TiO2 Decorated onto Three-Dimensional Carbonized Osmanthus Fragrans Leaves for Solar-Driven Clean Water Generation
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Carbonized OFL
2.3. Synthesis of TiO2/OFL Composites
2.4. Solar Steam Generation
2.5. Characterization
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Evaporation Performance of the Materials
3.3. UV-Vis-NIR Diffuse Reflectance Spectra
3.4. FT-IR Spectra
3.5. Purification of Pharmaceutical Wastewater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.Q.; Du, A.; Ji, X.J.; Zhang, C.; Zhou, B.; Zhang, Z.; Shen, J. Enhanced Photothermal Conversion by Hot-Electron Effect in Ultrablack Carbon Aerogel for Solar Steam Generation. ACS Appl. Mater. Interfaces 2019, 11, 42057–42065. [Google Scholar] [PubMed]
- Jamie, B.; Clarissa, B.; Fisher, M.B.; Rolf, L.; Rifat, H.; Tessa, W.; Gordon, B. Global monitoring of water supply and sanitation: History, methods and future challenges. Int. J. Environ. Res. 2014, 11, 8137–8165. [Google Scholar]
- Lewis, N.S. Introduction: Solar Energy Conversion. Chem. Rev. 2015, 115, 12631–12632. [Google Scholar] [PubMed]
- Liu, J.; Liu, Q.L.; Ma, D.L. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems forefficient solar steam generation. J. Mater. Chem. A 2019, 7, 9034. [Google Scholar]
- Chang, C.; Yang, C.; Liu, Y.; Tao, P.; Song, C.; Shang, W.; Wu, J.; Deng, T. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. ACS Appl. Mater. Interfaces 2016, 8, 23412–23418. [Google Scholar]
- Dao, V.-D.; Tran, C.Q.; Ko, S.-H.; Choi, H.-S. Dry plasma reduction to synthesize supported platinum nanoparticles for flexible dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 443643. [Google Scholar]
- David, B.; Philippe, T.; Abdelhamid, M.; Brahim, L.; Michel, O. Photothermal imaging of nanometersized metal particles among scatterers. Science 2002, 297, 1160–1163. [Google Scholar]
- Hessel, C.M.; Pattani, V.P.; Rasch, M.; Panthani, M.G.; Koo, B.; Tunnell, J.W.; Korgel, B.A. Copper Selenide Nanocrystals for Photothermal Therapy. Nano Lett. 2011, 11, 2560–2566. [Google Scholar]
- Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227-e. [Google Scholar]
- Zhao, J.; Yang, Y.; Yang, C.; Tian, Y.; Que, W. Hydrophobic Surface Enabled Salt-blocking 2D Ti3C2 MXene Membrane for Efficient and Stable Solar Desalination. J. Mater. Chem. A 2018, 6, 16196–16204. [Google Scholar]
- Celzard, A.; Pasc, A.; Schaefer, S.; Mandel, K.; Ballweg, T.; Li, S.; Medjahdi, G.; Nicolas, V.; Fierro, V. Floating hollow carbon spheres for improved solar evaporation. Carbon 2019, 146, 232–247. [Google Scholar]
- Chen, T.; Wang, S.; Wu, Z.; Wang, X.; Peng, J.; Wu, B.; Cui, J.; Fang, X.; Xie, Y.; Zheng, N. A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation. J. Mater. Chem. A 2018, 6, 14571–14576. [Google Scholar]
- Hota, S.K.; Diaz, G. Activated carbon dispersion as absorber for solar water evaporation: A parametric analysis. Sol. Energy 2019, 184, 40–51. [Google Scholar]
- Huo, B.; Jiang, D.; Cao, X.; Liang, H.; Liu, Z.; Li, C.; Liu, J. N-doped graphene/carbon hybrid aerogels for efficient solar steam generation. Carbon 2019, 142, 13–19. [Google Scholar]
- Miao, E.-D.; Ye, M.-Q.; Guo, C.-L.; Liang, L.; Liu, Q.; Rao, Z.-H. Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization. Appl. Therm. Eng. 2019, 149, 1255–1264. [Google Scholar]
- Sun, L.; Liu, J.; Zhao, Y.; Xu, J.; Li, Y. Highly efficient solar steam generation via mass-produced carbon nanosheet frameworks. Carbon 2019, 145, 352–358. [Google Scholar]
