CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of rGO-SiO2 and GO-SiO2 Gels
2.2. Characterization of GO-SiO2-APTMS and rGO-SiO2-APTMS
2.3. Cyclic Adsorption and Desorption of CO2
2.4. Kinetics and Thermodynamics of CO2 Capture Reaction
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis
4.3. Characterization
4.4. CO2 Capture Evaluation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APTMS | (3-aminopropyl) trimethoxy silane |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
CTAB | Cetyltrimethylammonium bromide |
Dpt | Department |
DSC | Differential scanning calorimetry |
GO | Graphene oxide |
GO-CTAB | Graphene oxide treated with CTAB |
GO-CTAB-SiO2 | Graphene oxide–silica gel with CTAB |
GO-SiO2 | Graphene oxide–silica gel |
GO-SiO2-APTMS | Graphene oxide–silica gel functionalized with APTMS |
IUPAC | International Union of Pure and Applied Chemistry |
MCM-41 | Mobil Composition of Matter No. 41 |
MOF | Metal–organic framework |
MS | Mass spectrometry |
QuIPRe | Chemistry and Process and Resources Engineering |
rGO | Reduced graphene oxide |
rGO-SiO2 | Reduced graphene oxide–silica gel |
rGO-SiO2-APTMS | Reduced graphene oxide–silica gel functionalized with APTMS |
SBA-15 | Santa Barbara Amorphous-15 |
SiO2-APTMS | Silica gel functionalized with APTMS |
TEM | Transmission electron microscopy |
TEOS | Tetraethyl orthosilicate |
TG | Thermogravimetry |
TMAOH | Tetramethylammonium hydroxide |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Wei, L.; Lu, W.; Wei, H.; Chen, C.; Hou, Z. Porous sandwich-like silica/graphene nanocomposites obtained via templating of porous silica with CTAB in the gallery region of graphene oxide. Microporous Mesoporous Mater. 2017, 241, 58–65. [Google Scholar]
- Liu, L.; Zou, G.; Yang, B.; Luo, X.; Xu, S. Amine-functionalized mesoporous silica @ reduced graphene sandwichlike structure composites for CO2 adsorption. ACS Appl. Nano Mater. 2018, 1, 4695–4702. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wang, W.; Coombs, N.; Soheilnia, N.; Ozin, G.A. Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano 2010, 4, 7437–7450. [Google Scholar] [PubMed]
- Cheng, L.; Qiao, D.; Zhao, P.; He, Y.; Sun, W.; Yu, H.; Jiao, Z. Template-free synthesis of mesoporous succulents-like TiO2/graphene aerogel composites for lithium-ion batteries. Electrochim. Acta 2019, 300, 417–425. [Google Scholar]
- Chen, P.; Yang, C.; He, Z.; Guo, K. One-pot facile route to fabricate the precursor of sulfonated graphene/N-doped mesoporous carbons composites for supercapacitors. J. Mater. Sci. 2019, 54, 4180–4191. [Google Scholar] [CrossRef]
- Liou, T.; Lin, M.H. Preparation of mesoporous graphene oxide/SBA-15 hybrid nanoparticles as a potential adsorbent for removal of cationic dyes. Desalin. Water Treat. 2019, 155, 285–295. [Google Scholar] [CrossRef]
- Vinodh, R.; Babu, C.M.; Abidov, A.; Palanichamy, M.; Tae Jang, H. Facile synthesis of amine modified silica/reduced graphene oxide composite sorbent for CO2 adsorption. Mater. Lett. 2019, 247, 44–47. [Google Scholar] [CrossRef]
- Yang, C.; Tong, Y.; Yang, Z.; Xiao, H.; Qi, H.; Chen, F. High-performance aqueous zinc-ion battery based on laser-induced graphene. Nanomanuf. Metrol. 2023, 6, 16. [Google Scholar] [CrossRef]
- Deng, R.; Ke, B.; Xie, Y.; Cheng, S.; Zhang, C.; Zhang, H.; Lu, B.; Wang, X. All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 2023, 15, 73. [Google Scholar] [CrossRef]
- Ding, H.; Wang, J.; Zhou, J.; Wang, C.; Lu, B. Building electrode skins for ultra-stable potassium metal batteries. Nat. Commun. 2023, 14, 2305. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Lu, Y.; Li, H. Exploration of lithium ions storage performance and mechanism of ZrN@reduced graphene oxide composite. J. Alloys Compd. 2023, 959, 170448. [Google Scholar] [CrossRef]
- Altaf, C.T.; Colak, T.O.; Rostas, A.M.; Mihet, M.; Lazar, M.D.; Iatsunskyi, I.; Coy, E.; Yildirim, I.D.; Misirlioglu, F.B.; Erdem, E.; et al. GO/ZnO-based all-solid-state photo-supercapacitors: Effect of GO:ZnO ratio on composite properties and advice performance. J. Energy Storage 2023, 68, 107694. [Google Scholar] [CrossRef]
