Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = surface-enhanced near-infrared absorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10794 KiB  
Article
Effects of Melatonin-Loaded Poly(N-vinylcaprolactam) Transdermal Gel on Sleep Quality
by Wei Zhao, Fengyu Wang, Liying Huang, Bo Song, Junzi Wu, Yongbo Zhang, Wuyi Du, Yan Li and Sen Tong
Gels 2025, 11(6), 435; https://doi.org/10.3390/gels11060435 - 5 Jun 2025
Viewed by 753
Abstract
The rapid pace of modern life has contributed to a significant decline in sleep quality, which has become an urgent global public health issue. Melatonin, an endogenous hormone that regulates circadian rhythms, is vital in maintaining normal sleep cycles. While oral melatonin supplementation [...] Read more.
The rapid pace of modern life has contributed to a significant decline in sleep quality, which has become an urgent global public health issue. Melatonin, an endogenous hormone that regulates circadian rhythms, is vital in maintaining normal sleep cycles. While oral melatonin supplementation is widely used, transdermal delivery systems present advantages that include the avoidance of first-pass metabolism effects and enhanced bioavailability. In this study, a novel melatonin transdermal delivery system was successfully developed using a thermosensitive poly(N-vinylcaprolactam) [p(NVCL)]-based carrier. The p(NVCL) polymer was synthesized through free radical polymerization and characterized for its structural properties and phase transition temperature, in alignment with skin surface conditions. Orthogonal optimization experiments identified 3% azone, 3% menthol, and 4% borneol as the optimal enhancer combination for enhanced transdermal absorption. The formulation demonstrated exceptional melatonin loading characteristics with high encapsulation efficiency and stable physicochemical properties, including an appropriate pH and optimal moisture content. Comprehensive in vivo evaluation using normal mouse models revealed significant sleep quality improvements, specifically a shortened sleep latency and extended non-rapid eye movement sleep duration, with elevated serum melatonin and serotonin levels. Safety assessments including histopathological examination, biochemical analysis, and 28-day continuous administration studies confirmed excellent biocompatibility with no adverse reactions or systemic toxicity. Near-infrared fluorescence imaging provided direct evidence of enhanced transdermal absorption and superior biodistribution compared to oral administration. These findings indicate that the p(NVCL)-based melatonin transdermal gel system offers a safe, effective and convenient non-prescription option for sleep regulation, with promising potential for clinical translation as a consumer sleep aid. Full article
Show Figures

Graphical abstract

12 pages, 4893 KiB  
Article
Wideband Near-Infrared Hot-Electron Photodetector Based on Metal Grating Structure
by Hao Huang, Fei Liu, Zidong Chen, Bowen Zhang and Ailing Zhang
Photonics 2025, 12(5), 518; https://doi.org/10.3390/photonics12050518 - 21 May 2025
Viewed by 369
Abstract
The generation of hot electrons through non-radiative decay processes of surface plasmons (SPs) has been extensively demonstrated, enabling the preparation of high-performance hot-electron photodetectors without limitations imposed by material band gap widths. In this paper, a near-infrared wideband hot-electron metal semiconductor photodetector (WHEMSPD) [...] Read more.
The generation of hot electrons through non-radiative decay processes of surface plasmons (SPs) has been extensively demonstrated, enabling the preparation of high-performance hot-electron photodetectors without limitations imposed by material band gap widths. In this paper, a near-infrared wideband hot-electron metal semiconductor photodetector (WHEMSPD) is proposed based on a metal grating plasmonic structure, and its optical and electrical properties are numerically verified. This structure exhibits excellent broadband characteristics within the long-wave near-infrared range (LW-NIR) of 1200–1800 nm, achieving an absorption of approximately 0.7 between 1200 and 1700 nm, with a peak of 0.98 at 1400 nm. The metal grating structure can effectively enhance the excitation of plasmons on the surface and thus increase the absorption within a larger bandwidth. In terms of electrical performance, the responsivity of the WHEMSPD reaches over 20 mA/W within the wavelength range of 1200–1500 nm, with the peak responsivity reaching 28.3 mA/W around 1320 nm. WHEMSPDs in the LW-NIR can be widely used in military, remote sensing, communication, and other related fields. Full article
(This article belongs to the Special Issue Thermal Radiation and Micro-/Nanophotonics)
Show Figures