- Surwade, S.P.; Smirnov, S.N.; Vlassiouk, I.V.; Unocic, R.R.; Veith, G.M.; Sheng, D.; Mahurin, S.M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459. [Google Scholar]
- Wang, X.; He, Y.; Liu, X.; Zhu, J. Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films. Powder Technol. 2017, 321, 276–285. [Google Scholar]
- Yin, Z.; Wang, H.; Jian, M.; Li, Y.; Xia, K.; Zhang, M.; Wang, C.; Wang, Q.; Ma, M.; Zheng, Q.-S.; et al. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation. ACS Appl. Mater. Interfaces 2017, 9, 28596–28603. [Google Scholar]
- Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. ACS Nano 2017, 11, 5087–5093. [Google Scholar]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Wang, X.; Ho, G.W. Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation. Adv. Energy Mater. 2018, 8, 1702149. [Google Scholar]
- Yin, X.; Zhang, Y.; Guo, Q.; Cai, X.; Xiao, J.; Ding, Z.; Yang, J. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination. ACS Appl. Mater. Interfaces 2018, 10, 10998–11007. [Google Scholar] [PubMed]
- Gao, M.; Peh, C.K.; Phan, H.T.; Zhu, L.; Ho, G.W. Solar Absorber Gel: Localized Macro-Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation. Adv. Energy Mater. 2018, 8, 1800711. [Google Scholar]
- Wang, X.; Sha, C.; Wang, W.; Chen, Y.; Yu, Y.; Fan, D. Functionalized biomass-derived composites for solar vapor generation. Mater. Res. Express 2019, 6, 125613. [Google Scholar]
- Li, J.Y.; Zhou, X.; Mu, P.; Wang, F.; Sun, H.X.; Zhu, Z.Q.; Zhang, J.; Li, W.; Li, A. Ultralight Biomass Porous Foam with Aligned Hierarchical Channels as Salt-Resistant Solar Steam Generators. ACS Appl. Mater. Interfaces 2020, 12, 798–806. [Google Scholar]
- Zhou, X.; Li, J.Y.; Liu, C.; Wang, F.; Chen, H.; Zhao, C.X.; Sun, H.; Zhu, Z. Carbonized tofu as photothermal material for highly efficient solar steam generation. Int. J. Energy Res. 2020, 44, 9213–9221. [Google Scholar]
- Xu, N.; Hu, X.; Xu, W.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. Mushrooms as Efficient Solar Steam-Generation Devices. Adv. Mater. 2017, 29, 1606762. [Google Scholar]
- Fang, J.; Liu, J.; Gu, J.; Liu, Q.; Zhang, W.; Su, H.; Zhang, D. Hierarchical Porous Carbonized Lotus Seedpods for Highly Efficient Solar Steam Generation. Chem. Mater. 2018, 30, 6217–6221. [Google Scholar]
- Fang, Q.; Li, T.; Chen, Z.; Lin, H.; Wang, P.; Liu, F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces 2019, 11, 10672–10679. [Google Scholar]
- Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.; Gu, J.; Liu, Q.; Su, H.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 2171–2179. [Google Scholar]
- Yang, L.; Chen, G.; Zhang, N.; Xu, Y.; Xu, X. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification. ACS Sustain. Chem. Eng. 2019, 7, 19311–19320. [Google Scholar]
- Zhu, M.; Yu, J.; Ma, C.; Zhang, C.; Wu, D.; Zhu, H. Carbonized daikon for high efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 191, 83–90. [Google Scholar]
- Lu, Y.; Wang, X.; Fan, D.; Yang, H.; Xu, H.; Min, H.; Yang, X. Biomass derived Janus solar evaporator for synergic water evaporation and purification. Sustain. Mater. Technol. 2020, 25, e00180. [Google Scholar]
- Wilson, H.M.; Ahirrao, D.J.; Ar, S.R.; Jha, N. Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Sol. Energy Mater. Sol. Cells 2020, 215, 110604. [Google Scholar]
- Lin, Y.; Zhou, W.; Di, Y.; Zhang, X.; Yang, L.; Gan, Z. Low-cost carbonized kelp for highly efficient solar steam generation. AIP Adv. 2019, 9, 055110. [Google Scholar]
