Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = surface subsidence zoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 34153 KiB  
Article
Study on Lithospheric Tectonic Features of Tianshan and Adjacent Regions and the Genesis Mechanism of the Wushi Ms7.1 Earthquake
by Kai Han, Daiqin Liu, Ailixiati Yushan, Wen Shi, Jie Li, Xiangkui Kong and Hao He
Remote Sens. 2025, 17(15), 2655; https://doi.org/10.3390/rs17152655 - 31 Jul 2025
Viewed by 191
Abstract
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which [...] Read more.
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which led to the following conclusions: (1) The effective elastic thickness (Te) of the Tianshan lithosphere is low (13–28 km) and weak, while the Tarim and Junggar basins have Te > 30 km with high intensity, and the loads are all mainly from the surface (F < 0.5). Earthquakes occur mostly in areas with low values of Te. (2) Medium and strong earthquakes are prone to occur in regions with alternating positive and negative changes in the gravity field during the stage of large-scale reverse adjustment. It is expected that the risk of a moderate-to-strong earthquake occurring again in the vicinity of the survey area between 2025 and 2026 is relatively high. (3) Before the Wushi earthquake, the positive and negative boundaries of the apparent density of the crust at 12 km shifted to be approximately parallel to the seismic fault, and the earthquake was triggered after undergoing a “solidification” process. (4) The Wushi earthquake is a leptokurtic strike-slip backwash type of earthquake; coseismic deformation shows that subsidence occurs in the high-visual-density zone, and vice versa for uplift. The results of this study reveal the lithosphere-conceiving environment of the Tianshan and adjacent areas and provide a basis for regional earthquake monitoring, early warning, and post-disaster disposal. Full article
Show Figures

Graphical abstract

24 pages, 4396 KiB  
Article
Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
by Chenyu Ma, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng and Shuang Geng
Remote Sens. 2025, 17(15), 2625; https://doi.org/10.3390/rs17152625 - 29 Jul 2025
Viewed by 274
Abstract
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that [...] Read more.
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that are suitable for the detailed extraction and quantification of vertical co-seismic displacements. In this study, we utilized pre- and post-event WorldView-2 stereo images of the 2024 Ms7.1 Wushi earthquake in Xinjiang to generate DEMs with a spatial resolution of 0.5 m and corresponding terrain point clouds with an average density of approximately 4 points/m2. Subsequently, we applied the Iterative Closest Point (ICP) algorithm to perform differencing analysis on these datasets. Special care was taken to reduce influences from terrain changes such as vegetation growth and anthropogenic structures. Ultimately, by maintaining sufficient spatial detail, we obtained a three-dimensional co-seismic displacement field with a resolution of 15 m within grid cells measuring 30 m near the fault trace. The results indicate a clear vertical displacement distribution pattern along the causative sinistral–thrust fault, exhibiting alternating uplift and subsidence zones that follow a characteristic “high-in-center and low-at-ends” profile, along with localized peak displacement clusters. Vertical displacements range from approximately 0.2 to 1.4 m, with a maximum displacement of ~1.46 m located in the piedmont region north of the Qialemati River, near the transition between alluvial fan deposits and bedrock. Horizontal displacement components in the east-west and north-south directions are negligible, consistent with focal mechanism solutions and surface rupture observations from field investigations. The successful extraction of this high-resolution vertical displacement field validates the efficacy of satellite-based high-resolution stereo-imaging methods for overcoming the limitations of GNSS and InSAR techniques in characterizing near-field surface displacements associated with earthquake ruptures. Moreover, this dataset provides robust constraints for investigating fault-slip mechanisms within near-surface geological contexts. Full article
Show Figures

