The Photothermal Conversion and UV Resistance of Silk Fabrics Being Achieved through Surface Modification with C@SiO2 Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Preparation of C@SiO2 Nanoparticles
3.3. Preparation of C@SiO2 Silk Fabric
3.4. Characterization
3.5. Characterization of Photothermal Conversion Properties
3.6. Washing Durability Test
3.7. UV Resistance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, D.H.; Viventi, J.; Amsden, J.J.; Xiao, J.; Vigeland, L.; Kim, Y.S.; Blanco, J.A.; Panilaitis, B.; Frechette, E.S.; Contreras, D. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.; Rather, L.J.; Mohammad, F. Economically viable UV-protective and antioxidant finishing of wool fabric dyed with Tagetes erecta flower extract: Valorization of marigold. Ind. Crops Prod. 2018, 119, 277–282. [Google Scholar] [CrossRef]
- Cai, H.; Gao, L.; Chen, L.; Chen, X.; Liu, Z.; Li, Z.; Dai, F. An effective, low-cost and eco-friendly method for preparing UV resistant silk fabric. J. Nat. Fibers 2021, 19, 5173–5185. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, W.; Zhou, S.; Xing, T.; Sun, G.; Chen, G. Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chem. Eng. J. 2020, 382, 122988. [Google Scholar] [CrossRef]
- Hazarika, A.; Deka, B.K.; Kim, D.; Jeong, H.E.; Park, Y.B.; Park, H.W. Woven Kevlar Fiber/Polydimethylsiloxane/Reduced Graphene Oxide Composite-Based Personal Thermal Management with Freestanding Cu-Ni Core-Shell Nanowires. Nano Lett. 2018, 18, 6731–6739. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, E.; Xie, W.; Wang, J.; Kashi, S.; Sharp, J.; Zhang, Q.; Varley, R.J.; Sun, L.; Wang, X. Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem. Eng. J. 2022, 433, 133688. [Google Scholar] [CrossRef]
- Gu, B.; Zhou, H.; Zhang, Z.; Zhang, T.; Chen, M.; Qiu, F.; Yang, D. Cellulose-based hybrid membrane with functional integration for personal thermal management applications. Appl. Surf. Sci. 2021, 535, 147670. [Google Scholar] [CrossRef]
- Guan, M.; Liu, Y.; Du, H.; Long, Y.; An, X.; Liu, H.; Cheng, B. Durable, breathable, sweat-resistant, and degradable flexible sensors for human motion detection. Chem. Eng. J. 2023, 462, 142151. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Wei, Y.; Chen, Y.; Gao, M.; Zhang, Z.; Si, C.; Li, H.; Ji, X.; Liang, J. Tailoring Silver Nanowire Nanocomposite Interfaces to Achieve Superior Stretchability, Durability, and Stability in Transparent Conductors. Nano Lett. 2022, 22, 3784–3792. [Google Scholar] [CrossRef]
- Guo, Y.; Dun, C.; Xu, J.; Li, P.; Huang, W.; Mu, J.; Hou, C.; Hewitt, C.A.; Zhang, Q.; Li, Y.; et al. Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS2. ACS Appl. Mater. Interfaces 2018, 10, 33316–33321. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Zhang, H.-B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z.-Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29, 1806819. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, Y.; Yan, C.; Zhou, Y.; Deng, Z.; Ran, J.; Bi, S.; Li, S.; Cai, G.; Wang, X. WPU/Cu2−XSe coated cotton fabrics for photothermal conversion and photochromic applications. Cellulose 2021, 28, 6727–6738. [Google Scholar] [CrossRef]
- Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Hu, L. Challenges and Opportunities for Solar Evaporation. Joule 2019, 3, 683–718. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles. Text. Res. J. 2018, 89, 867–880. [Google Scholar] [CrossRef]
