Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,191)

Search Parameters:
Keywords = surface topographies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9324 KB  
Article
Melt Pool Dynamics and Quantitative Prediction of Surface Topography in Laser Selective Forming of Optical Glass
by Lianshuang Ning, Weijie Fu and Xinming Zhang
Machines 2026, 14(1), 122; https://doi.org/10.3390/machines14010122 - 21 Jan 2026
Abstract
Laser local forming is an effective method for reshaping optical glass, yet the deformation of the material during the cooling phase remains poorly understood. This study investigates the dynamic evolution of the molten pool, specifically focusing on the transition from an initial convex [...] Read more.
Laser local forming is an effective method for reshaping optical glass, yet the deformation of the material during the cooling phase remains poorly understood. This study investigates the dynamic evolution of the molten pool, specifically focusing on the transition from an initial convex shape to a final “M-shaped” profile. A combined approach using thermal-fluid simulation and high-speed imaging experiments was employed to track the surface changes throughout the heating and cooling cycles. The results show that while the surface bulges outward during laser irradiation, the material redistributes after the laser is switched off due to non-uniform cooling and volumetric shrinkage. The specific roles of viscosity and surface tension in driving this reverse flow were identified. Furthermore, the study established a quantitative model linking laser parameters to the final surface dimensions, providing a reliable tool for predicting and controlling the precision of glass forming. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

20 pages, 1483 KB  
Article
The Spherical Harmonic Representation of the Geoid
by Robert Tenzer, Wenjin Chen, Shengwang Yu and Zhengfeng Jin
Geomatics 2026, 6(1), 7; https://doi.org/10.3390/geomatics6010007 - 21 Jan 2026
Abstract
Global Gravitational Models (GGMs) describe the Earth’s external gravitational field by a set of spherical harmonic (Stokes) coefficients. These coefficients are routinely used to compute the geoid model, while disregarding the upper continental crustal (i.e., topographic) masses above the geoid. Strictly speaking, however, [...] Read more.
Global Gravitational Models (GGMs) describe the Earth’s external gravitational field by a set of spherical harmonic (Stokes) coefficients. These coefficients are routinely used to compute the geoid model, while disregarding the upper continental crustal (i.e., topographic) masses above the geoid. Strictly speaking, however, these coefficients can describe only gravity field quantities at (or above) the Earth’s surface to satisfy Laplace’s equation. Consequently, the GGM coefficients cannot be used to define the geoid surface rigorously without accounting for the internal convergence domain and the gravitational effect of topographic masses. In most technical and scientific applications, the computation of the geoid model directly from the GGM coefficients has been accepted under the assumption that errors due to disregarding the internal convergence domain (inside the topographic masses) are typically less than a few centimeters (i.e., at the level of global geoid model uncertainties). In this study, we demonstrate that these errors reach several decimeters and even meters, with maxima in Tibet and Himalayas exceeding ~4 m. Moreover, relatively large errors, reaching decimeters, are already detected in regions with a moderately elevated topography. In scientific applications requiring a high accuracy, such errors cannot be ignored. Instead, GGM coefficients describing the Earth’s external gravitational field have to be corrected for the effect of (topographic) masses distributed above the geoid surface to obtain spherical harmonic coefficients that explicitly define the geoid globally. The explicit definition of the global geoid model in the spectral domain is derived in this study and used to compile spherical harmonic coefficients of the geoid up to degree/order 2160 from the EIGEN-6C4 global gravitational model. Full article
16 pages, 5027 KB  
Article
Surface Properties of Dental Materials Influence the In Vitro Multi-Species Biofilm Formation
by Sabina Noreen Wuersching, David Manghofer, Bogna Stawarczyk, Jan-Frederik Gueth and Maximilian Kollmuss
Polymers 2026, 18(2), 288; https://doi.org/10.3390/polym18020288 - 21 Jan 2026
Abstract
This study examined the association between biofilm growth and surface properties of 3D printed, milled, and conventional materials used for manufacturing fixed dental prostheses. Disc-shaped specimens were produced and finished from five 3D-printing resins (VarseoSmile Crown plus [VSC], NextDent C&B MFH [ND], VarseoSmile [...] Read more.
This study examined the association between biofilm growth and surface properties of 3D printed, milled, and conventional materials used for manufacturing fixed dental prostheses. Disc-shaped specimens were produced and finished from five 3D-printing resins (VarseoSmile Crown plus [VSC], NextDent C&B MFH [ND], VarseoSmile Temp [VST], Temp PRINT [TP], P Pro Crown & Bridge [P]), two polymer milling blocks (composite: TetricCAD [TC], PMMA: TelioCAD [TEL]), two conventional polymer materials (Tetric EvoCeram [TEC], Protemp 4 [PT]), and zirconia (ZR). Surface roughness (Ra), wettability, interfacial tension (IFT) and surface topography were examined. Three-day biofilms were grown on the specimens using A. naeslundii, S. gordonii, S. mutans, S. oralis, and S. sanguinis in a multi-species suspension. Biofilms were quantified by crystal violet staining and with a plating and culture method (CFU/mL). Linear regression analysis was computed to demonstrate associations between the surface properties and biofilm growth. The strength of this relationship was quantified by calculating Spearman’s ρ. TC exhibited the highest, and TP the lowest IFT. TEC showed the highest Ra, while TEL had the lowest, with significant differences detected particularly between milled and 3D-printed specimens. TP specimens exhibited the highest biofilm mass, while ZR surfaces retained the least. Bacterial viability within the biofilms remained similar across all tested materials. There was a strong negative correlation between total IFT and biofilm mass, and a moderate positive correlation between Ra and CFU/mL. Surface properties are shaped by material composition, microstructure, and manufacturing methods and play a crucial role in biofilm formation on dental restorations. Full article
Show Figures