Figure 1

20 pages, 7731 KiB  
Article
TiO2 Decorated onto Three-Dimensional Carbonized Osmanthus Fragrans Leaves for Solar-Driven Clean Water Generation
by Yali Ao, Li Wang, Lin Yang, Chengjie Duan, Qizhe Gui, Songyun Cui, Shutang Yuan and Jiaqiang Wang
Nanomaterials 2025, 15(7), 504; https://doi.org/10.3390/nano15070504 - 27 Mar 2025
Viewed by 475
Abstract
Solar steam generation (SSG) has garnered significant attention for its potential in water purification applications. While composites with physically combined structures based on semiconductors or biomass have been developed for SSG, there remains a critical need for low-cost, high-efficiency devices. In this study, [...] Read more.
Solar steam generation (SSG) has garnered significant attention for its potential in water purification applications. While composites with physically combined structures based on semiconductors or biomass have been developed for SSG, there remains a critical need for low-cost, high-efficiency devices. In this study, TiO2 composites exhibiting excellent stability, high solar absorption, porous microstructure, and hydrophilic surfaces were identified as effective materials for SSG and water purification for the first time. A novel SSG device was designed by decorating TiO2 onto three-dimensional carbonized Osmanthus fragrans leaves (TiO2/carbonized OFL). Compared to directly carbonized OFL (without TiO2) and Osmanthus fragrans leaves with templated TiO2 (OFL-templated TiO2), the TiO2/carbonized OFL carbon composites demonstrated enhanced solar absorption, achieving over 99% in the visible region and more than 80% in the near-infrared region. Under solar illumination of 1 kW·m−2, the TiO2/carbonized OFL device achieved a high water evaporation rate of 2.31 kg·m−2·h−1, which is 1.6 times higher than that of carbonized OFL and 3.45 times higher than OFL-templated TiO2. Additionally, the TiO2/carbonized OFL system exhibited remarkable efficiency in treating pharmaceutical wastewater, with a chemical oxygen demand (COD) removal efficiency of 98.9% and an ammonia nitrogen removal efficiency of 90.8% under solar radiation. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 3289 KiB  
Article
Research on High-Responsivity Si/Ge-APD in Visible–Near-Infrared Wide Spectrum with Light-Absorption-Enhanced Nanostructure
by Guangtong Guo, Weishuai Chen, Kaifeng Zheng, Jinguang Lv, Yupeng Chen, Baixuan Zhao, Yingze Zhao, Yuxin Qin, Xuefei Wang, Dan Gao, Jingqiu Liang and Weibiao Wang
Sensors 2025, 25(4), 1167; https://doi.org/10.3390/s25041167 - 14 Feb 2025
Viewed by 919
Abstract
Photodetectors with broad spectral response and high responsivity demonstrate significant potential in optoelectronic applications. This study proposes a Si/Ge avalanche photodiode featuring nanostructures that enhance light absorption. By optimizing the device epitaxial structure and these nanostructures, a wide spectral responsivity from 0.4 to [...] Read more.
Photodetectors with broad spectral response and high responsivity demonstrate significant potential in optoelectronic applications. This study proposes a Si/Ge avalanche photodiode featuring nanostructures that enhance light absorption. By optimizing the device epitaxial structure and these nanostructures, a wide spectral responsivity from 0.4 to 1.6 μm is achieved. The results demonstrate that introducing surface photon-trapping nanoholes and SiO2 reflective grating nanostructures increases the average light absorptivity from 0.64 to 0.84 in the 0.4–1.1 μm range and from 0.31 to 0.56 in the 1.1–1.6 μm range. At an applied bias of 0.95 Vbr-apd, the responsivity reaches 17.24 A/W at 1.31 μm and 17.6 A/W at 1.55 μm. This research provides theoretical insights for designing high-responsivity photodetectors in the visible–near-infrared broadband spectrum. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