Figure 1

25 pages, 20396 KiB  
Article
Constructing Ecological Security Patterns in Coal Mining Subsidence Areas with High Groundwater Levels Based on Scenario Simulation
by Shiyuan Zhou, Zishuo Zhang, Pingjia Luo, Qinghe Hou and Xiaoqi Sun
Land 2025, 14(8), 1539; https://doi.org/10.3390/land14081539 - 27 Jul 2025
Viewed by 309
Abstract
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal [...] Read more.
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal mining subsidence areas with high groundwater levels. This study employed the patch-generating land use simulation (PLUS) model to predict the landscape evolution trend of the study area in 2032 under three scenarios, combining environmental characteristics and disturbance features of coal mining subsidence areas with high groundwater levels. In order to determine the differences in ecological network changes within the study area under various development scenarios, morphological spatial pattern analysis (MSPA) and landscape connectivity analysis were employed to identify ecological source areas and establish ecological corridors using circuit theory. Based on the simulation results of the optimal development scenario, potential ecological pinch points and ecological barrier points were further identified. The findings indicate that: (1) land use changes predominantly occur in urban fringe areas and coal mining subsidence areas. In the land reclamation (LR) scenario, the reduction in cultivated land area is minimal, whereas in the economic development (ED) scenario, construction land exhibits a marked increasing trend. Under the natural development (ND) scenario, forest land and water expand most significantly, thereby maximizing ecological space. (2) Under the ND scenario, the number and distribution of ecological source areas and ecological corridors reach their peak, leading to an enhanced ecological network structure that positively contributes to corridor improvement. (3) By comparing the ESP in the ND scenario in 2032 with that in 2022, the number and area of ecological barrier points increase substantially while the number and area of ecological pinch points decrease. These areas should be prioritized for ecological protection and restoration. Based on the scenario simulation results, this study proposes a planning objective for a “one axis, four belts, and four zones” ESP, along with corresponding strategies for ecological protection and restoration. This research provides a crucial foundation for decision-making in enhancing territorial space planning in coal mining subsidence areas with high groundwater levels. Full article
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 305
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

17 pages, 5238 KiB  
Article
Study on Reinforcement Technology of Shield Tunnel End and Ground Deformation Law in Shallow Buried Silt Stratum
by Jia Zhang and Xiankai Bao
Appl. Sci. 2025, 15(14), 7657; https://doi.org/10.3390/app15147657 - 8 Jul 2025
Viewed by 326
Abstract
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At [...] Read more.
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At present, there are relatively few studies on the reinforcement technology of the initial section of shield tunnel in shallow soft ground and the evolution law of ground disturbance. This study takes the launching section of the Guanggang New City depot access tunnel on Guangzhou Metro Line 10 as the engineering background. By applying MIDAS/GTS numerical simulation, settlement monitoring, and theoretical analysis, the reinforcement technology at the tunnel face, the spatiotemporal evolution of ground settlement, and the mechanism of soil disturbance transmission during the launching process in muddy soil layer are revealed. The results show that: (1) the reinforcement scheme combining replacement filling, high-pressure jet grouting piles, and soil overburden counterpressure significantly improves surface settlement control. The primary influence zone is concentrated directly above the shield machine and in the forward excavation area. (2) When the shield machine reaches the junction between the reinforced and unreinforced zones, a large settlement area forms, with the maximum ground settlement reaching −26.94 mm. During excavation in the unreinforced zone, ground deformation mainly occurs beneath the rear reinforced section, with subsidence at the crown and uplift at the invert. (3) The transverse settlement trough exhibits a typical Gaussian distribution and the discrepancy between the measured maximum settlement and the numerical and theoretical values is only 3.33% and 1.76%, respectively. (4) The longitudinal settlement follows a trend of initial increase, subsequent decrease, and gradual stabilization, reaching a maximum when the excavation passes directly beneath the monitoring point. The findings can provide theoretical reference and engineering guidance for similar projects. Full article
Show Figures