- Long, Y.J.; Huang, S.L.; Yi, H.; Chen, J.Q.; Wu, J.H.; Liao, Q.F.; Liang, H.; Cui, H.; Ruan, S.; Zeng, Y.-J. Carrot-inspired solar thermal evaporator. J. Mater. Chem. A 2019, 7, 26911–26916. [Google Scholar]
- Storer, D.P.; Phelps, J.L.; Wu, X.; Owens, G.; Khan, N.I.; Xu, H. Graphene and Rice Straw Fibre Based 3D Photothermal Aerogels for Highly Efficient Solar Evaporation. ACS Appl. Mater. Interfaces 2020, 12, 15279–15287. [Google Scholar]
- Ma, Y.; Cao, J. Preparation of mechanically robust Fe3O4/porous carbon/diatomite composite monolith for solar steam generation. Environ. Sci. Pollut. Res. 2020, 27, 45775–45786. [Google Scholar] [CrossRef]
- Shan, X.L.; Zhao, A.Q.; Lin, Y.W.; Hu, Y.J.; Di, Y.S.; Liu, C.H.; Gan, X. Low-Cost, Scalable, and Reusable Photothermal Layers for Highly Efficient Solar Steam Generation and Versatile Energy Conversion. Adv. Sustain. Syst. 2020, 4, 1900153. [Google Scholar]
- Liu, J.; Yang, Q.; Yang, W.; Li, M.; Song, Y. Aquatic plant inspired hierarchical artificial leaves for highly efficient photocatalysis. J. Mater. Chem. A 2013, 1, 7760–7766. [Google Scholar]
- Liao, Y.; Chen, J.; Zhang, D.; Wang, X.; Yuan, B.; Deng, P.; Li, F.; Zhang, H. Lotus leaf as solar water evaporation devices. Mater. Lett. 2019, 240, 92–95. [Google Scholar]
- Xu, K.; Guo, L.; Ye, H. A naturally optimized mass transfer process: The stomatal transpiration of plant leaves. J. Plant Physiol. 2019, 234–235, 138–144. [Google Scholar]
- Ouyang, L.; Zhao, P.; Zhou, G.; Zhu, L.; Huang, Y.; Zhao, X.; Ni, G. Stand-scale transpiration of a Eucalyptus urophylla × Eucalyptus grandis plantation and its potential hydrological implication. Ecohydrology 2018, 11, e1938. [Google Scholar] [CrossRef]
- Yang, T.; Lin, H.; Lin, K.T.; Jia, B. Carbon-based absorbers for solar evaporation: Steam generation and beyond. Sustain. Mater. Technol. 2020, 25, e00182. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518. [Google Scholar] [CrossRef]
- Zhu, L.; Ding, T.; Gao, M.; Peh, C.K.N.; Ho, G.W. Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation. Adv. Energy Mater. 2019, 9, 1900250. [Google Scholar] [CrossRef]
- Liu, Y.; Lou, J.; Ni, M.; Song, C.; Wu, J.; Dasgupta, N.P.; Tao, P.; Shang, W.; Deng, T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces 2015, 8, 772–779. [Google Scholar] [CrossRef]
- Huang, J.; He, Y.; Chen, M.; Jiang, B.; Huang, Y. Solar evaporation enhancement by a compound film based on Au@TiO2 core–shell nanoparticles. Solar Energy 2017, 155, 1225–1232. [Google Scholar]
- Sun, Y.; Sun, S.P.; Liao, X.M.; Wen, J.; Yin, G.F.; Pu, X.M.; Yao, Y.; Huang, Z. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes. Appl. Surf. Sci. 2018, 440, 440–447. [Google Scholar] [CrossRef]
- Zan, G.; Jiang, S.W.; Kim, H.Y.; Zhao, K.; Li, S.; Lee, K.; Jiang, J.; Kim, G.; Shin, E.; Kim, W.; et al. A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat. Commun. 2024, 15, 1056–1071. [Google Scholar] [CrossRef]
- Song, X.; Li, X.; Zhu, B.; Sun, S.; Chen, Z.; Zhang, L. MnO2/Poly-L-lysine co-decorated carbon fiber cloth with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance for solar-enabled anti-fouling seawater desalination. Adv. Fiber Mater. 2024, 6, 1569–1582. [Google Scholar]
- Meng, F.; Wang, D. Effects of vacuum freeze drying pretreatment on biomass and biochar properties. Renew. Energy 2020, 155, 1–9. [Google Scholar]
- Lin, T.; Meng, F.; Zhang, M.; Liu, Q. Effects of different low temperature pretreatments on properties of corn stover biochar for precursors of sulfonated solid acid catalysts. Bioresour. Technol. 2022, 357, 127342. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Xing, L.; Bao, H.; Gang, W.; Cui, Z.; Zhu, X.; Wang, X. Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 2018, 33, 674–684. [Google Scholar]
