Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = surfactant intercalation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 28708 KB  
Review
Recent Progress in the Synthesis of Layered Double Hydroxides and Their Surface Modification for Supercapacitor Application
by Ganesan Sriram, Karmegam Dhanabalan and Tae Hwan Oh
Energies 2025, 18(18), 4846; https://doi.org/10.3390/en18184846 - 11 Sep 2025
Viewed by 462
Abstract
The need for energy storage and the rapid development of new electronic platforms have prompted intense research into small and secure energy storage devices, particularly supercapacitors (SCs). Layered double hydroxides (LDHs) are potential electrode materials for SCs because of their excellent physicochemical and [...] Read more.
The need for energy storage and the rapid development of new electronic platforms have prompted intense research into small and secure energy storage devices, particularly supercapacitors (SCs). Layered double hydroxides (LDHs) are potential electrode materials for SCs because of their excellent physicochemical and electrical characteristics. They involve interlayer spacing, high oxidation states, simplicity of synthesis, and distinct morphologies. Despite their potential, several kinds of LDHs still face constraints, such as particle aggregation, moderate surface area, and high resistance, which limit their use in energy storage. To overcome these challenges and enhance the electrochemical performance of LDHs, they have used strategies such as anion intercalation, oxygen vacancy, heteroatom, surfactant, fluorine, and metal doping, which have been demonstrated as electrode materials for SCs. Therefore, this review discusses recent advances in different LDHs and studies comparing bare and modified LDH for three- and two-electrode systems, with an emphasis on their morphologies, surface areas, and electrical properties for SC applications. It was found that modified LDHs achieve enhanced electrochemical performance in comparison to their corresponding bare LDHs. Consequently, there are potential opportunities to modify the surface of the recently invented LDHs for electrochemical investigations, which could result in improving their performance. This review also presents future perspectives on LDH-based energy storage devices for supercapacitors. Full article
(This article belongs to the Special Issue Advanced Energy Materials: Innovations and Challenges)
Show Figures

Figure 1

18 pages, 1750 KB  
Article
CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels
by Marina González-Barriuso, Ángel Yedra and Carmen Blanco
Gels 2025, 11(9), 702; https://doi.org/10.3390/gels11090702 - 2 Sep 2025
Viewed by 454
Abstract
This work evaluates the CO2-adsorption relevance and cycling stability of graphene oxide–silica (GO-SiO2) and reduced graphene oxide–silica (rGO-SiO2) gels after amine functionalization, demonstrating high-capacity retention under repeated adsorption–desorption cycles: rGO-SiO2-APTMS retains ≈96.3% of its initial [...] Read more.
This work evaluates the CO2-adsorption relevance and cycling stability of graphene oxide–silica (GO-SiO2) and reduced graphene oxide–silica (rGO-SiO2) gels after amine functionalization, demonstrating high-capacity retention under repeated adsorption–desorption cycles: rGO-SiO2-APTMS retains ≈96.3% of its initial uptake after 50 cycles, while GO-SiO2-APTMS retains ≈90.0%. The use of surfactants to control the organization of inorganic and organic molecules has enabled the development of ordered mesostructures, such as mesoporous silica and organic/inorganic nanocomposites. Owing to the outstanding properties of graphene and its derivatives, synthesizing mesostructures intercalated between graphene sheets offers nanocomposites with novel morphologies and enhanced functionalities. In this study, GO-SiO2 and rGO-SiO2 gels were synthesized and characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TG), mass spectrometry (MS), N2 adsorption–desorption isotherms, and transmission electron microscopy (TEM). The resulting materials exhibit a laminar architecture, with mesoporous silica domains grown between graphene-based layers; the silica contents are 83.6% and 87.6%, and the specific surface areas reach 446 and 710 m2·g−1, respectively. The laminar architecture is retained regardless of the surfactant-removal route; however, in GO-SiO2 obtained by solvent extraction, a fraction of the surfactant remains partially trapped. Together with their high surface area, hierarchical porosity, and amenability to surface functionalization, these features establish amine-grafted graphene–silica gels, particularly rGO-SiO2-APTMS, as promising CO2-capture adsorbents. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