Figure 1

19 pages, 3704 KiB  
Article
Research on the Characteristics and Influencing Factors of Spatial Integration of Resource-Based Coal Cities—A Case Study of the Central Urban Area of Huaibei
by Yawei Hou, Jiang Chang, Ya Yang and Yuan Yao
Sustainability 2025, 17(13), 6024; https://doi.org/10.3390/su17136024 - 30 Jun 2025
Viewed by 329
Abstract
Background: The integration of mining and urban spaces in coal-resource-based cities holds significant implications for urban transformation and sustainable development. However, existing research lacks an in-depth analysis of its characteristics and driving factors. Methods: This study takes the central urban area of Huaibei [...] Read more.
Background: The integration of mining and urban spaces in coal-resource-based cities holds significant implications for urban transformation and sustainable development. However, existing research lacks an in-depth analysis of its characteristics and driving factors. Methods: This study takes the central urban area of Huaibei City as a case, utilizing historical documents, POI data, and spatial analysis methods to explore the evolution patterns and influencing factors of mining–urban spatial integration. Standard deviation ellipse analysis was employed to examine historical spatial changes, while a binary logistic regression model and principal component analysis were constructed based on 300 m × 300 m grid units to assess the roles of 11 factors, including location, transportation, commerce, and natural environment. Results: The results indicate that mining–urban spatial integration exhibits characteristics of lag, clustering, transportation dominance, and continuity. Commercial activity density, particularly leisure, dining, and shopping facilities, serves as a core driving factor. Road network density, along with the areas of educational and residential zones, positively promotes integration, whereas water surface areas (such as subsidence zones) significantly inhibit it. Among high-integration areas, Xiangshan District stands as the most economically prosperous city center; Lieshan–Yangzhuang mining area blends traditional and modern elements; and Zhuzhuang–Zhangzhuang mining area reflects the industrial landscape post-transformation. Conclusions: The study reveals diverse integration patterns under the synergistic effects of multiple factors, providing a scientific basis for optimizing spatial layouts and coordinating mining–urban development in coal-resource-based cities. Future research should continue to pay attention to the dynamic changes of spatial integration of mining cities, explore more effective integrated development models, and promote the rational and efficient use of urban space and the sustainable development of cities. Full article
Show Figures

Figure 1

26 pages, 3234 KiB  
Article
Time-Series Deformation and Kinematic Characteristics of a Thaw Slump on the Qinghai-Tibetan Plateau Obtained Using SBAS-InSAR
by Zhenzhen Yang, Wankui Ni, Siyuan Ren, Shuping Zhao, Peng An and Haiman Wang
Remote Sens. 2025, 17(13), 2206; https://doi.org/10.3390/rs17132206 - 26 Jun 2025
Viewed by 360
Abstract
Based on ascending and descending orbit SAR data from 2017–2025, this study analyzes the long time-series deformation monitoring and slip pattern of an active-layer detachment thaw slump, a typical active-layer detachment thaw slump in the permafrost zone of the Qinghai-Tibetan Plateau, by using [...] Read more.
Based on ascending and descending orbit SAR data from 2017–2025, this study analyzes the long time-series deformation monitoring and slip pattern of an active-layer detachment thaw slump, a typical active-layer detachment thaw slump in the permafrost zone of the Qinghai-Tibetan Plateau, by using the small baseline subset InSAR (SBAS-InSAR) technique. In addition, a three-dimensional displacement deformation field was constructed with the help of ascending and descending orbit data fusion technology to reveal the transportation characteristics of the thaw slump. The results show that the thaw slump shows an overall trend of “south to north” movement, and that the cumulative surface deformation is mainly characterized by subsidence, with deformation ranging from −199.5 mm to 55.9 mm. The deformation shows significant spatial heterogeneity, with its magnitudes generally decreasing from the headwall area (southern part) towards the depositional toe (northern part). In addition, the multifactorial driving mechanism of the thaw slump was further explored by combining geological investigation and geotechnical tests. The analysis reveals that the thaw slump’s evolution is primarily driven by temperature, with precipitation acting as a conditional co-factor, its influence being modulated by the slump’s developmental stage and local soil properties. The active layer thickness constitutes the basic geological condition of instability, and its spatial heterogeneity contributes to differential settlement patterns. Freeze–thaw cycles affect the shear strength of soils in the permafrost zone through multiple pathways, and thus trigger the occurrence of thaw slumps. Unlike single sudden landslides in non-permafrost zones, thaw slump is a continuous development process that occurs until the ice content is obviously reduced or disappears in the lower part. This study systematically elucidates the spatiotemporal deformation patterns and driving mechanisms of an active-layer detachment thaw slump by integrating multi-temporal InSAR remote sensing with geological and geotechnical data, offering valuable insights for understanding and monitoring thaw-induced hazards in permafrost regions. Full article
Show Figures