26 pages, 4876 KiB  
Article
Microfluidic-Assisted Silk Nanoparticles Co-Loaded with Epirubicin and Copper Sulphide: A Synergistic Photothermal–Photodynamic Chemotherapy Against Breast Cancer
by Zijian Gao, Muhamad Hawari Mansor, Faith Howard, Jordan MacInnes, Xiubo Zhao and Munitta Muthana
Nanomaterials 2025, 15(3), 221; https://doi.org/10.3390/nano15030221 - 30 Jan 2025
Cited by 1 | Viewed by 1349
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has emerged as a promising non-invasive cancer treatment, addressing issues like drug resistance and systemic toxicity common in conventional breast cancer therapies. Recent research has shown that copper sulphide (CuS) nanoparticles and polydopamine (PDA) [...] Read more.
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has emerged as a promising non-invasive cancer treatment, addressing issues like drug resistance and systemic toxicity common in conventional breast cancer therapies. Recent research has shown that copper sulphide (CuS) nanoparticles and polydopamine (PDA) exhibit exceptional photothermal conversion efficiency under 808 nm near-infrared (NIR) laser irradiation, making them valuable for cancer phototherapy. However, the effectiveness of PDT is limited in hypoxic tumour environments, which are common in many breast cancer types, due to its reliance on local oxygen levels. Moreover, single-modality approaches, including phototherapy, often prove insufficient for complete tumour elimination, despite their therapeutic strength. In this paper, a microfluidic-assisted approach was used to create multifunctional silk-based nanoparticles (SFNPs) encapsulating the chemotherapeutic drug Epirubicin (EPI), the PTT/PDT agent CuS, and the heat-activated, oxygen-independent alkyl radical generator AIPH for combined chemotherapy, PTT, and PDT, with a polydopamine (PDA) coating for enhanced photothermal effects and surface-bound folic acid (FA) for targeted delivery in breast cancer treatment. The synthesised CuS-EPI-AIPH@SF-PDA-FA nanoparticles achieved a controlled size of 378 nm, strong NIR absorption, and high photothermal conversion efficiency. Under 808 nm NIR irradiation, these nanoparticles selectively triggered the release of alkyl radicals and EPI, improving intracellular drug levels and effectively killing various breast cancer cell lines while demonstrating low toxicity to non-cancerous cells. We demonstrate that novel core–shell CuS-EPI-AIPH@SF-PDA-FA NPs have been successfully designed as a multifunctional nanoplatform integrating PTT, PDT, and chemotherapy for targeted, synergistic breast cancer treatment. Full article
(This article belongs to the Special Issue Emerging Nanoscale Materials for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

14 pages, 4901 KiB  
Article
Ag/Mo Doping for Enhanced Photocatalytic Activity of Titanium (IV) Dioxide during Fuel Desulphurization
by Zahraa A. Hamza, Jamal J. Dawood and Murtadha Abbas Jabbar
Molecules 2024, 29(19), 4603; https://doi.org/10.3390/molecules29194603 - 27 Sep 2024
Viewed by 987
Abstract
Regarding photocatalytic oxidative desulphurization (PODS), titanium oxide (TiO2) is a promising contender as a catalyst due to its photocatalytic prowess and long-term performance in desulphurization applications. This work demonstrates the effectiveness of double-doping TiO2 in silver (Ag) and molybdenum (Mo) [...] Read more.
Regarding photocatalytic oxidative desulphurization (PODS), titanium oxide (TiO2) is a promising contender as a catalyst due to its photocatalytic prowess and long-term performance in desulphurization applications. This work demonstrates the effectiveness of double-doping TiO2 in silver (Ag) and molybdenum (Mo) for use as a novel catalyst in the desulphurization of light-cut hydrocarbons. FESEM, EDS, and AFM were used to characterize the morphology, doping concentration, surface features, grain size, and grain surface area of the Ag/Mo powder. On the other hand, XRD, FTIR spectroscopy, UV-Vis, and PL were used for structure and functional group detection and light absorption analysis based on TiO2’s illumination properties. The microscopic images revealed nanoparticles with irregular shapes, and a 3D-AFM image was used to determine the catalyst’s physiognomies: 0.612 nm roughness and a surface area of 811.79 m2/g. The average sizes of the grains and particles were calculated to be 32.15 and 344.4 nm, respectively. The XRD analysis revealed an anatase structure for the doped TiO2, and the FTIR analysis exposed localized functional groups, while the absorption spectra of the catalyst, obtained via UV-Vis, revealed a broad spectrum, including visible and near-infrared regions up to 1053.34 nm. The PL analysis showed luminescence with a lower emission intensity, indicating that the charge carriers were not thoroughly combined. This study’s findings indicate a desulphurization efficiency of 97%. Additionally, the promise of a nano-homogeneous particle distribution bodes well for catalytic reactions. The catalyst retains its efficiency when it is dried and reused, demonstrating its sustainable use while maintaining the desulphurization efficacy. This study highlights the potential of the double doping approach in enhancing the catalytic properties of TiO2, opening up new possibilities for improving the performance of photo-oxidative processes. Full article
(This article belongs to the Special Issue Advanced Materials for Energy Conversion and Water Sustainability)
Show Figures