13 pages, 3346 KB  
Article
Co-Intercalation of Sericite by Cationic and Anionic Surfactants and the Mechanical Properties of Sericite/Epoxy Resin Composites
by Yu Liang, Yajuan Xu, Yiman Jiang, Lingfeng Yu and Hao Ding
Materials 2025, 18(11), 2486; https://doi.org/10.3390/ma18112486 - 26 May 2025
Viewed by 618
Abstract
Although the intercalation of sericite with cationic surfactants has been extensively studied, successful intercalation using anionic surfactants has yet to be achieved. This article aims to partially or fully intercalate sericite with an anionic surfactant, and to develop the corresponding sericite/polymer nanocomposite. To [...] Read more.
Although the intercalation of sericite with cationic surfactants has been extensively studied, successful intercalation using anionic surfactants has yet to be achieved. This article aims to partially or fully intercalate sericite with an anionic surfactant, and to develop the corresponding sericite/polymer nanocomposite. To achieve this goal, we modified raw sericite by thermal modification, acid activation, and sodium modification. The modified sericite was then co-intercalated by cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS). The intercalated sericite was characterized by XRD, FTIR, SEM, DTA-TG, and a contact angle tester. The optimized sample had a layer-to-layer distance of 6.56 nm and an intercalation rate of 95.7%. Compared with raw sericite, the new organo-sericite showed increased hydrophobicity. A proposed mechanism for the intercalation by these surfactants was also discussed. Finally, sericite/epoxy composite was prepared by using the new organo-sericite as the raw material, demonstrating significantly improved mechanical properties compared to pure epoxy resin (72% improved for bending strength and 62% improved for tensile strength, compared with pure epoxy resin). The new organo-sericite is a promising filler in epoxy resin to enhance thermal stability and mechanical performance of the composite. Full article
(This article belongs to the Special Issue Application and Modification of Clay Minerals)
Show Figures

Graphical abstract

11 pages, 1643 KB  
Communication
Silica–Ti3C2Tx MXene Nanoarchitectures with Simultaneous Adsorption and Photothermal Properties
by Eduardo Ruiz-Hitzky, Mabrouka Ounis, Mohamed Kadri Younes and Javier Pérez-Carvajal
Materials 2024, 17(17), 4273; https://doi.org/10.3390/ma17174273 - 29 Aug 2024
Cited by 1 | Viewed by 1552
Abstract
Layered Ti3C2Tx MXene has been successfully intercalated and exfoliated with the simultaneous generation of a 3D silica network by treating its cationic surfactant intercalation compound (MXene-CTAB) with an alkoxysilane (TMOS), resulting in a MXene–silica nanoarchitecture, which has high [...] Read more.
Layered Ti3C2Tx MXene has been successfully intercalated and exfoliated with the simultaneous generation of a 3D silica network by treating its cationic surfactant intercalation compound (MXene-CTAB) with an alkoxysilane (TMOS), resulting in a MXene–silica nanoarchitecture, which has high porosity and specific surface area, together with the intrinsic properties of MXene (e.g., photothermal response). The ability of these innovative MXene silica materials to induce thermal activation reactions of previously adsorbed compounds is demonstrated here using NIR laser irradiation. For this purpose, the pinacol rearrangement reaction has been selected as a first model example, testing the effectiveness of NIR laser-assisted photothermal irradiation in these processes. This work shows that Ti3C2Tx-based nanoarchitectures open new avenues for applications that rely on the combined properties inherent to their integrated nanocomponents, which could be extended to the broader MXene family. Full article
Show Figures