Figure 1

16 pages, 5503 KiB  
Article
Bending Stress and Deformation Characteristics of Gas Pipelines in Mountainous Terrain Under the Influence of Subsidence
by Guozhen Zhao, Jiadong Li and Haoyan Liang
Energies 2025, 18(13), 3323; https://doi.org/10.3390/en18133323 - 24 Jun 2025
Viewed by 370
Abstract
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as [...] Read more.
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as the research background, through the combination of similar simulation and finite element simulation, the deformation and stress characteristics of gas pipelines affected by subsidence in mountainous terrain are analyzed, and the failure law of gas pipelines in different terrains of the coal mining area is revealed. The results demonstrate that topographic stress convergence creates a maximum compression zone at the valley base of the central subsidence basin, causing significant pipeline depression. Hillslope areas primarily experience tension from soil slippage, while slope–valley transition zones exhibit a high-risk shear–tension coupling. Analysis via the pipe–soil interaction model reveals concentrated mid-subsidence pipeline stresses with subsequent relaxation through redistribution. Accordingly, the following zoned protection strategy is proposed: enhanced compression monitoring in valley segments, tensile reinforcement for slope sections, and prioritized shear prevention in transition zones. The research provides a theoretical basis for the safe operation and maintenance of gas pipeline networks in mountainous areas. Full article
Show Figures

Figure 1

22 pages, 11337 KiB  
Article
Toward Landscape-Based Groundwater Recharge in Arid Regions: A Case Study of Karachi, Pakistan
by Amna Riaz, Steffen Nijhuis and Inge Bobbink
Sustainability 2025, 17(11), 4931; https://doi.org/10.3390/su17114931 - 27 May 2025
Viewed by 667
Abstract
Rapid urbanization and climate change are the driving forces behind changing the urban landscape and affecting natural resources and the environment, particularly in the megacities of arid regions. Many of these cities face an acute water crisis leading to over-exploitation of groundwater resources. [...] Read more.
Rapid urbanization and climate change are the driving forces behind changing the urban landscape and affecting natural resources and the environment, particularly in the megacities of arid regions. Many of these cities face an acute water crisis leading to over-exploitation of groundwater resources. This over-exploitation has led to the depletion of aquifers, land infertility, saline intrusion, land subsidence, and harm to hydrological ecosystems. Globally, numerous studies have documented the potential of groundwater recharge (GWR) using GIS and remote sensing techniques. However, its practical application in a landscape context for sustainable urban and regional development is underexplored. In this study, we developed the landscape-based GWR concept by conducting a case study of Karachi city (Pakistan). We took physical landscape (surface and sub-surface) features and groundwater recharge potential as a base for design and planning to improve groundwater recharge and urban landscape. Moreover, we highlighted the added values of this approach besides recharging the depleted ground hydrological conditions and improving the urban landscape condition (i.e., social–ecological inclusiveness, sustainable future development, and interdisciplinary collaboration). The results indicated a negative impact of urbanization on groundwater recharge, especially in the alluvial zones and river valleys, underscoring the need for a spatial approach to safeguard GWR and guide development. Through this study, we propose that landscape-based GWR can be one of the potential solutions not only for the critical water crisis faced by rapidly urbanizing arid megacities but also for improving the overall quality of life and urban landscape. Furthermore, this holistic approach toward groundwater recharge can guide future urban development patterns, preservation of high groundwater recharge potential sites, and evolution toward sustainable development in arid regions where groundwater is the most significant yet vulnerable resource. Full article
(This article belongs to the Special Issue Landscape Connectivity for Sustainable Biodiversity Conservation)
Show Figures