Figure 1

17 pages, 1285 KB  
Article
Surface Modification of Inconel 625 in Nitrate Environment
by Mieczysław Scendo
Metals 2026, 16(1), 112; https://doi.org/10.3390/met16010112 - 19 Jan 2026
Viewed by 52
Abstract
The influence of nitrate (NO3) concentration on the corrosion resistance of the Inconel 625 (superalloy) was investigated. The surface of Inconel 625 was chemically modified by oxidation in an alkaline sodium nitrate(V) solution. The surface and microstructure of specimens were [...] Read more.
The influence of nitrate (NO3) concentration on the corrosion resistance of the Inconel 625 (superalloy) was investigated. The surface of Inconel 625 was chemically modified by oxidation in an alkaline sodium nitrate(V) solution. The surface and microstructure of specimens were observed by a scanning electron microscope (SEM). The mechanical properties of Inconel 625 were characterized by microhardness (HV) measurements. The corrosion tests of materials were carried out by using the electrochemical method in the acidic chloride solution. The adsorption of the (MemOn)ads layer effectively separates the Inconel 625 surface from contact with the aggressive corrosive environment. The microhardness (HV10) value increased (about 13%) with the increase in nitrate concentration. A more-than-five-times-lower corrosion rate (CW) value was obtained for the Inconel 625 sample, whose surface was modified in an alkaline solution with the highest NO3 concentration. Chemical modification improves the structure and surface topography of the superalloy. After exposing Inconel 625 to an oxidizing environment (1.00 M NO3), the surface coverage degree (SC) was 80%. Full article
Show Figures

