High-Performance Metamaterial Light Absorption from Visible to Near-Infrared Assisted by Anti-Reflection Coating
Abstract
:1. Introduction
2. Design and Simulations
3. Fabrication Process
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holloway, L.; Kuester, F.; Gordon, A.; O’Hara, J.; Booth, J.; Smith, D.R. Smith. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antenn. Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Tittl, A.; Michel, A.K.U.; Schäferling, M.; Yin, X.; Gholipour, B.; Cui, L.; Wuttig, M.; Taubner, T.; Neubrech, F.; Giessen, H. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 2015, 27, 4597–4603. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C.; Kong, W.; Wang, Y.; Guo, Y.; Li, W.; Ma, X.; Pu, M.; Pu, X. Broadband achromatic metasurface filter for apodization imaging in the visible. Opto-Electron. Eng. 2021, 48, 200466. [Google Scholar]
- Chen, J.; Fan, W.; Zhang, T.; Tang, C.; Chen, X.; Wu, J.; Li, D.; Yu, Y. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt. Express 2017, 25, 3675–3681. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, P.; Wen, Q.; Chen, H.; Tang, Y.; Yi, Z.; Wei, K.; Li, G.; Tang, B.; Yi, Y. Graphene Multi-Frequency Broadband and Ultra-Broadband Terahertz Absorber Based on Surface Plasmon Resonance. Electronics 2023, 12, 2655. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband metamaterial absorbers. Adv. Opt. Mater. 2018, 7, 1800995. [Google Scholar] [CrossRef]
- Bendelala, F.; Cheknane, A. A Transparent Metasurface Absorber/Emitter with High Solar Thermal Transfer Efficiency for Combined Solar/Thermal Conversion Application. Plasmonics 2022, 17, 921–929. [Google Scholar] [CrossRef]
- Liang, S.; Xu, F.; Li, W.; Yang, W.; Cheng, S.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, Z.; Liu, L.; Wu, X.; Liu, H.; Li, G.; Zeng, L.; Li, H.; Wu, P. Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl. Therm. Eng. 2023, 230, 120841. [Google Scholar] [CrossRef]
- Wang, S.; Yoon, N.; Kamboj, A.; Petluru, P.; Zheng, W.; Wasserman, D. Ultra-thin enhanced-absorption long-wave infrared detectors. Appl. Phys. Lett. 2018, 112, 091104. [Google Scholar] [CrossRef]
- Chang, C.; Kort-Kamp, W.J.M.; Nogan, J.; Luk, T.S.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.R.; Sykora, M.; Chen, H. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Lett. 2018, 18, 7665–7673. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef] [PubMed]
- Charola, S.; Patel, S.K.; Dalsaniya, K.; Jadeja, R.; Nguyen, T.K.; Dhasarathan, V. Numerical investigation of wideband L-shaped metasurface based solar absorber for visible and ultraviolet region. Phys. B Condens. Matter 2021, 601, 412503. [Google Scholar] [CrossRef]
- Liao, Z.; Liu, Z.; Wu, Q.; Zhan, X.; Liu, M.; Liu, G. Ultra-broadband solar light wave trapping by gradient cavity-thin-film metasurface. J. Phys. D Appl. Phys. 2021, 54, 284002. [Google Scholar] [CrossRef]
- Lei, L.; Lou, F.; Tao, K.; Huang, H.; Cheng, X.; Xu, P. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photonics Res. 2019, 7, 734–741. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, M.; Ji, Y.; Huang, W.; Yu, H.; Shi, J. Broadband terahertz metamaterial absorber based on simple multi-ring structures. Aip. Adv. 2018, 8, 075206. [Google Scholar] [CrossRef]
- Wu, F.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Ultra-broadband solar absorber and high-efficiency thermal emitter from uv to mid-infrared spectrum. Micromachines 2023, 14, 985. [Google Scholar] [CrossRef]
- Zhang, Z.; Mo, Y.; Wang, H.; Zhao, Y.; Jiang, S. High-performance and cost-effective absorber for visible and near-infrared spectrum based on a spherical multilayered dielectric-metal structure. Appl. Opt. 2019, 58, 4467–4473. [Google Scholar] [CrossRef]