- Chen, X.; Ge, H.; Yang, W.; Liu, J.; Yang, P. Construction of high-performance solid-state asymmetric supercapacitor based on Ti3C2Tx MXene/CuS positive electrode and Fe2O3@rGO negative electrode. J. Energy Storage 2023, 68, 107700. [Google Scholar] [CrossRef]
- Fu, X.; Shu, R.Y.; Ma, C.J.; Zhang, Y.Y.; Jiang, H.B.; Yao, M.N. Self-assembled MXene-graphene oxide composite enhanced laser-induced graphene based electrodes towards conformal supercapacitor applications. Appl. Surf. Sci. 2023, 631, 157549. [Google Scholar] [CrossRef]
- Shanthini, K.; Anitha, C.; Alphonse, N.R.; Velmurugan, K.; Selvam, V. GO-CNT/AgI nanocomposites: A facile synthesis and environmentally friendly method to removal of organic pollutants. J. Mol. Struct. 2023, 1286, 135500. [Google Scholar] [CrossRef]
- Chen, C.X.; Yang, S.S.; Ding, J.; Ding, L.; Wu, R.; Liu, L.M.; Pang, J.W.; He, L.; Jiang, J.Q.; Ren, N.Q. Existence of chloride ions in high salinity wastewater accelerates the removal of micropollutants over light-driven catalyst. Appl. Catal. B 2023, 334, 122823. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, P.; Graham, N.; Li, G.; Yu, W. Long-term operation and biofouling of graphene oxide membrane in practical water treatment: Insights from performance and biofilm characteristics. J. Membr. Sci. 2023, 680, 121761. [Google Scholar] [CrossRef]
- Chen, H.; Guo, Y.; Zhou, K.; Wang, J.; Zeng, Z.; Li, L. Mechanism exploration of surface functional groups and pore size on CO2 adsorptive separation by GCMC and DFT simulations. Sep. Purif. Technol. 2023, 318, 123993. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, X.; Wang, H.; Li, K.; Tatsumi, T.; Wang, J. Accessible amino-rich ordered mesoporous silica for carbon dioxide capture. Mater. Lett. 2022, 321, 132422. [Google Scholar] [CrossRef]
- Kamran, U.; Park, S. Chemically modified carbonaceous adsorbents for enhanced CO2 capture: A review. J. Clean. Prod. 2021, 290, 125776. [Google Scholar] [CrossRef]
- González-Barriuso, M.; Pesquera, C.; González, F.; Yedra, A.; Blanco, C. CO2 capture by amino-functionalized graphene oxide. Chem. Eng. Trans. 2019, 75, 637–642. [Google Scholar]
- González-Barriuso, M.; Gómez, L.; Pesquera, C.; Perdigón, A.C.; González, F.; Yedra, A.; Blanco, C. CO2 Capture at low temperature by nanoporous silica modified with amine groups. Chem. Eng. Trans. 2016, 47, 181–186. [Google Scholar]
- Hua, Z.L.; Shi, J.L.; Wang, L.; Zhang, W.H. Preparation of mesoporous silica films on a glass slide: Surfactant template removal by solvent extraction. J. Non-Cryst. Solids 2001, 292, 177–183. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltran, M.; Gómez-Siurana, A.; Martínez, I.; Berenguer, D. Evaluation of the efficiency of solvent extraction for template removal in the synthesis of MCM-41 type materials to be used as tobacco additives for smoke toxicity reduction. Appl. Catal. A 2010, 378, 107–113. [Google Scholar] [CrossRef]
- Chang, N.; Tang, H.; Bai, L.; Zhang, Y.; Zeng, G. Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes. J. Membr. Sci. 2018, 552, 13–21. [Google Scholar] [CrossRef]
- Hu, M.L.; Masoomi, M.Y.; Morsali, A. Template strategies with MOFs. Coord. Chem. Rev. 2019, 387, 415–435. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Cai, J.; Chen, J.; Zeng, P.; Pang, Z.; Kong, X. Molecular Mechanisms of CO2 Adsorption in Diamine-Cross-Linked Graphene Oxide. Chem. Mater. 2019, 31, 3729–3735. [Google Scholar] [CrossRef]
- Chaus, A.S.; Jiang, X.H.; Pokorný, P.; Piliptsou, D.G.; Rogachev, A.V. Improving the mechanical property of amorphous carbon films by silicon doping. Diam. Relat. Mater. 2018, 82, 137–142. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 10. [Google Scholar] [CrossRef]
- Hernando, M.J.; Pesquera, C.; Blanco, C.; González, F. Comparative study of the texture of montmorillonites pillared with aluminum and aluminum/cerium. Langmuir 2001, 17, 5156. [Google Scholar] [CrossRef]