Figure 1

10 pages, 4405 KiB  
Article
ITO-Induced Nonlinear Optical Response Enhancement of Titanium Nitride Thin Films
by Peng Lu, Tingzhen Yan, Jialei Huang, Tian Xing, Hao Liu, Zhaoxia Han, Xueke Xu and Chunxian Tao
Nanomaterials 2024, 14(12), 1040; https://doi.org/10.3390/nano14121040 - 17 Jun 2024
Cited by 3 | Viewed by 1762
Abstract
A series of TiN/ITO composite films with various thickness of ITO buffer layer were fabricated in this study. The enhancement of optical properties was realized in the composite thin films. The absorption spectra showed that absorption intensity in the near-infrared region was obviously [...] Read more.
A series of TiN/ITO composite films with various thickness of ITO buffer layer were fabricated in this study. The enhancement of optical properties was realized in the composite thin films. The absorption spectra showed that absorption intensity in the near-infrared region was obviously enhanced with the increase of ITO thickness due to the coupling of surface plasma between TiN and ITO. The epsilon-near-zero wavelength of this composite can be tuned from 935 nm to 1895 nm by varying the thickness of ITO thin films. The nonlinear optical property investigated by Z-scan technique showed that the nonlinear absorption coefficient (β = 3.03 × 10−4 cm/W) for the composite was about 14.02 times greater than that of single-layer TiN films. The theoretical calculations performed by finite difference time domain were in good agreement with those of the experiments. Full article
(This article belongs to the Special Issue Thin Films Based on Nanocomposites (2nd Edition))
Show Figures

Figure 1

13 pages, 6578 KiB  
Article
Enhancing NIR Shielding Properties of Au/CsWO3 Composite via Physical Mixing and Solvothermal Processes
by Chanakarn Piwnuan, Chivarat Muangphat and Jatuphorn Wootthikanokkhan
Materials 2024, 17(11), 2746; https://doi.org/10.3390/ma17112746 - 5 Jun 2024
Viewed by 1432
Abstract
This research aims to enhance the near-infrared (NIR) shielding ability of cesium tungsten bronze (CsWO3) by increasing the spectral absorption in this region through the incorporation of gold nanorods (AuNR). Two approaches were used to prepare the composite materials: [...] Read more.
This research aims to enhance the near-infrared (NIR) shielding ability of cesium tungsten bronze (CsWO3) by increasing the spectral absorption in this region through the incorporation of gold nanorods (AuNR). Two approaches were used to prepare the composite materials: physical mixing and solvothermal process. The effects of gold nanorods content on the crystalline size, particle size, shape, and optical properties of the composite were investigated systematically using DLS, TEM, XRD, and UV–Vis spectroscopy techniques, respectively. The physical mixing process synergizes AuNR and CsWO3 into a composite which has better NIR absorption than that of neat AuNR and CsWO3 nanorods. A composite with 10 mol% of AuNR shows the highest NIR absorption ability due to the surface plasmon resonance and energy coupling between Au and CsWO3. With the solvothermal process, the CsWO3 nanorods grow up to 4–7 microns when the AuNR content increases to 0.8 mol% due to the incorporation of the Au atoms. The microsized CsWO3 rods have superior NIR shielding property compared to other conditions, including the AuNR+CsWO3 nanocomposite with 10 mol% of AuNR from the physical mixing process. Full article
Show Figures