- Cao, Y.M.; Zheng, M.; Li, Y.F.; Zhai, W.Y.; Yuan, G.T.; Zheng, M.; Zhuo, M.P.; Wang, Z.S.; Liao, L.S. Smart Textiles Based on MoS2 Hollow Nanospheres for Personal Thermal Management. ACS Appl. Mater. Interfaces 2021, 13, 48988–48996. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Chen, R.; Li, S.; Wang, Z.; Wen, F.; Wang, B.; Mu, J. Excellent thermally conducting modified graphite nanoplatelets and MWCNTs/poly(phenylene sulfone) composites for high-performance electromagnetic interference shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106280. [Google Scholar] [CrossRef]
- Sarkar, S.; Banerjee, D.; Ghorai, U.K.; Das, N.S.; Chattopadhyay, K.K. Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots. J. Lumin. 2016, 178, 314–323. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, C.; Wang, J.; Cai, Z.; Ge, F. High-Performance Laminated Fabric with Enhanced Photothermal Conversion and Joule Heating Effect for Personal Thermal Management. ACS Appl. Mater. Interfaces 2021, 13, 8851–8862. [Google Scholar] [CrossRef]
- Cai, G.; Xu, Z.; Yang, M.; Tang, B.; Wang, X. Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl. Surf. Sci. 2017, 393, 441–448. [Google Scholar] [CrossRef]
- Yue, L.; Zhong, B.; Xia, L.; Zhang, T.; Yu, Y.; Huang, X. Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2021, 582, 177–186. [Google Scholar] [CrossRef]
- Liu, X.; Mishra, D.D.; Wang, X.; Peng, H.; Hu, C. Towards highly efficient solar-driven interfacial evaporation for desalination. J. Mater. Chem. A 2020, 8, 17907–17937. [Google Scholar] [CrossRef]
- Mu, P.; Zhang, Z.; Bai, W.; He, J.; Sun, H.; Zhu, Z.; Liang, W.; Li, A. Superwetting Monolithic Hollow-Carbon-Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation. Adv. Energy Mater. 2019, 9, 1802158. [Google Scholar] [CrossRef]
- Li, Y.; Shi, J. Hollow-Structured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications. Adv. Mater. 2014, 26, 3176–3205. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.-Z.; Bao, Y.; Cai, H.-H.; Zhang, A.-P.; Ma, Y.; Tong, X.-L.; Li, Z.; Dai, F.-Y. Multifunctional silk fabric via surface modification of nano-SiO2. Text. Res. J. 2020, 90, 1616–1627. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, S.H.; Yun, J.; Jang, J. Fabrication of SiO2/TiO2 double-shelled hollow nanospheres with controllable size via sol-gel reaction and sonication-mediated etching. ACS Appl. Mater. Interfaces 2014, 6, 15420–15426. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Hu, J.; Fu, S. Controlled Synthesis of Magnetite−Silica Nanocomposites via a Seeded Sol−Gel Approach. J. Phys. Chem. C 2009, 113, 7646–7651. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, W.; Pakdel, E.; Zhang, M.; Sun, L.; Wang, X. Homogeneous melanin/silica core-shell particles incorporated in poly (methyl methacrylate) for enhanced UV protection, thermal stability, and mechanical properties. Mater. Chem. Phys. 2019, 230, 319–325. [Google Scholar] [CrossRef]
- Khashan, S.; Dagher, S.; Al Omari, S.; Tit, N.; Elnajjar, E.; Mathew, B.; Hilal-Alnaqbi, A. Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications. Mater. Res. Express 2017, 4, 055701. [Google Scholar] [CrossRef]