Figure 1

16 pages, 5668 KB  
Article
Effect of Selectively Etched Al-Rich and Si-Rich Microstructures on the Adhesion of Polyimide Coatings to SLM AlSi10Mg
by Jianzhu Li, Shuo Yang and Yujie Li
Materials 2026, 19(2), 385; https://doi.org/10.3390/ma19020385 - 18 Jan 2026
Viewed by 96
Abstract
Interfacial adhesion between selective laser-melted (SLM) AlSi10Mg and polyimide (PI) insulating coatings is often limited by mismatched physicochemical properties. To improve adhesion, Al-rich and Si-rich microstructured surfaces were fabricated on the XY plane (perpendicular to the build direction) and the Z plane (parallel [...] Read more.
Interfacial adhesion between selective laser-melted (SLM) AlSi10Mg and polyimide (PI) insulating coatings is often limited by mismatched physicochemical properties. To improve adhesion, Al-rich and Si-rich microstructured surfaces were fabricated on the XY plane (perpendicular to the build direction) and the Z plane (parallel to the build direction) by acidic and alkaline etching, exploiting the characteristic microstructure of SLM AlSi10Mg. Surface topography, chemical composition, and wettability were characterized, and interfacial mechanical performance was evaluated by shear and pull-off tests. The microstructures increased surface roughness and improved wettability. The shear strength rose from 2.6 ± 1.5 MPa for the polished surface to 43.2 ± 8.6 MPa. The polished surface showed a pull-off strength of 2.2 ± 0.25 MPa. In pull-off tests, failure mainly occurred within the dolly/adhesive/PI system, indicating that the interfacial tensile strength exceeded the strength of the adhesive system; the maximum measured pull-off strength was 29.0 ± 1.3 MPa. Fractography predominantly showed cohesive failure in PI on Al-rich microstructures. Si-rich microstructures exhibited mixed failure, including fracture of the Si skeleton and tearing of PI, together with interfacial microcracks. Full article
(This article belongs to the Special Issue Friction, Wear and Surface Engineering of Materials)
Show Figures

Graphical abstract

23 pages, 4062 KB  
Review
Nanoscale Microstructure and Microbially Mediated Mineralization Mechanisms of Deep-Sea Cobalt-Rich Crusts
by Kehui Zhang, Xuelian You, Chao Li, Haojia Wang, Jingwei Wu, Yuan Dang, Qing Guan and Xiaowei Huang
Minerals 2026, 16(1), 91; https://doi.org/10.3390/min16010091 - 17 Jan 2026
Viewed by 92
Abstract
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from [...] Read more.
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from the Magellan Seamount region in the northwestern Pacific and synthesizes existing geological, mineralogical, and geochemical studies to systematically elucidate their mineralization processes and metal enrichment mechanisms from a microstructural perspective, with particular emphasis on cobalt enrichment and its controlling factors. Based on published observations and experimental evidence, the formation of cobalt-rich crusts is divided into three stages: (1) Mn/Fe colloid formation—At the chemical interface between oxygen-rich bottom water and the oxygen minimum zone (OMZ), Mn2+ and Fe2+ are oxidized to form hydrated oxide colloids such as δ-MnO2 and Fe(OH)3. (2) Key metal adsorption—Colloidal particles adsorb metal ions such as Co2+, Ni2+, and Cu2+ through surface complexation and oxidation–substitution reactions, among which Co2+ is further oxidized to Co3+ and stably incorporated into MnO6 octahedral vacancies. (3) Colloid deposition and mineralization—Mn–Fe colloids aggregate, dehydrate, and cement on the exposed seamount bedrock surface to form layered cobalt-rich crusts. This process is dominated by the Fe/Mn redox cycle, representing a continuous evolution from colloidal reactions to solid-phase mineral formation. Biological processes play a crucial catalytic role in the microstructural evolution of the crusts. Mn-oxidizing bacteria and extracellular polymeric substances (EPS) accelerate Mn oxidation, regulate mineral-oriented growth, and enhance particle cementation, thereby significantly improving the oxidation and adsorption efficiency of metal ions. Tectonic and paleoceanographic evolution, seamount topography, and the circulation of Antarctic Bottom Water jointly control the metallogenic environment and metal sources, while crystal defects, redox gradients, and biological activity collectively drive metal enrichment. This review establishes a conceptual framework of a multi-level metallogenic model linking macroscopic oceanic circulation and geological evolution with microscopic chemical and biological processes, providing a theoretical basis for the exploration, prediction, and sustainable development of potential cobalt-rich crust deposits. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Polymetallic Deep-Sea Deposits)
Show Figures