- Muhammad, N.; Tang, X.; Tao, F.; Qiang, L.; Zhengbiao, O. Broadband polarization-insensitive absorption by metasurface with metallic pieces for energy harvesting application. Mater. Sci. Eng. B 2019, 249, 114419. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, H.; Zhang, H.; Huang, Z.; Liu, G.; Liu, X.; Fu, G.; Tang, C. Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption. Sol. Energy 2020, 199, 360–365. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Tittl, A.; Harats, M.; Walter, R.; Yin, X.; Schäferling, M.; Liu, N.; Rapaport, R.; Giessen, H. Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects. ACS Nano 2014, 8, 10885–10892. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Yoo, Y.; Kim, K.; Rhee, J.; Kim, Y.; Lee, Y. Dual broadband metamaterial absorber. Opt. Express 2015, 23, 3861–3868. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guler, U.; Kinsey, N.; Naik, G.V.; Boltasseva, A.; Guan, J.; Shalaev, V.M.; Kildishev, A.V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Qin, Z.; Liang, Z.; Meng, D.; Xu, H.; Smith, D.R.; Liu, Y. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl. 2021, 10, 138. [Google Scholar] [CrossRef]
- Chen, H. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef]
- Liu, J.; Ma, W.; Chen, W.; Yu, G.; Chen, Y.; Deng, X.; Yang, C. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared. Opt. Express 2020, 28, 23748–23760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Niu, J.; Zhang, C.; Niu, G.; Ye, X.; Xie, C. Ultra-broadband high-efficiency solar absorber based on double-size cross-shaped refractory metals. Nanomaterials 2020, 10, 552. [Google Scholar] [CrossRef]
- Wu, B.; Liu, Z.; Liu, G.; Liu, X.; Tang, P.; Du, G.; Yuan, W.; Liu, M. An ultra-broadband, polarization and angle-insensitive metamaterial light absorber. J. Phys. D 2020, 53, 095106. [Google Scholar] [CrossRef]
- Feng, H.; Li, X.; Wang, M.; Xia, F.; Zhang, K.; Kong, W.; Dong, L.; Yun, M. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy. Opt. Express 2021, 29, 6000–6010. [Google Scholar] [CrossRef]
- Liu, H.; Xie, M.; Ai, Q.; Yu, Z. Ultra-broadband selective absorber for near-perfect harvesting of solar energy. Energy. J. Quant. Spectrosc. Radiat. Transf. 2021, 266, 107575. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, B. Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared. Surf. Interfaces 2022, 33, 102244. [Google Scholar] [CrossRef]
- Qin, F.; Chen, X.; Yi, Z.; Yao, W.; Yang, H.; Tang, Y.; Yi, Y.; Li, H.; Yi, Y. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater. Sol. Cells 2020, 211, 110535. [Google Scholar] [CrossRef]
Refs. and Published Year | Number of Patterned Layers | Materials | BW0.9 (nm) | Region (nm) | Average Absorption within BW0.9 |
---|---|---|---|---|---|
[27] 2020 | 2 | Al, MgF2, Ti, SiO2 | 1100 | 405–1505 | 95.14% |
[28] 2020 | 1 | Ti, SiO2, TiN | 1182 | 415–1597 | - |
[29] 2020 | 2 | Ti, SiO2 | 1376 | 456–1832 | 94.60% |
[30] 2021 | 2 | Ti, a-Si | 865 | 250–1115 | 97.11% |
[31] 2021 | 18 | Ni, Al2O3 | 2240 | 300–2540 | 99.17% |
[32] 2022 | 3 | Ti, a-Si, SiO2 | 1576 | 329–1905 | 96.09% |
SiO2-coated UBMA (This work) | 1 | Ti, SiO2 | 1684 | 440–2124 | 96.2% |
Si3N4-coated UBMA (This work) | 1 | Ti, SiO2, Si3N4 | 2161 | 833–2994 | 95.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Lei, L.; Xie, M.; Xu, P.; Xu, S. High-Performance Metamaterial Light Absorption from Visible to Near-Infrared Assisted by Anti-Reflection Coating. Photonics 2023, 10, 998. https://doi.org/10.3390/photonics10090998
Wu D, Lei L, Xie M, Xu P, Xu S. High-Performance Metamaterial Light Absorption from Visible to Near-Infrared Assisted by Anti-Reflection Coating. Photonics. 2023; 10(9):998. https://doi.org/10.3390/photonics10090998
Chicago/Turabian StyleWu, Dongqing, Lei Lei, Meiting Xie, Ping Xu, and Shixiang Xu. 2023. "High-Performance Metamaterial Light Absorption from Visible to Near-Infrared Assisted by Anti-Reflection Coating" Photonics 10, no. 9: 998. https://doi.org/10.3390/photonics10090998
APA StyleWu, D., Lei, L., Xie, M., Xu, P., & Xu, S. (2023). High-Performance Metamaterial Light Absorption from Visible to Near-Infrared Assisted by Anti-Reflection Coating. Photonics, 10(9), 998. https://doi.org/10.3390/photonics10090998