Emerging Technologies in the Treatment of Orbital Floor Fractures: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
- Articles published from 2019 to September 2024;
- Condition: only orbital floor or both orbital floor and medial wall affected;
- Condition: only primary fracture treatment;
- Language: English;
- Peer-reviewed publications;
- Clinical studies (retrospective or prospective).
- Case reports;
- Preclinical laboratory or animal studies;
- Sample size < 10 fractures treated;
- Pediatric patients;
- Concomitant facial fractures (e.g., zygomaticomaxillary, nasal).
2.3. Study Selection
2.4. Data Extraction
- (1)
- Author, year, journal;
- (2)
- Study design;
- (3)
- Sample size;
- (4)
- Intervention;
- (5)
- Comparison group;
- (6)
- Outcome variables;
- (7)
- Main conclusions.
2.5. Risk of Bias Assessment
2.6. Support and Data Availability
3. Results
3.1. Study Characteristics: Study Design and Population
3.2. Synthesis of Results: Intervention, Outcome Measures, and Author Conclusions
3.2.1. Diagnostic Tools: Presurgical Virtual Planning and 3D Printing
3.2.2. Pre-Bending on a 3D Model
3.2.3. Custom Fabrication
3.2.4. Intraoperative Navigation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VSP | Virtual surgical planning |
PSI | Patient-specific implants |
OV | Orbital volume |
CAD | Computer-aided design |
3D | Three-dimensional |
CAM | Computer-aided manufacturing |
CT | Computer tomography |
PICO | Population, intervention, comparison, outcome |
PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
STL | Standard tessellation language |
Appendix A. Data Collection of the Study Results Used for Analysis in the Review
Author/ Year/Journal | Study Design | Patients | Intervention | Comparison | Outcome Variables | Author Conclusion |
Consorti, Betti, et al. (2024); Journal of Cranio-Maxillo-facial Surgery; [6] | Retrospective | 52 | VSP + Customized implants + Navigation | VSP + Preformed mesh + Intraoperative Navigation | 1. Accuracy (position + OV) 2. Clinical outcomes (diplopia, enophthalmos, ocular motility) | Same accuracy when using VSP and intraoperative navigation, Recommended 3D preformed meshes due to similar clinical outcomes, reduced time, costs benefits |
Raveggi et al. (2023); Journal of Cranio-Maxillo-facial Surgery; [7] | Retrospective | 73 | VSP + Preformed mesh + Navigation | 1. Accuracy (Position + Observer classification) 2. Postoperative outcomes (alignment of reconstructed orbital bones, complication rates, patient recovery) | Navigation: Sig. enhanced accuracy, Better alignment and reduced rates of postoperative complications | |
Gallego-Albertos et al. (2020); Revista Española de Cirugía Oral y Maxilofacial; [8] | Retrospective | 35 | VSP + 3D Model, pre-bent PSIs + Navigation | Preformed mesh | 1. Accuracy (Position + OV), Complications (diplopia, globe position) 2. Reoperation rates | Navigation: Sig. improved positioning, reduced complications, Reduced reintervention rates |
Probst et al. (2021); Journal of Clinical Medicine; [9] | Retrospective | 27 | VSP + Customized implants | 1. Accuracy (position) 2. Clinical outcomes (diplopia, revision surgeries), operation time | PSI: Free-hand placement is accurate, No sig. association between the accuracy of PSI placement and unfavourable clinical outcomes | |
Amin et al. (2024); Journal of oral and Maxillofacial Surgery; [11] | Prospective, Randomized | 25 | VSP + 3D Model, pre-bent PSIs | Standard mesh | 1. Surgery duration 2. Time required for plate insertion and fixation, operating room costs, Accuracy (OV) | PSI: Sig. reduced surgery length, Decreased operating room costs |
Krasovsky et al. (2021); Computers in Biology and Medicine; [15] | Retrospective | 23 | VSP + Customized implants | Preformed mesh | 1. Accuracy (position) 2. Early and late complications (diplopia, restricted eye movement, enophthalmos, hyperglobus, exophthalmos) | PSI: Sig. superior accuracy, Sig. fewer complications |