Figure 1

19 pages, 7355 KiB  
Article
Spectral Fingerprinting of Methane from Hyper-Spectral Sounder Measurements Using Machine Learning and Radiative Kernel-Based Inversion
by Wan Wu, Xu Liu, Xiaozhen Xiong, Qiguang Yang, Lihang Zhou, Liqiao Lei, Daniel K. Zhou and Allen M. Larar
Remote Sens. 2024, 16(3), 578; https://doi.org/10.3390/rs16030578 - 2 Feb 2024
Cited by 1 | Viewed by 2128
Abstract
Satellite-based hyper-spectral infrared (IR) sensors such as the Atmospheric Infrared Sounder (AIRS), the Cross-track Infrared Sounder (CrIS), and the Infrared Atmospheric Sounding Interferometer (IASI) cover many methane (CH4) spectral features, including the ν1 vibrational band near 1300 cm−1 (7.7 μm); [...] Read more.
Satellite-based hyper-spectral infrared (IR) sensors such as the Atmospheric Infrared Sounder (AIRS), the Cross-track Infrared Sounder (CrIS), and the Infrared Atmospheric Sounding Interferometer (IASI) cover many methane (CH4) spectral features, including the ν1 vibrational band near 1300 cm−1 (7.7 μm); therefore, they can be used to monitor CH4 concentrations in the atmosphere. However, retrieving CH4 remains a challenge due to the limited spectral information provided by IR sounder measurements. The information required to resolve the weak absorption lines of CH4 is often obscured by interferences from signals originating from other trace gases, clouds, and surface emissions within the overlapping spectral region. Consequently, currently available CH4 data product derived from IR sounder measurements still have large errors and uncertainties that limit their application scope for high-accuracy climate and environment monitoring applications. In this paper, we describe the retrieval of atmospheric CH4 profiles using a novel spectral fingerprinting methodology and our evaluation of performance using measurements from the CrIS sensor aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. The spectral fingerprinting methodology uses optimized CrIS radiances to enhance the CH4 signal and a machine learning classifier to constrain the physical inversion scheme. We validated our results using the atmospheric composition reanalysis results and data from airborne in situ measurements. An inter-comparison study revealed that the spectral fingerprinting results can capture the vertical variation characteristics of CH4 profiles that operational sounder products may not provide. The latitudinal variations in CH4 concentration in these results appear more realistic than those shown in existing sounder products. The methodology presented herein could enhance the utilization of satellite data to comprehend methane’s role as a greenhouse gas and facilitate the tracking of methane sources and sinks with increased reliability. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