Figure 1

20 pages, 8369 KiB  
Article
Mechanical Response of Pipeline Leakage to Existing Tunnel Structures: Insights from Numerical Modeling
by Ruichuan Zhao, Linghui Li, Xiaofei Chen and Sulei Zhang
Buildings 2025, 15(11), 1771; https://doi.org/10.3390/buildings15111771 - 22 May 2025
Cited by 1 | Viewed by 351
Abstract
Pipeline leakage can induce ground surface settlements and structural responses in existing tunnels. A thorough understanding of pipeline–tunnel interactions is crucial for optimizing urban underground design and establishing construction guidelines. As urban underground spaces undergo rapid, large-scale development, their layouts have grown increasingly [...] Read more.
Pipeline leakage can induce ground surface settlements and structural responses in existing tunnels. A thorough understanding of pipeline–tunnel interactions is crucial for optimizing urban underground design and establishing construction guidelines. As urban underground spaces undergo rapid, large-scale development, their layouts have grown increasingly complex. Previous studies have mainly focused on the leakage propagation range and the resulting strata instability during tunnel excavation, while paying limited attention to the effects of pipeline leakage on existing tunnels. This study systematically investigated the mechanical response of existing tunnel structures to pipeline leakage under different layout configuration conditions using numerical modeling. A two-dimensional numerical model was developed to simulate the pipeline leakage process and its impact on adjacent tunnels. The research established a correlation between surrounding rock strength parameters and the saturation degree while examining the evolution patterns of leakage effects in various tunnel–pipeline arrangements. The analysis specifically focused on the mechanical influence of horizontal pipeline–tunnel distance, quantitatively determining the relationships among pipeline–tunnel spacing, leakage duration, and structural internal force. The horizontal pipeline–tunnel distance did not influence the development of the leakage zone above the tunnel vault but significantly altered the seepage path length and interface contact area. The complete encapsulation of the tunnel periphery by the leakage zone required progressively longer durations with increasing horizontal offsets: 16 days (0 m), 20 days (3 m), and 33 days (6 m). Corresponding circumferential contact ratios at 10 days were measured at 68.9%, 56.4%, and 30.6%, respectively. Furthermore, prolonged seepage duration led to increased ground subsidence with expanded affected areas, while the maximum settlement decreased proportionally with greater horizontal separation from the tunnel. These findings provide valuable insights for planning, designing, and maintaining “old tunnel-new pipeline” systems in urban underground development. Full article
(This article belongs to the Special Issue Design, Construction and Maintenance of Underground Structures)
Show Figures

Figure 1

18 pages, 11901 KiB  
Article
Deformation Monitoring Along Beijing Metro Line 22 Using PS-InSAR Technology
by Fenze Guo, Mingyuan Lyu, Xiaojuan Li, Jiyi Jiang, Lan Wang, Lin Guo, Ke Zhang, Huan Luo and Fengzhou Wang
Land 2025, 14(5), 1098; https://doi.org/10.3390/land14051098 - 18 May 2025
Viewed by 708
Abstract
The construction of subways exacerbates the non-uniformity of surface deformation, which in turn poses a potential threat to the safe construction and stable operation of urban rail transit systems. Beijing, the city with the most extensive subway network in China, has long been [...] Read more.
The construction of subways exacerbates the non-uniformity of surface deformation, which in turn poses a potential threat to the safe construction and stable operation of urban rail transit systems. Beijing, the city with the most extensive subway network in China, has long been affected by land subsidence. Utilizing data from Envisat ASAR, Radarsat-2, and Sentinel-1 satellites, this study employs PS-InSAR technology to monitor and analyze land subsidence within a 2 km buffer zone along Beijing Metro Line 22 over a span of 20 years (from January 2004 to November 2024). The results indicate that land subsidence at Guanzhuang Station and Yanjiao Station along Metro Line 22 is particularly pronounced, forming two distinct subsidence zones. After 2016, the overall rate of subsidence along the subway line began to stabilize, with noticeable ground rebound emerging around 2020. This study further reveals a strong correlation between land subsidence and confined groundwater levels, while geological structures and building construction also exert a significant influence on subsidence development. These findings provide a crucial scientific foundation for the formulation of effective prevention and mitigation strategies for land subsidence along urban rail transit lines. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