- Thirugnanasambantham, A.; Ao, Y.L.; Luo, Z.F.; Zhang, L.; Li, J.; Denkenberger, D.; Wang, J.Q. Energy efficient materials for solar water distillation—A review. Renew. Sustain. Energy Rev. 2019, 115, 109409. [Google Scholar]
- Zhang, S.; Zang, L.; Dou, T.; Zou, J.; Zhang, Y.; Sun, L. Willow Catkinsderived porous carbon membrane with hydrophilic property for efficient solar steam generation. ACS Omega 2020, 5, 2878–2885. [Google Scholar] [CrossRef]
- Li, T.; Fang, Q.; Xi, X.; Chen, Y.; Liu, F. Ultra-robust carbon fibers for multi-media purification: Via solar-evaporation. J. Mater. Chem. A 2018, 7, 586–593. [Google Scholar] [CrossRef]
- Chen, S.; Sun, L.; Huang, Y.; Yang, D.; Zhou, M.; Zheng, D. Biochar-based interfacial evaporation materials derived from lignosulfonate for efficient desalination. Carbon Neutralization 2023, 2, 494–509. [Google Scholar] [CrossRef]
- Ni, A.; Fu, D.; Lin, P.; Wang, X.; Xia, Y.; Han, X.; Zhang, T. Eco-friendly photothermal hydrogel evaporator for efficient solar-driven water purification. J. Colloid Interface Sci. 2023, 647, 344–353. [Google Scholar] [PubMed]
- Jiang, W.; Hao, S.; Cang, D.; Ling, Y.; Bai, X. Thermal stability of TiO2 nanotube array films. Chin. J. Eng. 2008, 30, 144–147. [Google Scholar]
- Yao, J.K.; Huang, H.L.; Xu, C.; Ma, J.; He, H.B.; Shao, J.; Jin, Y.X.; Zhao, Y.; Fan, Z.X.; Zhang, F.; et al. Investigation on thermal stability of TiO2 films for application at high temperature. Surf. Eng. 2009, 25, 116–119. [Google Scholar]
Material Name | Synthesis Method | Water Evaporation Rate (kg·m−2·h−1) | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|
PVA@PCLS | Sol-gel method | 2.33 | Resource recycling; high solar-to-vapor conversion efficiency | High energy consumption in the preparation process of biochar; long-term stability and durability not yet evaluated | [60] |
CFC/MnO2/PLL | Electrostatic adsorption | 2.20 | Low evaporation enthalpy; enhanced light absorption and antibacterial properties | Insufficient long-term stability and durability; complex preparation methods and high costs | [51] |
TiO2/car-bonized OFL | Hydrothermal method | 2.31 | High stability; efficient water purification capability | Limited applicability to pollutants | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, Y.; Wang, L.; Yang, L.; Duan, C.; Gui, Q.; Cui, S.; Yuan, S.; Wang, J. TiO2 Decorated onto Three-Dimensional Carbonized Osmanthus Fragrans Leaves for Solar-Driven Clean Water Generation. Nanomaterials 2025, 15, 504. https://doi.org/10.3390/nano15070504
Ao Y, Wang L, Yang L, Duan C, Gui Q, Cui S, Yuan S, Wang J. TiO2 Decorated onto Three-Dimensional Carbonized Osmanthus Fragrans Leaves for Solar-Driven Clean Water Generation. Nanomaterials. 2025; 15(7):504. https://doi.org/10.3390/nano15070504
Chicago/Turabian StyleAo, Yali, Li Wang, Lin Yang, Chengjie Duan, Qizhe Gui, Songyun Cui, Shutang Yuan, and Jiaqiang Wang. 2025. "TiO2 Decorated onto Three-Dimensional Carbonized Osmanthus Fragrans Leaves for Solar-Driven Clean Water Generation" Nanomaterials 15, no. 7: 504. https://doi.org/10.3390/nano15070504
APA StyleAo, Y., Wang, L., Yang, L., Duan, C., Gui, Q., Cui, S., Yuan, S., & Wang, J. (2025). TiO2 Decorated onto Three-Dimensional Carbonized Osmanthus Fragrans Leaves for Solar-Driven Clean Water Generation. Nanomaterials, 15(7), 504. https://doi.org/10.3390/nano15070504