15 pages, 5425 KiB  
Article
The Photothermal Conversion and UV Resistance of Silk Fabrics Being Achieved through Surface Modification with C@SiO2 Nanoparticles
by Gang Deng, Lu Yao, Mingzhao Chen, Yuanyuan Yang, Song Lu and Guohua Wu
Molecules 2023, 28(24), 7970; https://doi.org/10.3390/molecules28247970 - 6 Dec 2023
Cited by 3 | Viewed by 1629
Abstract
With the improvement in people’s living standards, the development and application of smart textiles are receiving increasing attention. In this study, a carbon nanosurface was successfully coated with a SiO2 layer to form C@SiO2 nanomaterials, which improved the dispersion of carbon [...] Read more.
With the improvement in people’s living standards, the development and application of smart textiles are receiving increasing attention. In this study, a carbon nanosurface was successfully coated with a SiO2 layer to form C@SiO2 nanomaterials, which improved the dispersion of carbon nanomaterials in an aqueous solution and enhanced the absorption of light by the carbon nanoparticles. C@SiO2 nanoparticles were coupled on the surface of silk fabric with the silane coupling agent KH570 to form C@SiO2 nanosilk fabric. The silk fabric that was subjected to such surface modification was endowed with a special photothermal function. The results obtained with scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and infrared spectroscopy (FTIR) showed that C@SiO2 nanoparticles were successfully modified on the surface of the silk fabric. In addition, under the irradiation of near-infrared light with a power of 20 W and a wavelength of 808 nm, the C@SiO2 nanosilk fabric experienced rapid warming from 23 °C to 60 °C within 30 s. After subjecting the functional fabric to hundreds of photothermal experiments and multiple washes, the photothermal efficiency remained largely unchanged and proved to be durable and stable. In addition, the thermogravimetric (TG) analysis results showed that the C@SiO2 nanoparticles contributed to the thermal stability of the silk fabric. The UV transmittance results indicated that C@SiO2 nanofabric is UV-resistant. The silk modification method developed in this study is low-cost, efficient, and environmentally friendly. It has some prospects for future applications in the textile industry. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

15 pages, 4531 KiB  
Article
Pyrrole-Doped Polydopamine-Pyrrole (PDA-nPY) Nanoparticles with Tunable Size and Improved NIR Absorption for Photothermal Therapy
by Yuan He, Ziyang Li, Huiling Su, Yanan Sun, Wei Shi, Yunfeng Yi, Dongtao Ge and Zhongxiong Fan
Pharmaceuticals 2023, 16(12), 1642; https://doi.org/10.3390/ph16121642 - 23 Nov 2023
Cited by 7 | Viewed by 2243
Abstract
Polydopamine (PDA) as a melanin-like biomimetic material with excellent biocompatibility, full spectrum light absorption capacity and antioxidation property has been extensively applied in the biomedical field. Based on the high reactivity of dopamine (DA), exploiting new strategies to fabricate novel PDA-based nano-biomaterials with [...] Read more.
Polydopamine (PDA) as a melanin-like biomimetic material with excellent biocompatibility, full spectrum light absorption capacity and antioxidation property has been extensively applied in the biomedical field. Based on the high reactivity of dopamine (DA), exploiting new strategies to fabricate novel PDA-based nano-biomaterials with controllable size and improved performance is valuable and desirable. Herein, we reported a facile way to synthesize pyrrole-doped polydopamine-pyrrole nanoparticles (PDA-nPY NPs) with tunable size and enhanced near-infrared (NIR) absorption capacity through self-oxidative polymerization of DA with PY in an alkaline ethanol/H2O/NH4OH solution. The PDA-nPY NPs maintain excellent biocompatibility and surface reactivity as PDA. By regulating the volume of added PY, PDA-150PY NPs with a smaller size (<100 nm) and four-fold higher absorption intensity at 808 nm than that of PDA can be successfully fabricated. In vitro and in vivo experiments effectively further demonstrate that PDA-150PY NPs can effectively inhibit tumor growth and completely thermally ablate a tumor. It is believed that these PY doped PDA-nPY NPs can be a potential photothermal (PT) agent in biomedical application. Full article
Show Figures