18 pages, 5430 KiB  
Article
Monitoring of High-Speed Railway Ground Deformation Using Interferometric Synthetic Aperture Radar Image Analysis
by Seung-Jun Lee, Hong-Sik Yun and Tae-Yun Kim
Appl. Sci. 2025, 15(8), 4318; https://doi.org/10.3390/app15084318 - 14 Apr 2025
Cited by 1 | Viewed by 620
Abstract
Ground subsidence is a critical factor affecting the structural integrity and operational safety of high-speed railways, especially in areas with widespread soft ground. This study applies Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques to monitor ground deformation along the Honam High-Speed Railway [...] Read more.
Ground subsidence is a critical factor affecting the structural integrity and operational safety of high-speed railways, especially in areas with widespread soft ground. This study applies Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques to monitor ground deformation along the Honam High-Speed Railway in South Korea. By processing a time series of 29 high-resolution SAR images from 2016 to 2019, the analysis yielded continuous, millimeter-level measurements of surface displacement. Maximum subsidence rates exceeding −12 mm/year were detected in embankment zones with soft subsoil conditions Validation using leveling data and corner reflectors showed strong agreement (R2 > 0.93), confirming the accuracy and reliability of PS-InSAR-derived results. The study also revealed seasonal variation in settlement patterns, highlighting the influence of rainfall and pore water pressure. The findings underscore the utility of PS-InSAR as a sustainable and cost-effective tool for long-term infrastructure monitoring. This study further contributes to the development of predictive maintenance strategies and highlights the need for future research integrating PS-InSAR with geotechnical, hydrological, and construction-related variables to enhance monitoring precision and expand its practical applicability in infrastructure management. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

24 pages, 12707 KiB  
Article
Prediction of Water Inrush Hazard in Fully Mechanized Coal Seams’ Mining Under Aquifers by Numerical Simulation in ANSYS Software
by Ivan Sakhno, Natalia Zuievska, Li Xiao, Yurii Zuievskyi, Svitlana Sakhno and Roman Semchuk
Appl. Sci. 2025, 15(8), 4302; https://doi.org/10.3390/app15084302 - 14 Apr 2025
Cited by 3 | Viewed by 581
Abstract
The process of fully mechanized coal seam mining under aquifers and surface water bodies has been a challenge in recent years for different countries. During the evolution of subsidence and the overburdening of rock mass movement above the longwall goaf, there is always [...] Read more.
The process of fully mechanized coal seam mining under aquifers and surface water bodies has been a challenge in recent years for different countries. During the evolution of subsidence and the overburdening of rock mass movement above the longwall goaf, there is always a potential risk of connecting the water-conducting fracture zone with aquifers. The water inflows in the coal mine’s roadways have a negative impact on the productivity of the working faces and pose significant hazards to miners in the event of water inrush. Therefore, the assessment of the height of the water-flowing fractured zone has an important scientific and practical significance. The background of this study is the Xinhu Coal Mine in Anhui Province, China. In the number 81 mining area of the Xinhu Coal Mine during the mining of the number 815 longwall, a water inflow occurred due to fractures in the sandstone in the overburden rock. The experience of the successful implementation of the water inrush control method by horizontal regional grouting through multiple directional wells is described in this paper. This study proposes an algorithm for the assessment of the risk of water inrush from aquifers, based on an ANSYS 17.2 simulation in the complex anticline coal seam bedding. It was found that the safety factors based on the stress and strain parameters can be used as criteria for the risk of rock failure in the aquifer zone. For the number 817 longwall panel of the Xinhu Coal Mine, the probability of rock mass failure indicates a low risk of the occurrence of a water-flowing fractured zone. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 6966 KiB  
Article
Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams
by Ivan Sakhno, Svitlana Sakhno and Oleksandr Vovna
Sustainability 2025, 17(6), 2533; https://doi.org/10.3390/su17062533 - 13 Mar 2025
Cited by 3 | Viewed by 759
Abstract
Underground coal gasification (UCG) is a clean and automated coal technological process that has great potential. Environmental hazards such as the risk of ground surface subsidence, flooding, and water pollution are among the problems that restrict the application of UCG. Overburden rock stability [...] Read more.
Underground coal gasification (UCG) is a clean and automated coal technological process that has great potential. Environmental hazards such as the risk of ground surface subsidence, flooding, and water pollution are among the problems that restrict the application of UCG. Overburden rock stability above UCG cavities plays a key role in the prevention of the mentioned environmental hazards. It is necessary to optimize the safety pillar width to maintain rock stability and ensure minimal coal losses. This study focused on the investigation of the influence of pillar parameters on surface subsidence, taking into account the non-rectangular shape of the pillar and the presence of voids above the UCG reactor in the immediate roof. The main research was carried out using the finite element method in ANSYS 17.2 software. The results of the first simulation stage demonstrated that during underground gasification of a thin coal seam using the Controlled Retraction Injection Points method, with reactor cavities measuring 30 m in length and pillars ranging from 3.75 to 15 m in width, the surface subsidence and rock movement above gasification cavities remain within the pre-peak limits, provided the safety pillar’s bearing capacity is maintained. The probability of crack initiation in the rock mass and subsequent environmental hazards is low. However, in the case of the safety pillars’ destruction, there is a high risk of crack evolution in the overburden rock. In the case of crack formation above the gasification panel, the destruction of aquiferous sandstones and water breakthroughs into the gasification cavities become possible. The surface infrastructure is therefore at risk of destruction. The assessment of the pillars’ stability was carried out at the second stage using numerical simulation. The study of the stress–strain state and temperature distribution in the surrounding rocks near a UCG reactor shows that the size of the heat-affected zone of the UCG reactor is less than the thickness of the coal seam. This shows that there is no significant direct influence of the gasification process on the stability of the surrounding rocks around previously excavated cavities. The coal seam failure in the side walls of the UCG reactor, which occurs during gasification, leads to a reduction in the useful width of the safety pillar. The algorithm applied in this study enables the optimization of pillar width under any mining and geological conditions. This makes it possible to increase the safety and reliability of the UCG process. For the conditions of this research, the failure of coal at the stage of gasification led to a decrease in the useful width of the safety pillar by 0.5 m. The optimal width of the pillar was 15 m. Full article
Show Figures