Figure 1

24 pages, 5500 KB  
Article
Spatiotemporal Differentiation Characteristics and Meteorological Driving Mechanisms of Soil Moisture in Soil–Rock Combination Controlled by Microtopography in Hilly and Gully Regions
by Linfu Liu, Xiaoyu Dong, Fucang Qin and Yan Sheng
Sustainability 2026, 18(2), 959; https://doi.org/10.3390/su18020959 - 17 Jan 2026
Viewed by 206
Abstract
Soil erosion in the hilly and gully region of the middle reaches of the Yellow River is severe, threatening regional ecological security and the water–sediment balance of the Yellow River. The area features fragmented topography and significant spatial heterogeneity in soil thickness, forming [...] Read more.
Soil erosion in the hilly and gully region of the middle reaches of the Yellow River is severe, threatening regional ecological security and the water–sediment balance of the Yellow River. The area features fragmented topography and significant spatial heterogeneity in soil thickness, forming a unique binary “soil–rock” structural system. The soil in the study area is characterized by silt-based loess, and the underlying bedrock is an interbedded Jurassic-Cretaceous sandstone and sandy shale. It has strong weathering, well-developed fissures, and good permeability, rather than dense impermeable rock layers. However, the spatiotemporal differentiation mechanism of soil moisture in this system remains unclear. This study focuses on the typical hilly and gully region—the Geqiugou watershed. Through field investigations, soil thickness sampling, multi-scale soil moisture monitoring, and analysis of meteorological data, it systematically examines the cascade relationships among microtopography, soil–rock combinations, soil moisture, and meteorological drivers. The results show that: (1) Based on the field survey of 323 sampling points in the study area, it was found that soil samples with a thickness of less than 50 cm accounted for 85%, which constituted the main structure of soil thickness in the region. Macrotopographic units control the spatial differentiation of soil thickness, forming a complete thickness gradient from erosional units (e.g., Gully and Furrow) to depositional units (e.g., Gently sloped terrace). Based on this, five typical soil–rock combination types with soil thicknesses of 10 cm, 30 cm, 50 cm, 70 cm, and 90 cm were identified. (2) Soil–rock combination structures regulate the vertical distribution and seasonal dynamics of soil moisture. In thin-layer combinations, soil moisture is primarily retained within the shallow soil profile with higher dynamics, whereas in thick-layer combinations, under conditions of substantial rainfall, moisture can percolate deeply and become notably stored within the fractured bedrock, sometimes exceeding the moisture content in the overlying soil. (3) The response of soil moisture to precipitation is hierarchical: light rain events only affect the surface layer, whereas heavy rainfall can infiltrate to depths below 70 cm. Under intense rainfall, the soil–rock interface acts as a rapid infiltration pathway. (4) The influence of meteorological drivers on soil moisture exhibits vertical differentiation and is significantly modulated by soil–rock combination types. This study reveals the critical role of microtopography-controlled soil–rock combination structures in the spatiotemporal differentiation of soil moisture, providing a scientific basis for the precise implementation of soil and water conservation measures and ecological restoration in the region. Full article
Show Figures