Figure 1

21 pages, 9002 KB  
Review
Organoclays Based on Bentonite and Various Types of Surfactants as Heavy Metal Remediants
by Leonid Perelomov, Maria Gertsen, Marina Burachevskaya, S. Hemalatha, Architha Vijayalakshmi, Irina Perelomova and Yurii Atroshchenko
Sustainability 2024, 16(11), 4804; https://doi.org/10.3390/su16114804 - 5 Jun 2024
Cited by 13 | Viewed by 4126
Abstract
The rapid industrial development of civilization has led to the need for the development of new materials to clean up chemically contaminated wastewater and soils. Organoclays, based on smectite minerals and various types of surfactants, are one of the most effective sorbents for [...] Read more.
The rapid industrial development of civilization has led to the need for the development of new materials to clean up chemically contaminated wastewater and soils. Organoclays, based on smectite minerals and various types of surfactants, are one of the most effective sorbents for adsorbing organic and inorganic pollutants. Organoclays are clay minerals that have been modified by the intercalation or grafting of organic molecules. The main mechanism of interaction between organic substances and organoclays involves the adsorption of the substances onto the surface of the clay mineral, which has an expanded structural cell. Various types of surfactants can be used to synthesize organoclays, including cationic, anionic, and amphoteric surfactants. Each type of surfactant has different properties that affect the clay’s ability to sorb. Cationic forms of trace elements, such as heavy metals, can also be adsorbed by organoclays. Data on the adsorption of these substances by organoclays are provided, along with information on how to synthesize them using various surfactants. This review also discusses the main mechanisms of interaction between these substances and clays and the various methods used to create organoclays. It is clear that the adsorption of heavy metals by organoclays is not influenced by their structure or properties, as they belong to the category of surfactant, but rather by their overall chemical structure and characteristics. The wide variety of surfactant types leads to different effects on the adsorption properties of trace elements. Full article
Show Figures

Figure 1

18 pages, 1852 KB  
Article
Thermodynamic and Structural Study of Budesonide—Exogenous Lung Surfactant System
by Atoosa Keshavarzi, Ali Asi Shirazi, Rastislav Korfanta, Nina Královič, Mária Klacsová, Juan Carlos Martínez, José Teixeira, Sophie Combet and Daniela Uhríková
Int. J. Mol. Sci. 2024, 25(5), 2990; https://doi.org/10.3390/ijms25052990 - 4 Mar 2024
Cited by 3 | Viewed by 1808
Abstract
The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle [...] Read more.
The clinical benefits of using exogenous pulmonary surfactant (EPS) as a carrier of budesonide (BUD), a non-halogenated corticosteroid with a broad anti-inflammatory effect, have been established. Using various experimental techniques (differential scanning calorimetry DSC, small- and wide- angle X-ray scattering SAXS/WAXS, small- angle neutron scattering SANS, fluorescence spectroscopy, dynamic light scattering DLS, and zeta potential), we investigated the effect of BUD on the thermodynamics and structure of the clinically used EPS, Curosurf®. We show that BUD facilitates the Curosurf® phase transition from the gel to the fluid state, resulting in a decrease in the temperature of the main phase transition (Tm) and enthalpy (ΔH). The morphology of the Curosurf® dispersion is maintained for BUD < 10 wt% of the Curosurf® mass; BUD slightly increases the repeat distance d of the fluid lamellar phase in multilamellar vesicles (MLVs) resulting from the thickening of the lipid bilayer. The bilayer thickening (~0.23 nm) was derived from SANS data. The presence of ~2 mmol/L of Ca2+ maintains the effect and structure of the MLVs. The changes in the lateral pressure of the Curosurf® bilayer revealed that the intercalated BUD between the acyl chains of the surfactant’s lipid molecules resides deeper in the hydrophobic region when its content exceeds ~6 wt%. Our studies support the concept of a combined therapy utilising budesonide—enriched Curosurf®. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