Sigron et al. (2020); Journal of Clinical Medicine; [16] | Retrospective | 22 | VSP + 3D Model, pre-bent PSIs | Standard mesh | 1. Accuracy (OV) 2. Surgery duration | PSI: More accurate, sig. different OV, Sig. reduced surgery time |
Sigron et al. (2021); Journal of Clinical Medine; [17] | Retrospective | 30 | VSP + 3D Model, pre-bent PSIs | Standard mesh | 1. Clinical outcomes (diplopia, enophthalmos, ocular motility, sensory disturbance) 2. Surgery duration, time between trauma and surgery, time to discharge | PSI: Improvement in functional outcomes, Sig. shorter surgery time, Difference between the 3 surgical metrics not sig. |
Consorti, Monarchi, et al. (2024); Life; [18] | Retrospective | 26 | VSP + Preformed mesh + Navigation | 1. Accuracy (Position and OV) 2. Resolution of preoperative diplopia and enophthalmos | Navigation: Precise orbital reconstruction with sig. improved clinical outcomes |
References
- Boyette, J.R.; Pemberton, J.D.; Bonilla-Velez, J. Management of orbital fractures: Challenges and solutions. Clin. Ophthalmol. 2015, 9, 2127–2137. [Google Scholar] [CrossRef] [PubMed]
- Rajantie, H.; Kaukola, L.; Snäll, J.; Roine, R.; Sintonen, H.; Thorén, H. Health-related quality of life in patients surgically treated for orbital blow-out fracture: A prospective study. Oral Maxillofac. Surg. 2021, 25, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Troise, S.; Committeri, U.; Barone, S.; Gentile, D.; Arena, A.; Salzano, G.; Bonavolontà, P.; Abbate, V.; Romano, A.; Dell’Aversana Orabona, G.; et al. Epidemiological analysis of patients with isolated blowout fractures of orbital floor: Correlation between demographic characteristics and fracture area. J. Cranio-Maxillofac. Surg. 2024, 52, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Jeong, E.C. Orbital Floor Fracture. Arch. Craniofac. Surg. 2016, 17, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, M.; Vrcek, I.; Nakra, T.; Durairaj, V. Orbital Floor Fracture Management: Toward a Consensus. Adv. Ophthalmol. Optom. 2017, 2, 409–420. [Google Scholar] [CrossRef]
- Consorti, G.; Betti, E.; Catarzi, L. Customized orbital implant versus 3D preformed titanium mesh for orbital fracture repair: A retrospective comparative analysis of orbital reconstruction accuracy. J. Cranio-Maxillo-Facial Surg. 2024, 52, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Raveggi, E.; Gerbino, G.; Autorino, U.; Novaresio, A.; Ramieri, G.; Zavattero, E. Accuracy of intraoperative navigation for orbital fracture repair: A retrospective morphometric analysis. J. Cranio-Maxillo-Facial Surg. 2023, 51, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Albertos, C.S.; de Cevallos, J.G.D.; del Castillo Pardo de Vera, J.L.; Carretero, J.L.C.; García, M.B. Comparison of the outcomes of unilateral orbital fracture repair with and without surgical navigation system: Our experience in La Paz University Hospital. Rev. Esp. Cir. Oral Maxilofac. 2020, 42, 149–157. [Google Scholar] [CrossRef]
- Probst, F.A.; Cornelius, C.P.; Otto, S.; Malenova, Y.; Probst, M.; Liokatis, P.; Haidari, S. Accuracy of free-hand positioned patient specific implants (PSI) in primary reconstruction after inferior and/or medial orbital wall fractures. Comput. Biol. Med. 2021, 137, 104791. [Google Scholar] [CrossRef] [PubMed]
- Dubois, L.; Steenen, S.A.; Gooris, P.J.; Mourits, M.P.; Becking, A.G. Controversies in orbital reconstruction--II. Timing of post-traumatic orbital reconstruction: A systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Amin, D.; Nguyen, N.; Manhan, A.J.; Kim, J.H.; Roser, S.M.; Bouloux, G.F. Does a Point-of-Care 3-Dimensional Printer Result in a Decreased Length of Surgery for Orbital Fractures? J. Oral Maxillofac. Surg. 2024, 82, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- ROBINS-I Tool. Cochrane Methods. 2025. Available online: https://methods.cochrane.org/robins-i (accessed on 15 July 2025).
- RoB 2: A Revised Cochrane Risk-of-Bias Tool for Randomized Trials. Cochrane Bias. 2025. Available online: https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials (accessed on 15 July 2025).