Figure 1

18 pages, 6228 KB  
Article
All-Weather Flood Mapping Using a Synergistic Multi-Sensor Downscaling Framework: Case Study for Brisbane, Australia
by Chloe Campo, Paolo Tamagnone, Suelynn Choy, Trinh Duc Tran, Guy J.-P. Schumann and Yuriy Kuleshov
Remote Sens. 2026, 18(2), 303; https://doi.org/10.3390/rs18020303 - 16 Jan 2026
Viewed by 65
Abstract
Despite a growing number of Earth Observation satellites, a critical observational gap persists for timely, high-resolution flood mapping, primarily due to infrequent satellite revisits and persistent cloud cover. To address this issue, we propose a novel framework that synergistically fuses complementary data from [...] Read more.
Despite a growing number of Earth Observation satellites, a critical observational gap persists for timely, high-resolution flood mapping, primarily due to infrequent satellite revisits and persistent cloud cover. To address this issue, we propose a novel framework that synergistically fuses complementary data from three public sensor types. Our methodology harmonizes these disparate data sources by using surface water fraction as a common variable and downscaling them with flood susceptibility and topography information. This allows for the integration of sub-daily observations from the Visible Infrared Imaging Radiometer Suite and the Advanced Himawari Imager with the cloud-penetrating capabilities of the Advanced Microwave Scanning Radiometer 2. We evaluated this approach on the February 2022 flood in Brisbane, Australia using an independent ground truth dataset. The framework successfully compensates for the limitations of individual sensors, enabling the consistent generation of detailed, high-resolution flood maps. The proposed method outperformed the flood extent derived from commercial high-resolution optical imagery, scoring 77% higher than the Copernicus Emergency Management Service (CEMS) map in the Critical Success Index. Furthermore, the True Positive Rate was twice as high as the CEMS map, confirming that the proposed method successfully overcame the cloud cover issue. This approach provides valuable, actionable insights into inundation dynamics, particularly when other public data sources are unavailable. Full article
25 pages, 2339 KB  
Article
An Operational Ground-Based Vicarious Radiometric Calibration Method for Thermal Infrared Sensors: A Case Study of GF-5A WTI
by Jingwei Bai, Yunfei Bao, Guangyao Zhou, Shuyan Zhang, Hong Guan, Mingmin Zhang, Yongchao Zhao and Kang Jiang
Remote Sens. 2026, 18(2), 302; https://doi.org/10.3390/rs18020302 - 16 Jan 2026
Viewed by 90
Abstract
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors [...] Read more.
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors and demonstrate its performance using the Wide-swath Thermal Infrared Imager (WTI) onboard Gaofen-5 01A (GF-5A). Three arid Gobi calibration sites were selected by integrating Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, Shuttle Radar Topography Mission (SRTM)-derived topography, and WTI-based radiometric uniformity metrics to ensure low cloud cover, flat terrain, and high spatial homogeneity. Automated ground stations deployed at Golmud, Dachaidan, and Dunhuang have continuously recorded 1 min contact surface temperature since October 2023. Field-measured emissivity spectra, Integrated Global Radiosonde Archive (IGRA) radiosonde profiles, and MODTRAN (MODerate resolution atmospheric TRANsmission) v5.2 simulations were combined to compute top-of-atmosphere (TOA) radiances, which were subsequently collocated with WTI imagery. After data screening and gain-stratified regression, linear calibration coefficients were derived for each TIR band. Based on 189 scenes from February–July 2024, all four bands exhibit strong linearity (R-squared greater than 0.979). Validation using 45 independent scenes yields a mean brightness–temperature root-mean-square error (RMSE) of 0.67 K. A full radiometric-chain uncertainty budget—including contact temperature, emissivity, atmospheric profiles, and radiative transfer modeling—results in a combined standard uncertainty of 1.41 K. The proposed framework provides a low-maintenance, traceable, and high-frequency solution for the long-term on-orbit radiometric calibration of GF-5A WTI and establishes a reproducible pathway for future TIR missions requiring sustained calibration stability. Full article
(This article belongs to the Special Issue Radiometric Calibration of Satellite Sensors Used in Remote Sensing)
Show Figures