20 pages, 2337 KB  
Article
Preparation of Melamine Formaldehyde Foam and a Melamine-Formaldehyde-Organo-Clay Nanocomposite and Hybrid Composites
by Ahmet Gürses and Elif Şahin
Minerals 2023, 13(11), 1407; https://doi.org/10.3390/min13111407 - 2 Nov 2023
Cited by 11 | Viewed by 3181
Abstract
Mineral fillers can be added to thermoset polymers to improve thermal conductivity and deformation behavior, shrinkage, impact strength, dimensional stability and molding cycle time. This study aims to prepare various hybrid composites (MFHCs) using melamine formaldehyde foam (MF), a melamine formaldehyde organo-clay nanocomposite [...] Read more.
Mineral fillers can be added to thermoset polymers to improve thermal conductivity and deformation behavior, shrinkage, impact strength, dimensional stability and molding cycle time. This study aims to prepare various hybrid composites (MFHCs) using melamine formaldehyde foam (MF), a melamine formaldehyde organo-clay nanocomposite (MFNC) and also pumice as primary filler, and gypsum, kaolinite and a hollow glass sphere as secondary filler. It also focuses on the study of some mechanical properties and thermal conductivities, as well as their microscopic and spectroscopic characterization. For this, firstly, organo-clay was prepared with the solution intercalation method using montmorillonite, a cationic surfactant and long-chain hydrocarbon material, and then was produced using a melamine formaldehyde nanocomposite with in situ synthesis using a melamine formaldehyde pre-polymer and organo-clay. Finally, hybrid composites were prepared by blending various minerals and the produced nanocomposite. For morphological and textural characterization, both FTIR spectroscopy and XRD spectra, as well as SEM and HRTEM images of the raw montmorillonite (MMT), organo-montmorillonite (OMMT), pure polymer (MF) and prepared hybrid composites, were used. Spectroscopic and microscopic analyses have shown that materials with different textural arrangements and properties are obtained depending on effective adhesion interactions between polymer–clay nanocomposite particles and filler grains. Mechanical and thermal conductivity test results showed that melamine-formaldehyde-organo-clay nanocomposite foam (MFCNC) exhibited a very good thermal insulation performance despite its weak mechanical strength (λ: 0.0640 W/m K). On the other hand, among hybrid composites, it has been determined that the hybrid composite containing hollow glass beads (MFCPHHC) is a material with superior properties in terms of thermal insulation and mechanical strength (λ: 0.642 W/m K, bulk density: 0.36 g/cm3, bending strength: 228.41 Mpa, modulus of elasticity: 2.22 Mpa and screw holding resistance: 3.59 N/mm2). Full article
Show Figures

Figure 1

11 pages, 1777 KB  
Article
An Aqueous Process for Preparing Flexible Transparent Electrodes Using Non-Oxidized Graphene/Single-Walled Carbon Nanotube Hybrid Solution
by Min Jae Oh, Gi-Cheol Son, Minkook Kim, Junyoung Jeon, Yong Hyun Kim and Myungwoo Son
Nanomaterials 2023, 13(15), 2249; https://doi.org/10.3390/nano13152249 - 3 Aug 2023
Cited by 1 | Viewed by 1654
Abstract
In this study, we prepared flexible and transparent hybrid electrodes based on an aqueous solution of non-oxidized graphene and single-walled carbon nanotubes. We used a simple halogen intercalation method to obtain high-quality graphene flakes without a redox process and prepared hybrid films using [...] Read more.
In this study, we prepared flexible and transparent hybrid electrodes based on an aqueous solution of non-oxidized graphene and single-walled carbon nanotubes. We used a simple halogen intercalation method to obtain high-quality graphene flakes without a redox process and prepared hybrid films using aqueous solutions of graphene, single-walled carbon nanotubes, and sodium dodecyl sulfate surfactant. The hybrid films showed excellent electrode properties, such as an optical transmittance of ≥90%, a sheet resistance of ~3.5 kΩ/sq., a flexibility of up to ε = 3.6% ((R) = 1.4 mm), and a high mechanical stability, even after 103 bending cycles at ε = 2.0% ((R) = 2.5 mm). Using the hybrid electrodes, thin-film transistors (TFTs) were fabricated, which exhibited an electron mobility of ~6.7 cm2 V−1 s−1, a current on-off ratio of ~1.04 × 107, and a subthreshold voltage of ~0.122 V/decade. These electrical properties are comparable with those of TFTs fabricated using Al electrodes. This suggests the possibility of customizing flexible transparent electrodes within a carbon nanomaterial system. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Electrochemical Applications)
Show Figures