- Krasovsky, A.; Hija, A.; Zeineh, N.; Capucha, T.; Haze, D.A.; Emodi, O.; Rachmiel, A.; Shilo, D. Comparison of patient specific implant reconstruction vs conventional titanium mesh reconstruction of orbital fractures using a novel method. J. Cranio-Maxillo-Facial Surg. 2024, 52, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Sigron, G.R.; Rüedi, N.; Chammartin, F.; Meyer, S.; Msallem, B.; Kunz, C.; Thieringer, F.M. Three-Dimensional Analysis of Isolated Orbital Floor Fractures Pre- and Post-Reconstruction with Standard Titanium Meshes and “Hybrid” Patient-Specific Implants. J. Clin. Med. 2020, 9, 1579. [Google Scholar] [CrossRef] [PubMed]
- Sigron, G.R.; Barba, M.; Chammartin, F.; Msallem, B.; Berg, B.I.; Thieringer, F.M. Functional and Cosmetic Outcome after Reconstruction of Isolated, Unilateral Orbital Floor Fractures (Blow-Out Fractures) with and without the Support of 3D-Printed Orbital Anatomical Models. J. Clin. Med. 2021, 10, 3509. [Google Scholar] [CrossRef] [PubMed]
- Consorti, G.; Monarchi, G.; Catarzi, L. Presurgical Virtual Planning and Intraoperative Navigation with 3D-Preformed Mesh: A New Protocol for Primary Orbital Fracture Reconstruction. Life 2024, 14, 482. [Google Scholar] [CrossRef] [PubMed]
PubMed | ((“Orbital Fractures” [MeSH Terms] OR “orbital floor” [All Fields] OR “isolated orbital fracture” [All Fields]) AND (“Technology” [MeSH Terms] OR “Therapeutics” [MeSH Terms])) OR ((“Orbital Fractures” [MeSH Terms] OR “isolated orbital fracture” [All Fields] OR “orbital floor” [All Fields]) AND (“Technology” [MeSH Terms] OR “Therapeutics” [MeSH Terms] OR “compar *” [All Fields] OR “analys *” [All Fields]) AND (“Patient specific implant” [All Fields] OR „customized implant” [All Fields] OR “imaging, three dimensional” [MeSH Terms] OR “3D print *” [All Fields] OR “Intraoperative Navigation” [All Fields] OR “hydroxyapatite” [All Fields])) NOT (“paediatric” OR “child *”) AND (y_5[Filter]) | 135 |
Scopus | TITLE-ABS-KEY (orbital AND floor AND fracture) AND (TITLE-ABS-KEY (intraoperative AND imaging) OR TITLE-ABS-KEY (intraoperative AND computed AND tomography) OR TITLE-ABS-KEY (intraoperative AND navigation) OR TITLE-ABS-KEY (3d AND planning) OR TITLE-ABS-KEY (three-dimensional AND planning)) AND PUBYEAR > 2018 AND PUBYEAR < 2025 AND (LIMIT-TO (LANGUAGE, “English”)) | 51 |
PRIMO | Any field contains orbital floor fracture AND Any field contains Intraoperative Navigation OR Intraoperative Imaging OR three-dimensional print * OR 3D Model OR preformed patient specific mesh OR Any field contains isolated orbital floor AND Any field contains Intraoperative Navigation OR Intraoperative Imaging OR three-dimensional print * OR 3D Model | 43 |
Author (Year) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Consorti, Betti et al., (2024) [6] | M | M | L | L | L | M | L |
Raveggi et al., (2023) [7] | M | M | L | L | L | M | L |
Gallego-Albertos et al., (2020) [8] | M | L | L | L | L | M | L |
Probst et al., (2021) [9] | M | M | L | L | L | M | L |
Krasovsky et al., (2021) [15] | S | M | L | L | L | M | L |
Sigron et al., (2020) [16] | M | L | L | L | L | M | L |
Sigron et al., (2021) [17] | M | L | L | L | L | M | L |
Consorti, Monarchi et al., (2024) [18] | M | M | L | L | L | M | L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helgers, L.; Prikule, I.; Salms, G.; Bagante, I. Emerging Technologies in the Treatment of Orbital Floor Fractures: A Systematic Review. Medicina 2025, 61, 1330. https://doi.org/10.3390/medicina61081330
Helgers L, Prikule I, Salms G, Bagante I. Emerging Technologies in the Treatment of Orbital Floor Fractures: A Systematic Review. Medicina. 2025; 61(8):1330. https://doi.org/10.3390/medicina61081330
Chicago/Turabian StyleHelgers, Lorena, Ilze Prikule, Girts Salms, and Ieva Bagante. 2025. "Emerging Technologies in the Treatment of Orbital Floor Fractures: A Systematic Review" Medicina 61, no. 8: 1330. https://doi.org/10.3390/medicina61081330
APA StyleHelgers, L., Prikule, I., Salms, G., & Bagante, I. (2025). Emerging Technologies in the Treatment of Orbital Floor Fractures: A Systematic Review. Medicina, 61(8), 1330. https://doi.org/10.3390/medicina61081330