Figure 1

27 pages, 2933 KB  
Article
A Fractal-Enhanced Mohr–Coulomb (FEMC)Model for Strength Prediction in Rough Rock Discontinuities
by Dina Kon, Sage Ngoie, Jisen Shu, Yadah Mbuyu and Dave Mbako
Fractal Fract. 2026, 10(1), 61; https://doi.org/10.3390/fractalfract10010061 - 15 Jan 2026
Viewed by 150
Abstract
Accurate prediction of the shear strength of rock discontinuities requires accounting for surface roughness, which is a factor neglected in the classical Mohr–Coulomb criterion. This study proposes a fractal-enhanced Mohr–Coulomb model that incorporates the surface fractal dimension Ds as a geometric state variable [...] Read more.
Accurate prediction of the shear strength of rock discontinuities requires accounting for surface roughness, which is a factor neglected in the classical Mohr–Coulomb criterion. This study proposes a fractal-enhanced Mohr–Coulomb model that incorporates the surface fractal dimension Ds as a geometric state variable governing both the cohesion and internal friction angle. The fractal dimension is treated as an objective, scale-invariant descriptor, computable via established methods, such as box-counting and power spectral density analysis, which are known to yield consistent results when applied to joint topography. The model predicts a nonlinear increase in shear strength with Ds, producing a dynamically adjustable failure envelope that can exceed the classical Mohr–Coulomb estimates by 25–40% for rough joints, which is consistent with trends observed in experimental shear tests. By linking strength parameters directly to measurable surface geometry, the framework provides a physically interpretable bridge between micro-scale roughness and macro-scale mechanical response. Although the current formulation assumes monotonic, dry, and quasi-static conditions, the explicit dependence on Ds offers a foundation for future extensions that incorporate anisotropy, damage evolution, and hydro-mechanical coupling. Full article
(This article belongs to the Special Issue Applications of Fractal Dimensions in Rock Mechanics and Geomechanics)
33 pages, 19417 KB  
Article
Multiscale Dynamics Organizing Heavy Precipitation During Tropical Cyclone Hilary’s (2023) Remnant Passage over the Southwestern U.S.
by Jackson T. Wiles, Michael L. Kaplan and Yuh-Lang Lin
Atmosphere 2026, 17(1), 82; https://doi.org/10.3390/atmos17010082 - 14 Jan 2026
Viewed by 142
Abstract
The Weather Research and Forecasting Model (WRF-ARW) version 4.5 was used to simulate the synoptic to mesoscale evolving atmosphere of Tropical Cyclone (TC) Hilary’s (2023) remnant passage over the southwestern United States. The atmospheric dynamic processes conducive to the precursor rain events were [...] Read more.
The Weather Research and Forecasting Model (WRF-ARW) version 4.5 was used to simulate the synoptic to mesoscale evolving atmosphere of Tropical Cyclone (TC) Hilary’s (2023) remnant passage over the southwestern United States. The atmospheric dynamic processes conducive to the precursor rain events were extensively studied to determine the effects of mid-level jetogenesis. Concurrently, the dynamics of mesoscale processes related to the interaction of TC Hilary over the complex topography of the western United States were studied with several sensitivity simulations on a nested 2 km × 2 km grid. The differential surface heating between the cloudy California coast and clear/elevated Great Basin plateau had a profound impact on the lower-mid-tropospheric mass field resulting in mid-level jetogenesis. Diagnostic analyses of the ageostrophic flow support the importance of both isallobaric and inertial advective forcing of the mid-level jetogenesis in response to differential surface sensible heating. This ageostrophic mesoscale jet ultimately transported tropical moisture in multiple plumes more than 1000 km poleward beyond the location of the extratropical transition of the storm, resulting in anomalous flooding precipitation within a massive arid western plateau. Full article
(This article belongs to the Section Meteorology)
Show Figures

Graphical abstract

17 pages, 13237 KB  
Article
Assessment of the Thermal Oxidation Effects on the Mechanical Properties of Magnetron-Sputtered NbN Coating Produced on AISI 316L Steel
by Tomasz Borowski, Justyna Frydrych, Maciej Spychalski, Marek Betiuk and Mateusz Włoczewski
Coatings 2026, 16(1), 106; https://doi.org/10.3390/coatings16010106 - 13 Jan 2026
Viewed by 220
Abstract
Niobium nitride (δ-NbN) coatings were deposited on AISI 316L austenitic steel using reactive DC magnetron sputtering. This study investigates the effects of air oxidation on the surface morphology, topography, roughness, nanohardness, adhesion, and wear resistance of NbN coatings. Their microstructure and thickness were [...] Read more.
Niobium nitride (δ-NbN) coatings were deposited on AISI 316L austenitic steel using reactive DC magnetron sputtering. This study investigates the effects of air oxidation on the surface morphology, topography, roughness, nanohardness, adhesion, and wear resistance of NbN coatings. Their microstructure and thickness were analyzed by scanning electron microscopy (SEM), while surface morphology and roughness were assessed using atomic force microscopy (AFM), and surface topography was assessed by an optical profilometer. Nanohardness was measured using a Berkovich indenter. Adhesion was evaluated via progressive-load scratch testing and Rockwell indentation (VDI 3198 standard). Wear resistance was assessed using the “ball-on-disk” method. Both as-deposited and oxidized NbN coatings improved the mechanical performance of the substrate surface. Air oxidation led to the formation of an orthorhombic Nb2O5 surface layer, which increased surface roughness and reduced hardness. However, the brittle oxide also contributed to a lower coefficient of friction. Despite reduced adhesion and increased surface development, the oxidized coating exhibited a significantly lower wear rate than the uncoated steel, though several times higher than that of the non-oxidized NbN. Considering its good wear and corrosion performance, along with the bioactivity confirmed in earlier research, the oxidized NbN coating can be considered a promising candidate for biomedical applications. Full article
(This article belongs to the Special Issue Emerging Trends in Functional Coatings for Biomedical Applications)
Show Figures