Figure 1

20 pages, 5588 KiB  
Article
Analysis of an Ultra-Wideband, Perfectly Absorptive Fractal Absorber with a Central Square Nanopillar in a Cylindrical Structure with a Square Hollow
by Shang-Te Tsai, Jo-Ling Huang, Pei-Xiu Ke, Cheng-Fu Yang and Hung-Cheng Chen
Materials 2023, 16(21), 6898; https://doi.org/10.3390/ma16216898 - 27 Oct 2023
Cited by 4 | Viewed by 1410
Abstract
In this study, a fractal absorber was designed to enhance light absorptivity and improve the efficiency of converting solar energy into electricity for a range of solar energy technologies. The absorber consisted of multiple layers arranged from bottom to top, and the bottom [...] Read more.
In this study, a fractal absorber was designed to enhance light absorptivity and improve the efficiency of converting solar energy into electricity for a range of solar energy technologies. The absorber consisted of multiple layers arranged from bottom to top, and the bottom layer was made of Ti metal, followed by a thin layer of MgF2 atop it. Above the two layers, a structure comprising square pillars formed by three layers of Ti/MgF2/Ti was formed. This pillar was encompassed by a square hollow with cylindrical structures made of Ti material on the exterior. The software utilized for this study was COMSOL Multiphysics® (version 6.0). This study contains an absorption spectrum analysis of the various components of the designed absorber system, confirming the notion that achieving ultra-wideband and perfect absorption resulted from the combination of the various components. A comprehensive analysis was also conducted on the width of the central square pillar, and the analysis results demonstrate the presence of several remarkable optical phenomena within the investigated structure, including propagating surface plasmon resonance, localized surface plasmon resonance, Fabry–Perot cavity resonance, and symmetric coupling plasma modes. The optimal model determined through this software demonstrated that broadband absorption in the range of 276 to 2668 nm, which was in the range of UV-B to near-infrared, exceeded 90.0%. The average absorption rate in the range of 276~2668 nm reached 0.965, with the highest achieving a perfect absorptivity of 99.9%. A comparison between absorption with and without outer cylindrical structures revealed that the resonance effects significantly enhanced absorption efficiency, as evidenced by a comparison of electric field distributions. Full article
Show Figures

Figure 1

23 pages, 2755 KiB  
Review
Chemical Sensing and Analysis with Optical Nanostructures
by Chenyu Dong, Yifan Wang, Xiaoyan Zhao, Jie Bian and Weihua Zhang
Chemosensors 2023, 11(9), 497; https://doi.org/10.3390/chemosensors11090497 - 9 Sep 2023
Cited by 3 | Viewed by 2362
Abstract
Nanostructures and nanomaterials, especially plasmonic nanostructures, often show optical properties that conventional materials lack and can manipulate light, as well as various light–matter interactions, in both their near-field and far-field regions with a high efficiency. Thanks to these unique properties, not only can [...] Read more.
Nanostructures and nanomaterials, especially plasmonic nanostructures, often show optical properties that conventional materials lack and can manipulate light, as well as various light–matter interactions, in both their near-field and far-field regions with a high efficiency. Thanks to these unique properties, not only can they be used to enhance the sensitivity of chemical sensing and analysis techniques, but they also provide a solution for designing new sensing devices and simplifying the design of analytical instruments. The earliest applications of optical nanostructures are surface-enhanced spectroscopies. With the help of the resonance field enhancement of plasmonic nanostructures, molecular signals, such as Raman, infrared absorption, and fluorescence can be significantly enhanced, and even single-molecule analysis can be realized. Moreover, the resonant field enhancements of plasmonic nanostructures are often associated with other effects, such as optical forces, resonance shifts, and photothermal effects. Using these properties, label-free plasmonic sensors, nano-optical tweezers, and plasmonic matrix-assisted laser desorption/ionization have also been demonstrated in the past two decades. In the last few years, the research on optical nanostructures has gradually expanded to non-periodic 2D array structures, namely metasurfaces. With the help of metasurfaces, light can be arbitrarily manipulated, leading to many new possibilities for developing miniaturized integrated intelligent sensing and analysis systems. In this review, we discuss the applications of optical nanostructures in chemical sensing and analysis from both theoretical and practical aspects, aiming at a concise and unified framework for this field. Full article
Show Figures