Figure 1

22 pages, 6587 KB  
Article
Comparative Study of Protection Efficiency of C-Steel Using Polystyrene Clay Nanocomposite Coating Prepared from Commercial Indian Clay and Local Khulays Clay
by Nashwa A. Howyan, Layla A. Al Juhaiman, Waffa K. Mekhamer and Hissah H. Altilasi
Metals 2023, 13(5), 879; https://doi.org/10.3390/met13050879 - 2 May 2023
Cited by 4 | Viewed by 2352
Abstract
This work aimed to compare the coating protection efficiency of C-steel using two kinds of clay: a local Khulays clay (RCKh) from Saudi Arabia and a commercial clay (CCIn) from India. Clay-based polymer nanocomposites have a unique layered structure, [...] Read more.
This work aimed to compare the coating protection efficiency of C-steel using two kinds of clay: a local Khulays clay (RCKh) from Saudi Arabia and a commercial clay (CCIn) from India. Clay-based polymer nanocomposites have a unique layered structure, rich intercalation chemistry, and availability at low cost. They are promising reinforcements for polymers. The raw clay for both clay types was washed before being treated with NaCl to produce sodium clay (NaC). The cationic surfactant cetylpyridinium chloride (CPC) was then used to convert the NaC into the organoclay (OC) form. Polystyrene/organoclay nanocomposites (PCNs) were prepared by combining different concentrations of organoclay (1%, 3%, and 5% OC) in toluene solvent and polystyrene (PS) as the matrix. To ensure the success of the PCN modification process, the organoclay and PCN films were characterized using a variety of techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The shifts in the FT-IR spectra after the CPC treatment of NaC confirmed the presence of CPC in the organoclay samples and the presence of OC in the PCNs. The exfoliated structure was obtained from the XRD spectrum for low clay loading (1–3% PCN), while the intercalated structure was the dominant form for the 5% PCN. The XRD results were confirmed by TEM images. To calculate the coating efficiency of the PCNs, various electrochemical methods were used. The electrochemical measurements included electrochemical impedance spectroscopy (EIS), the electrochemical frequency modulation (EFM) method, and Tafel plots. The PCN with a concentration of 1 wt.% OC has a fully exfoliated structure and higher coating efficiency than the PCNs with partially exfoliated structures (3 wt.% and 5 wt.%). It was found from the Tafel plots that commercial Indian clay has better corrosion protection (81.4%) than local Khulays clay (60.2%). A comparison with other studies using current density values shows that our results are superior to those of many studies. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials)
Show Figures

Figure 1

17 pages, 3985 KB  
Article
Chemico-Physical Properties of Some 1,1′-Bis-alkyl-2,2′-hexane-1,6-diyl-bispyridinium Chlorides Hydrogenated and Partially Fluorinated for Gene Delivery
by Michele Massa, Mirko Rivara, Thelma A. Pertinhez, Carlotta Compari, Gaetano Donofrio, Luigi Cristofolini, Davide Orsi, Valentina Franceschi and Emilia Fisicaro
Molecules 2023, 28(8), 3585; https://doi.org/10.3390/molecules28083585 - 20 Apr 2023
Cited by 1 | Viewed by 1823
Abstract
The development of very efficient and safe non-viral vectors, constituted mainly by cationic lipids bearing multiple charges, is a landmark for in vivo gene-based medicine. To understand the effect of the hydrophobic chain’s length, we here report the synthesis, and the chemico-physical and [...] Read more.
The development of very efficient and safe non-viral vectors, constituted mainly by cationic lipids bearing multiple charges, is a landmark for in vivo gene-based medicine. To understand the effect of the hydrophobic chain’s length, we here report the synthesis, and the chemico-physical and biological characterization, of a new term of the homologous series of hydrogenated gemini bispyridinium surfactants, the 1,1′-bis-dodecyl-2,2′-hexane-1,6-diyl-bispyridinium chloride (GP12_6). Moreover, we have collected and compared the thermodynamic micellization parameters (cmc, changes in enthalpy, free energy, and entropy of micellization) obtained by isothermal titration calorimetry (ITC) experiments for hydrogenated surfactants GP12_6 and GP16_6, and for the partially fluorinated ones, FGPn (where n is the spacer length). The data obtained for GP12_6 by EMSA, MTT, transient transfection assays, and AFM imaging show that in this class of compounds, the gene delivery ability strictly depends on the spacer length but barely on the hydrophobic tail length. CD spectra have been shown to be a useful tool to verify the formation of lipoplexes due to the presence of a “tail” in the 288–320 nm region attributed to a chiroptical feature named ψ-phase. Ellipsometric measurements suggest that FGP6 and FGP8 (showing a very interesting gene delivery activity, when formulated with DOPE) act in a very similar way, and dissimilar from FGP4, exactly as in the case of transfection, and confirm the hypothesis suggested by previously obtained thermodynamic data about the requirement of a proper length of the spacer to allow the molecule to form a sort of molecular tong able to intercalate DNA. Full article
(This article belongs to the Special Issue 2D Materials for Biomedical Applications)
Show Figures