Figure 1

12 pages, 4120 KB  
Article
The Effect of Micro-Cutting on the Residual Height of Surface Topography in NiTi Shape Memory Alloy Using a Small-Diameter Cutter
by Xinyi Wang, Zeming Li, Yansen Wang, Zelin Wang, Zhenshan Chen, Junxiang Liu, Jian Wang and Guijie Wang
Coatings 2026, 16(1), 100; https://doi.org/10.3390/coatings16010100 - 12 Jan 2026
Viewed by 168
Abstract
The milled surface topography of NiTi SMA critically affects its frictional behavior, corrosion resistance, and biocompatibility, which are essential for biomedical and aerospace applications. This study combines simulation and single-factor experiments to investigate the coupling behavior among surface topography evolution, work hardening, plastic [...] Read more.
The milled surface topography of NiTi SMA critically affects its frictional behavior, corrosion resistance, and biocompatibility, which are essential for biomedical and aerospace applications. This study combines simulation and single-factor experiments to investigate the coupling behavior among surface topography evolution, work hardening, plastic deformation, and residual stress evolution. Results showed that increasing feed per tooth led to a significant rise in surface residual height and an improvement in surface isotropy. With the increase in feed per tooth, the error between the experimental and simulated heights gradually decreased from 105.6% to 30.9%, indicating that both material properties and feed per tooth strongly affect residual profile formation in the feed direction. In addition, larger feed per tooth intensifies work hardening and plastic deformation but reduces surface residual stress, thereby increasing microhardness. These effects can mitigate material rebound and improve surface profile accuracy. The results provide a direct basis for controlling the surface integrity of NiTi SMA components through machining parameter optimization, enabling precise tailoring of functional surface characteristics, such as wear performance, chemical stability, and biological response, which is of critical importance for high-end biomedical implants and aerospace systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