Figure 1

11 pages, 3454 KiB  
Communication
High-Performance Metamaterial Light Absorption from Visible to Near-Infrared Assisted by Anti-Reflection Coating
by Dongqing Wu, Lei Lei, Meiting Xie, Ping Xu and Shixiang Xu
Photonics 2023, 10(9), 998; https://doi.org/10.3390/photonics10090998 - 31 Aug 2023
Cited by 14 | Viewed by 2726
Abstract
This study experimentally demonstrates two types of ultra-broadband metamaterial absorbers with high performance in the visible-to-near-infrared range by using different anti-reflection coatings (i.e., SiO2 and Si3N4) and a multi-subcell Ti-SiO2-Ti metasurface. Compared to the bare metamaterial [...] Read more.
This study experimentally demonstrates two types of ultra-broadband metamaterial absorbers with high performance in the visible-to-near-infrared range by using different anti-reflection coatings (i.e., SiO2 and Si3N4) and a multi-subcell Ti-SiO2-Ti metasurface. Compared to the bare metamaterial nanostructure, the absorption bandwidth of the coated metasurfaces exhibit increases of 594 nm and 1093 nm, respectively. Such improvements benefit from nearly perfect impedance matching to the free space enhanced by the anti-reflection coating, thin film interference, and excitations of different surface plasmon resonances. As a result, the absorber with SiO2 coating exhibits a measured bandwidth with an absorption of 0.9 ranging from 502 nm to 1892 nm, while the absorber with Si3N4 coating further broadens the bandwidth from 561 nm to 2450 nm. The measured average absorptions for both cases remain above 95% and 87%, respectively. Moreover, both nanostructures are robust to large incident angles of up to 60° for both TE and TM modes. Our findings highlight the promising potential of these absorbers for various applications, including solar energy harvesting, thermal emitters, and photodetectors. Full article
Show Figures

Figure 1

15 pages, 2266 KiB  
Article
Upconversion Nanoparticles Intercalated in Large Polymer Micelles for Tumor Imaging and Chemo/Photothermal Therapy
by Polina A. Demina, Kirill V. Khaydukov, Gulalek Babayeva, Pavel O. Varaksa, Alexandra V. Atanova, Maxim E. Stepanov, Maria E. Nikolaeva, Ivan V. Krylov, Irina I. Evstratova, Vadim S. Pokrovsky, Vyacheslav S. Zhigarkov, Roman A. Akasov, Tatiana V. Egorova, Evgeny V. Khaydukov and Alla N. Generalova
Int. J. Mol. Sci. 2023, 24(13), 10574; https://doi.org/10.3390/ijms241310574 - 24 Jun 2023
Cited by 7 | Viewed by 3235
Abstract
Frontiers in theranostics are driving the demand for multifunctional nanoagents. Upconversion nanoparticle (UCNP)-based systems activated by near-infrared (NIR) light deeply penetrating biotissue are a powerful tool for the simultaneous diagnosis and therapy of cancer. The intercalation into large polymer micelles of poly(maleic anhydride-alt-1-octadecene) [...] Read more.
Frontiers in theranostics are driving the demand for multifunctional nanoagents. Upconversion nanoparticle (UCNP)-based systems activated by near-infrared (NIR) light deeply penetrating biotissue are a powerful tool for the simultaneous diagnosis and therapy of cancer. The intercalation into large polymer micelles of poly(maleic anhydride-alt-1-octadecene) provided the creation of biocompatible UCNPs. The intrinsic properties of UCNPs (core@shell structure NaYF4:Yb3+/Tm3+@NaYF4) embedded in micelles delivered NIR-to-NIR visualization, photothermal therapy, and high drug capacity. Further surface modification of micelles with a thermosensitive polymer (poly-N-vinylcaprolactam) exhibiting a conformation transition provided gradual drug (doxorubicin) release. In addition, the decoration of UCNP micelles with Ag nanoparticles (Ag NPs) synthesized in situ by silver ion reduction enhanced the cytotoxicity of micelles at cell growth temperature. Cell viability assessment on Sk-Br-3, MDA-MB-231, and WI-26 cell lines confirmed this effect. The efficiency of the prepared UCNP complex was evaluated in vivo by Sk-Br-3 xenograft regression in mice for 25 days after peritumoral injection and photoactivation of the lesions with NIR light. The designed polymer micelles hold promise as a photoactivated theranostic agent with quattro-functionalities (NIR absorption, photothermal effect, Ag NP cytotoxicity, and Dox loading) that provides imaging along with chemo- and photothermal therapy enhanced with Ag NPs. Full article
(This article belongs to the Special Issue Potentialities and Challenges of Bio-Inspired Delivery Systems)
Show Figures

Figure 1

Back to TopTop