Figure 1

15 pages, 4655 KB  
Article
An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films
by Neeraj Kumari, Chandra Mohan and Arvind Negi
Polymers 2023, 15(8), 1922; https://doi.org/10.3390/polym15081922 - 18 Apr 2023
Cited by 27 | Viewed by 3241
Abstract
The present study aims to explore the impact of pristine and surfactant-modified clays (montmorillonite, bentonite and vermiculite) on the thermomechanical properties of a poly (vinyl chloride) (PVC) polymer film. Initially, clay was modified by employing the ion exchange method. The modification of clay [...] Read more.
The present study aims to explore the impact of pristine and surfactant-modified clays (montmorillonite, bentonite and vermiculite) on the thermomechanical properties of a poly (vinyl chloride) (PVC) polymer film. Initially, clay was modified by employing the ion exchange method. The modification of clay minerals was confirmed by the XRD pattern and thermogravimetric analysis. Pristine PVC polymer film and clay (montmorillonite, bentonite and vermiculite)-based PVC polymer composite films were fabricated using solution casting. The ideal dispersion of surfactant-modified organo-clays was observed in the PVC polymer matrix due to the hydrophobic nature of modified clays. The resultant pure polymer film and clay polymer composite film were characterized using XRD and TGA, and their mechanical properties were determined using a tensile strength tester and Durometer. From the XRD pattern, the intercalation of the PVC polymer film was found in the interlayer of organo-clay while exfoliation or partial intercalation and exfoliation were observed for pristine clay mineral-based PVC polymer composite films. Thermal analysis indicated a lowering of the decomposition temperature of the composite film as clay promotes the thermal degradation temperature of PVC. Improvement in the tensile strength and hardness was found to be more frequent in the case of organo-clay-based PVC polymer films, which is only due to the hydrophobic nature of organ clays, resulting in greater compatibility with the polymer matrix. Full article
(This article belongs to the Special Issue Thermoplastic Polymer-Based Multifunctional Materials)
Show Figures