- Amri, A.; Jiang, Z.-T.; Wyatt, N.; Yin, C.-Y.; Mondinos, N.; Pryor, T.; Rahman, M.M. Optical properties and thermal durability of copper cobalt oxide thin film coatings with integrated silica antireflection layer. Ceram. Int. 2014, 40, 16569–16575. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhi, X.; Du, B.; Yuan, S. Preparation of Elastic and Antibacterial Chitosan–Citric Membranes with High Oxygen Barrier Ability by in Situ Cross-Linking. ACS Omega 2020, 5, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, N.; Kim, D.I.; Grobelny, J.; Hawa, T.; Henz, B.; Zachariah, M.R. Ductility at the nanoscale: Deformation and fracture of adhesive contacts using atomic force microscopy. Appl. Phys. Lett. 2007, 91, 203114. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Appl. Surf. Sci. 2017, 405, 380–388. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, J.; Wang, X.; Wang, Y.; Zhu, J.; Hu, Z. Preparation of KH570-SiO2 and their modification on the MF/PVA composite membrane. Fibers Polym. 2015, 16, 1772–1780. [Google Scholar] [CrossRef]
- Hong, R.Y.; Fu, H.P.; Zhang, Y.J.; Liu, L.; Wang, J.; Li, H.Z.; Zheng, Y. Surface-modified silica nanoparticles for reinforcement of PMMA. J. Appl. Polym. Sci. 2007, 105, 2176–2184. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, R.; Xu, Y.; Wang, C. Preparation and characterization of highly dispersed silica nanoparticles via nonsurfactant template for fabric coating. J. Text. Inst. 2017, 108, 1662–1668. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Q.; Huang, B.; Feng, S.; Lu, C. Facile Fabrication of Densely Packed Ti3C2 MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. ACS Nano 2021, 15, 12405–12417. [Google Scholar] [CrossRef] [PubMed]
- FZ/T73023-2006; Antibacterial Knitwear. NDRC: Beijing, China, 2006.
- GB/T18830-2009; Textiles—Evaluation for Solar Ultraviolet Radiation Protective Properties. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2009.
Transmittance (%) | |||
---|---|---|---|
Silk Fabric Sample | UPF | UVA | UVB |
Untreated | 38.57 | 36.17 | 20.54 |
1.25 mg/mL C@SiO2 | 103.83 | 11.63 | 8.02 |
2.5 mg/mL C@SiO2 | 126.03 | 9.37 | 6.79 |
5 mg/mL C@SiO2 | 126.08 | 8.63 | 6.78 |
10 mg/mL C@SiO2 | 147.39 | 7.55 | 5.86 |
20 mg/mL C@SiO2 | 165.76 | 6.50 | 5.30 |
Techniques | Materials | Heating Performance | Ref. |
---|---|---|---|
Photothermal | MoS2-HNSPs fabrics | 25 °C to 52 °C after irradiation 60 s | [16] |
CNT/cellulose | 30 °C to 40 °C after irradiation 60 s | [19] | |
CNF/Ti3C2Tx | 20 °C to 40 °C after irradiation 200 s | [38] | |
NM/PDMS fabrics | 38.4 °C to 45.3 °C after irradiation 300 s | [6] | |
C@SiO2 fabrics | 23 °C to 60 °C after irradiation 30 s | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, G.; Yao, L.; Chen, M.; Yang, Y.; Lu, S.; Wu, G. The Photothermal Conversion and UV Resistance of Silk Fabrics Being Achieved through Surface Modification with C@SiO2 Nanoparticles. Molecules 2023, 28, 7970. https://doi.org/10.3390/molecules28247970
Deng G, Yao L, Chen M, Yang Y, Lu S, Wu G. The Photothermal Conversion and UV Resistance of Silk Fabrics Being Achieved through Surface Modification with C@SiO2 Nanoparticles. Molecules. 2023; 28(24):7970. https://doi.org/10.3390/molecules28247970
Chicago/Turabian StyleDeng, Gang, Lu Yao, Mingzhao Chen, Yuanyuan Yang, Song Lu, and Guohua Wu. 2023. "The Photothermal Conversion and UV Resistance of Silk Fabrics Being Achieved through Surface Modification with C@SiO2 Nanoparticles" Molecules 28, no. 24: 7970. https://doi.org/10.3390/molecules28247970
APA StyleDeng, G., Yao, L., Chen, M., Yang, Y., Lu, S., & Wu, G. (2023). The Photothermal Conversion and UV Resistance of Silk Fabrics Being Achieved through Surface Modification with C@SiO2 Nanoparticles. Molecules, 28(24), 7970. https://doi.org/10.3390/molecules28247970