31 pages, 5855 KB  
Article
Integrated Characterization by EDS and Roughness as a Diagnostic Tool for Dental Enamel Degradation: An In Vitro Study
by Cosmin Bogdan Licsăndroiu, Mihaela Jana Țuculină, Petre Costin Mărășescu, Felicia Ileana Mărășescu, Cosmin Mihai Mirițoiu, Raluca Ionela Olaru Gheorghe, Bogdan Dimitriu, Maria Cristina Bezna, Elena Verona Licsăndroiu, Mihaela Stan, Cristian-Marius Bacanu and Ionela Teodora Dascălu
Bioengineering 2026, 13(1), 85; https://doi.org/10.3390/bioengineering13010085 - 12 Jan 2026
Viewed by 268
Abstract
In fixed orthodontic treatment, brackets are orthodontic attachments bonded to the tooth enamel, and their placement and removal may affect the underlying enamel surface. Enamel degradation is a critical factor for oral health, as it reduces the mechanical strength of teeth and increases [...] Read more.
In fixed orthodontic treatment, brackets are orthodontic attachments bonded to the tooth enamel, and their placement and removal may affect the underlying enamel surface. Enamel degradation is a critical factor for oral health, as it reduces the mechanical strength of teeth and increases susceptibility to caries and erosion. Accurate diagnosis of enamel changes is therefore essential for the evaluation of preventive and restorative treatments. In this study, enamel degradation was investigated via two integrated methods: energy-dispersive X-ray spectroscopy (EDS) and surface roughness measurement. The experimental protocol was performed in three stages: before bracket bonding, after bracket removal, and after applying a remineralization treatment. The experimental design included a repeated-measures structure, with stage (baseline, post-debonding, post-remineralization) as the within-tooth factor and bracket type (sapphire vs. metallic) as the between-tooth factor. Given the violation of the variance homogeneity assumption, group comparisons were ultimately performed using Welch ANOVA followed by Games–Howell post hoc tests, with Bonferroni-adjusted values used for pairwise comparisons. The presence of orthodontic brackets can influence enamel mineralization because the bonding and debonding procedures modify the enamel surface microtopography. These procedures can generate microcracks and surface irregularities, which may affect mineral exchange between enamel and the surrounding environment. In our study, bracket removal led to a significant decrease in the mean atomic percentages of Ca (from 32.65% to 16.37% for sapphire) and P (from 16.35% to 8.60% for sapphire), accompanied by a sharp increase in surface roughness. After remineralization, Ca and P levels increased, while roughness decreased. However, neither the mineral content nor the surface topography fully returned to the initial values, indicating that remineralization achieved only a partial recovery of enamel integrity. These findings highlight that the integrated EDS approach and roughness analysis offer a promising descriptive framework for assessing enamel degradation and monitoring the effectiveness of remineralization therapies. The generated mathematical model provides a powerful descriptive framework for the in vitro data obtained, correlating roughness with mineral composition and treatment stage. However, such a high goodness-of-fit (R2 > 0.98) should be interpreted cautiously due to the risk of overfitting. Therefore, rigorous external validation is mandatory before this model can be considered a reliable predictive tool. It also highlights the importance of enamel remineralization therapies after orthodontic treatment, but also the importance of choosing personalized treatment strategies adapted to the enamel type. Full article
(This article belongs to the Special Issue Biomaterials and Technology for Oral and Dental Health)
Show Figures

Graphical abstract

20 pages, 15923 KB  
Article
Sub-Canopy Topography Inversion Using Multi-Baseline Bistatic InSAR Without External Vegetation-Related Data
by Huiqiang Wang, Zhimin Feng, Ruiping Li and Yanan Yu
Remote Sens. 2026, 18(2), 231; https://doi.org/10.3390/rs18020231 - 11 Jan 2026
Viewed by 133
Abstract
Previous studies on single-polarized InSAR-based sub-canopy topography inversion have mainly relied on simplified or empirical models that only consider the volume scattering process. In a boreal forest area, the canopy layer is often discontinuous. In such a case, the radar backscattering echoes are [...] Read more.
Previous studies on single-polarized InSAR-based sub-canopy topography inversion have mainly relied on simplified or empirical models that only consider the volume scattering process. In a boreal forest area, the canopy layer is often discontinuous. In such a case, the radar backscattering echoes are mainly dominated by ground surface and volume scattering processes. However, interferometric scattering models like Random Volume over Ground (RVoG) have been little utilized in the case of single-polarized InSAR. In this study, we propose a novel method for retrieving sub-canopy topography by combining the RVoG model with multi-baseline InSAR data. Prior to the RVoG model inversion, a SAR-based dimidiate pixel model and a coherence-based penetration depth model are introduced to quantify the initial values of the unknown parameters, thereby minimizing the reliance on external vegetation datasets. Building on this, a nonlinear least-squares algorithm is employed. Then, we estimate the scattering phase center height and subsequently derive the sub-canopy topography. Two frames of multi-baseline TanDEM-X co-registered single-look slant-range complex (CoSSC) data (resampled to 10 m × 10 m) over the Krycklan catchment in northern Sweden are used for the inversion. Validation from airborne light detection and ranging (LiDAR) data shows that the root-mean-square error (RMSE) for the two test sites is 3.82 m and 3.47 m, respectively, demonstrating a significant improvement over the InSAR phase-measured digital elevation model (DEM). Furthermore, diverse interferometric baseline geometries and different initial values are identified as key factors influencing retrieval performance. In summary, our work effectively addresses the limitations of the traditional RVoG model and provides an advanced and practical tool for sub-canopy topography mapping in forested areas. Full article
Show Figures

Figure 1

Back to TopTop