengineering11010031