Figure 1

17 pages, 12868 KiB  
Article
PSInSAR-Based Time-Series Coastal Deformation Estimation Using Sentinel-1 Data
by Muhammad Ali, Alessandra Budillon, Zeeshan Afzal, Gilda Schirinzi and Sajid Hussain
Land 2025, 14(3), 536; https://doi.org/10.3390/land14030536 - 4 Mar 2025
Cited by 1 | Viewed by 931
Abstract
Coastal areas are highly dynamic regions where surface deformation due to natural and anthropogenic activities poses significant challenges. Synthetic Aperture Radar (SAR) interferometry techniques, such as Persistent Scatterer Interferometry (PSInSAR), provide advanced capabilities to monitor surface deformation with high precision. This study applies [...] Read more.
Coastal areas are highly dynamic regions where surface deformation due to natural and anthropogenic activities poses significant challenges. Synthetic Aperture Radar (SAR) interferometry techniques, such as Persistent Scatterer Interferometry (PSInSAR), provide advanced capabilities to monitor surface deformation with high precision. This study applies PSInSAR techniques to estimate surface deformation along coastal zones from 2017 to 2020 using Sentinel-1 data. In the densely populated areas of Pasni, an annual subsidence rate of 130 mm is observed, while the northern, less populated region experiences an uplift of 70 mm per year. Seawater intrusion is an emerging issue causing surface deformation in Pasni’s coastal areas. It infiltrates freshwater aquifers, primarily due to excessive groundwater extraction and rising sea levels. Over time, seawater intrusion destabilizes the underlying soil and rock structures, leading to subsidence or gradual sinking of the ground surface. This form of surface deformation poses significant risks to infrastructure, agriculture, and the local ecosystem. Land deformation varies along the study area’s coastline. The eastern region, which is highly reclaimed, is particularly affected by erosion. The results derived from Sentinel-1 SAR data indicate significant subsidence in major urban districts. This information is crucial for coastal management, hazard assessment, and planning sustainable development in the region. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

Back to TopTop