- Said, R.B.; Kolle, J.M.; Essalah, K.; Tangour, B.; Sayari, A. A Unified Approach to CO2–Amine Reaction Mechanisms. ACS Omega 2020, 5, 26125–26133. [Google Scholar] [CrossRef]
- Li, T.; Yu, Q.; Barzagli, F.; Li, C.; Che, M.; Zhang, Z.; Zhang, R. Energy efficient catalytic CO2 desorption: Mechanism, technological progress and perspective. Carbon Capture Sci. Technol. 2023, 6, 100099. [Google Scholar] [CrossRef]
- Serna-Guerrero, R.; Sayari, A. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. J. Chem. Eng. 2010, 161, 182–190. [Google Scholar] [CrossRef]
- Weinberg, W.H. Eley−Rideal Surface Chemistry: Direct Reactivity of Gas Phase Atomic Hydrogen with Adsorbed Species. Acc. Chem. Res. 1996, 29, 479–487. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Wen, S.; Zhan, D.; Zhu, X.; Ning, P.; Zhang, Y.; Mei, X. Recent advances in amine-functionalized silica adsorbents for CO2 capture. Renew. Sust. Energ. 2024, 203, 114724. [Google Scholar] [CrossRef]
- Hack, J.; Maeda, N.; Meier, D.M. Review on CO2 Capture Using Amine-Functionalized Materials. ACS Omega 2022, 7, 39520–39530. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
Application | Material | Reference |
---|---|---|
Batteries | Titanium dioxide (TiO2)–graphene aerogel composites | [6] |
Laser-induced graphene | [10] | |
Graphene nanosheets–Li2S composites | [11] | |
Fluorinated graphene oxide | [12] | |
ZrN@reduced graphene oxide composite | [13] | |
Supercapacitors | Sulfonate graphene–N-doped mesoporous carbon composites | [7] |
GO/ZnO | [14] | |
Fe2O3/rGO | [15] | |
MXene–graphene oxide composite | [16] | |
Water purification | Mesoporous graphene oxide–SBA-15 nanocomposites | [8] |
GO-CNT–AgI nanocomposite | [17] | |
Anthraquinone-2-carboxylic acid on aminated graphene sheets | [18] | |
Graphene oxide membrane | [19] | |
CO2 adsorption | Amine-modified silica–reduced graphene oxide composites | [9] |
Modified graphene | [20] |
Sample | SBET (m2 g−1) | Vpore (cm3 g−1) | Dpore (Å) | SiO2% |
---|---|---|---|---|
GO-SiO2 | 446 | 0.46 | 23 | 83.6 |
rGO-SiO2 | 710 | 0.76 | 27 | 87.6 |
Sample | TG-Derived Organic Mass Loss (wt%) | Nitrogen Content (wt%) | Amine Loading (mmol −NH2 g−1). |
---|---|---|---|
GO-SiO2-APTMS | 7.54 | 1.82 | 1.30 |
rGO-SiO2-APTMS | 10.33 | 2.49 | 1.78 |
Sample | CO2 (1 atm) (cm3 g−1) | CO2 (0.1 atm) (cm3 g−1) |
---|---|---|
SiO2-APTMS | 39.8 ± 0.4 | 29.3 ± 0.3 |
GO-SiO2-APTMS | 26.6 ± 0.3 | 17.3 ± 0.2 |
rGO-SiO2-APTMS | 41.4 ± 0.4 | 32.3 ± 0.3 |
Sample | Amine Loading (mmol –NH2 g−1) | CO2 (0.1 atm) (mmol g−1) | % Efficiency (CO2/-NH2) |
---|---|---|---|
SiO2-APTMS | 2.64 | 1.3 | 49.2 |
GO-SiO2-APTMS | 1.30 | 0.77 | 59.4 |
rGO-SiO2-APTMS | 1.78 | 1.44 | 81.0 |
Sample | CO2 Mass (%) Cycle 1 | CO2 Mass (%) Cycle 2 | CO2 Mass (%) Cycle 3 | CO2 Mass (%) Cycle 4 | CO2 Mass (%) Cycle 5 | CO2 Mass (%) Cycle 6 | CO2 Mass (%) Cycle 15 | CO2 Mass (%) Cycle 25 | CO2 Mass (%) Cycle 50 |
---|---|---|---|---|---|---|---|---|---|
SiO2-APTMS | 4.7 | 4.5 | 4.4 | 4.3 | 4.2 | 4.2 | 4.0 | 3.8 | 3.6 |
GO-SiO2-APTMS | 3.0 | 3.0 | 3.0 | 2.9 | 2.9 | 2.9 | 2.8 | 2.7 | 2.7 |
rGO-SiO2-APTMS | 5.4 | 5.3 | 5.4 | 5.4 | 5.3 | 5.4 | 5.3 | 5.2 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Barriuso, M.; Yedra, Á.; Blanco, C. CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels. Gels 2025, 11, 702. https://doi.org/10.3390/gels11090702
González-Barriuso M, Yedra Á, Blanco C. CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels. Gels. 2025; 11(9):702. https://doi.org/10.3390/gels11090702
Chicago/Turabian StyleGonzález-Barriuso, Marina, Ángel Yedra, and Carmen Blanco. 2025. "CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels" Gels 11, no. 9: 702. https://doi.org/10.3390/gels11090702
APA StyleGonzález-Barriuso, M., Yedra, Á., & Blanco, C. (2025). CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels. Gels, 11(9), 702. https://doi.org/10.3390/gels11090702