Figure 1

21 pages, 4470 KB  
Article
Surfactant Intercalation in Li-Al-Based Binary and Ternary Layered Double Hydroxides by the Microwave-Assisted Rapid Ion-Exchange Process and Its Application in Iodine Adsorption
by Dileep Kumar Yadav, Sitharaman Uma and Rajamani Nagarajan
Minerals 2023, 13(3), 303; https://doi.org/10.3390/min13030303 - 21 Feb 2023
Cited by 3 | Viewed by 2578
Abstract
Recognizing the extreme speeds of reactions with microwaves, anionic forms of surfactants (sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS)) have been intercalated successfully by ion-exchange reactions in binary Li-Al and ternary Li-M-Al (M = Mg, Co, Ni, Cu, and Zn) layered double [...] Read more.
Recognizing the extreme speeds of reactions with microwaves, anionic forms of surfactants (sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS)) have been intercalated successfully by ion-exchange reactions in binary Li-Al and ternary Li-M-Al (M = Mg, Co, Ni, Cu, and Zn) layered double hydroxide (LDH) systems with the aid of microwaves. The samples have been characterized extensively. The basal spacings of 28.2 and 30.4 Å have been estimated for Li-Al-DS and Li-Al-DBS LDH samples, respectively, suggesting a perpendicular arrangement of DS and DBS anions in the interlayer space. The characteristic vibration bands of both LDH and the surfactant (DS and DBS) in the FTIR spectra confirmed the binding mode of surfactant molecules within the interlayers. DS-intercalated Li-Al LDH showed lower thermal stability than the DBS-intercalated sample. The nitrate-intercalated Li-M-Al (M = Mg, Co, Ni, Cu, and Zn) LDHs were ion-exchanged with SDS and SDBS to yield DS-and DBS-intercalated systems. The expanded basal spacings and a change in crystallite morphology confirmed the vertical intercalation of DS and DBS in Li-M-Al LDHs. ICP-AES and elemental analyses determined the metal contents and the surfactant content. FTIR spectra of intercalated samples confirmed the surfactant’s presence in the interlayer. The presence of Co, Ni, and Cu in Li-M-Al LDHs has been confirmed from UV-visible spectra. The Li-Al-DBS sample adsorbed iodine efficiently from methanol solutions, and the Langmuir model could explain the adsorption data in a better way. The adsorption followed pseudo-second-order kinetics. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Graphical abstract

16 pages, 13789 KB  
Article
Organo-Montmorillonite Modified by Gemini Quaternary Ammonium Surfactants with Different Counterions for Adsorption toward Phenol
by Ran Wei, Yuanhua Mo, Duojiao Fu, Hongqin Liu and Baocai Xu
Molecules 2023, 28(5), 2021; https://doi.org/10.3390/molecules28052021 - 21 Feb 2023
Cited by 6 | Viewed by 2350
Abstract
The discharge of industrial phenol pollutants causes great harm to the natural environment and human health. In this study, phenol removal from water was studied via the adsorption of Na–montmorillonite (Na–Mt) modified by a series of Gemini quaternary ammonium surfactants with different counterions [...] Read more.
The discharge of industrial phenol pollutants causes great harm to the natural environment and human health. In this study, phenol removal from water was studied via the adsorption of Na–montmorillonite (Na–Mt) modified by a series of Gemini quaternary ammonium surfactants with different counterions [(C11H23CONH(CH2)2N+ (CH3)2(CH2)2 N+(CH3)2 (CH2)2NHCOC11H23·2Y, Y = CH3CO3, C6H5COO and Br, 12–2–12·2Y]. The results of the phenol adsorption indicated that MMt–12–2–12·2Br, MMt–12–2–12·2CH3CO3 and MMt–12–2–12·2C6H5COO reached the optimum adsorption capacity, which was 115.110 mg/g, 100.834 mg/g and 99.985 mg/g, respectively, under the conditions of the saturated intercalation concentration at 2.0 times that of the cation exchange capacity (CEC) of the original Na–Mt, 0.04 g of adsorbent and a pH = 10. The adsorption kinetics of all adsorption processes were in good agreement with the pseudo-second-order kinetics model, and the adsorption isotherm was better modeled by Freundlich isotherm. Thermodynamic parameters revealed that the adsorption of phenol was a physical, spontaneous and exothermic process. The results also showed that the counterions of the surfactant had a certain influence on the adsorption performance of MMt for phenol, especially the rigid structure, hydrophobicity, and hydration of the counterions. Full article
(This article belongs to the Collection Green Energy and Environmental Materials)
Show Figures

Figure 1

16 pages, 3700 KB  
Article
A Magnetic Surfactant Having One Degree of Unsaturation in the Hydrophobic Tail as a Shale Swelling Inhibitor
by Mobeen Murtaza, Afeez Gbadamosi, Hafiz Mudaser Ahmad, Syed Muhammad Shakil Hussain, Muhammad Shahzad Kamal, Mohamed Mahmoud and Shirish Patil
Molecules 2023, 28(4), 1878; https://doi.org/10.3390/molecules28041878 - 16 Feb 2023
Cited by 12 | Viewed by 2352
Abstract
One of the foremost causes of wellbore instability during drilling operations is shale swelling and hydration induced by the interaction of clay with water-based mud (WBM). Recently, the use of surfactants has received great interest for preventing shale swelling, bit-balling problems, and providing [...] Read more.
One of the foremost causes of wellbore instability during drilling operations is shale swelling and hydration induced by the interaction of clay with water-based mud (WBM). Recently, the use of surfactants has received great interest for preventing shale swelling, bit-balling problems, and providing lubricity. Herein, a novel synthesized magnetic surfactant was investigated for its performance as a shale swelling inhibitor in drilling mud. The conventional WBM and magnetic surfactant mixed WBM (MS–WBM) were formulated and characterized using Fourier Transform Infrared (FTIR) and Thermogravimetric analyzer (TGA). Subsequently, the performance of 0.4 wt% magnetic surfactant as shale swelling and clay hydration inhibitor in drilling mud was investigated by conducting linear swelling and capillary suction timer (CST) tests. Afterward, the rheological and filtration properties of the MS–WBM were measured and compared to conventional WBM. Lastly, the swelling mechanism was investigated by conducting a scanning electron microscope (SEM), zeta potential measurement, and particle size distribution analysis of bentonite-based drilling mud. Experimental results revealed that the addition of 0.4 wt% magnetic surfactant to WBM caused a significant reduction (~30%) in linear swelling. SEM analysis, contact angle measurements, and XRD analysis confirmed that the presence of magnetic surfactant provides long-term swelling inhibition via hydrophobic interaction with the bentonite particles and intercalation into bentonite clay layers. Furthermore, the inhibition effect showed an increase in fluid loss and a decrease in rheological parameters of bentonite mixed mud. Overall, the use of magnetic surfactant exhibits sterling clay swelling inhibition potential and is hereby proffered for use as a drilling fluid additive. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 4642 KB  
Article
Intercalation of Nontronite Clays from Santa Elena, Ecuador, Using Different Surfactant Hydrophobicity
by Andres F. Rigail-Cedeño, Mauricio H. Cornejo, Julio A. Cáceres-Zambrano, Johanna S. Alava-Rosado and Gladys García-Mejía
Minerals 2023, 13(2), 272; https://doi.org/10.3390/min13020272 - 15 Feb 2023
Cited by 3 | Viewed by 2456
Abstract
The research of organoclays has been occurring for many years to develop and add value to these inorganic materials for several industrial applications, such as pollutant absorbers or impermeable plastics. The organoclay applications are intrinsically related to organo-modification and the structure of clays. [...] Read more.
The research of organoclays has been occurring for many years to develop and add value to these inorganic materials for several industrial applications, such as pollutant absorbers or impermeable plastics. The organoclay applications are intrinsically related to organo-modification and the structure of clays. This study shows the preparation and characterization of organoclays produced by a nontronite type clay (calcic bentonite) from the Tosagua Formation in the peninsula of Santa Elena in Ecuador. These clays were purified and centrifuged before organo-treatment. The purification and separation processes were used to remove organic matter and carbonates, and a cationic interchange from calcic to sodic (Ca2+ to Na+) was carried out. Organo-modification was performed using two types of cationic compounds, i.e., Oleylmethylbis (2-hydroxyethyl) ammonium chloride and Di (hydrogenated tallow alkyl) quaternary amine to organoclay with different surface hydrophobicity. The samples were characterized by X-ray diffractometry (XRD), infrared spectrometry (FT-IR), thermo-gravimetry (TGA), and scanning electron microscopy (SEM) to analyze the effect after the mentioned treatment and the resulting organoclays by the addition of these surfactants. The results confirm the significant intercalation of the organic treatment suitable for environmental remediation, compatibilizing recycled plastics, or improving performance in different hydrophobicity systems for industrial applications. Full article
(This article belongs to the Special Issue Obtainment, Characterization, and Applications of Organophilic Clays)
Show Figures

Figure 1

Back to TopTop