Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = surface of free volume elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2039 KiB  
Article
Carbon and Nitrogen Surface Contamination Contributions in ZnO Nanowire Based Hydrogen Sensing
by Aurelian Marcu, Sorin Vizireanu, Razvan Mihalcea, Veronica Satulu, Maria Balan, Marius Dumitru, Valentin Craciun, Catalin Constantin and Cristian Viespe
Chemosensors 2025, 13(6), 197; https://doi.org/10.3390/chemosensors13060197 - 27 May 2025
Viewed by 856
Abstract
Hexagonal ZnO nanowires were grown using the PLD/VLS technique on a SAW sensor active area for hydrogen sensing. The influence of different carbon and nitrogen surface contaminant concentrations on sensor output was investigated for three active area cases: a few weeks’ exposure to [...] Read more.
Hexagonal ZnO nanowires were grown using the PLD/VLS technique on a SAW sensor active area for hydrogen sensing. The influence of different carbon and nitrogen surface contaminant concentrations on sensor output was investigated for three active area cases: a few weeks’ exposure to free ambient air contamination, 3 h at 600 °C thermal desorption of carbon, and (room temperature) plasma-activated nitrogen and carbon contamination. Correlations between sensing performance and contamination element concentration were established. To understand the adsorption versus absorption mechanisms, similar studies were further performed on circular ZnO nanowires morphology, which have a different surface-area-to-volume ratio. Comparative results show that, while a 20% carbon surface contamination variation generates a variation of 3–5% in nanostructure hydrogen sorption, nitrogen surface contamination influence depends on nanostructure morphology. Thus, in our comparative studies, for the case of a nanowire hexagonal cross-section a 12% nitrogen surface contamination variation generates a 5–7% increase in hydrogen adsorption and also an increase of 6–8% in hydrogen absorption. Consequently, the catalytic effect of nitrogen could enlarge the linear response of nanowire-based (SAW) sensors over a wider hydrogen concentration range. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Figure 1

29 pages, 4936 KiB  
Article
“Revitalizing” Alginate Films: Control of Texture, Hemo- and Cellular Compatibility via Addition of Cellulose Nanocrystals
by Mikhail A. Torlopov, Ilia S. Martakov, Vasily I. Mikhaylov, Philipp V. Legki, Kirill S. Vavrinchuk, Pavel A. Markov, Natalia N. Drozd, Andrey V. Zhuravlev, Petr A. Sitnikov and Alexander V. Kutchin
Polysaccharides 2025, 6(2), 43; https://doi.org/10.3390/polysaccharides6020043 - 23 May 2025
Viewed by 564
Abstract
The multifactorial modification of the structure and properties of alginate matrix was conducted using partially acetylated cellulose nanocrystals. Fourier-transform infrared spectroscopy and thermogravimetric analysis indicated the absence of chemical interactions between the polymer matrix and the filler. The surface texture was examined using [...] Read more.
The multifactorial modification of the structure and properties of alginate matrix was conducted using partially acetylated cellulose nanocrystals. Fourier-transform infrared spectroscopy and thermogravimetric analysis indicated the absence of chemical interactions between the polymer matrix and the filler. The surface texture was examined using optical microscopy and scanning electron microscopy, along with a reconstruction of its 3D model. With an increase in the content of nanoparticles in the composite, the following was revealed. Firstly, the roughness and density of the arrangement of surface elements increased, while their size decreased. Secondly, at pH values < 7, the puncture resistance increased, whereas the swelling coefficient of the films decreased. In Hanks solutions, the low solubility of the films was established, as well as a higher swelling coefficient at pH > 7. Thirdly, the contribution of donor centers to the free surface energy, cytocompatibility of composite films, and adhesion of fibroblasts to the surface increased. The hematological tests of the composites showed a procoagulant effect. Summarizing the data, we propose a model that explains the influence of nanocrystals and their concentration on the formation of the observed composites’ structure and their physicochemical and biological properties. The main driving forces of structurization are the factor of the excluded volume and interactions in a heterogeneous colloidal system. Full article
Show Figures

Graphical abstract

16 pages, 5731 KiB  
Article
Calibration and Analysis of Seeding Parameters of Soaked Cyperus esculentus L. Seeds
by Jianguo Yan, Zhenyu Liu and Fei Liu
Appl. Sci. 2025, 15(6), 2951; https://doi.org/10.3390/app15062951 - 9 Mar 2025
Cited by 1 | Viewed by 724
Abstract
The seeds of Cyperus esculentus L. exhibit an uneven surface and irregular shape, which adversely affect precision seeding. Pre-sowing seed soaking treatment not only improves seeding performance, but also enhances the germination capability of C. esculentus seeds. However, the intrinsic parameters of the [...] Read more.
The seeds of Cyperus esculentus L. exhibit an uneven surface and irregular shape, which adversely affect precision seeding. Pre-sowing seed soaking treatment not only improves seeding performance, but also enhances the germination capability of C. esculentus seeds. However, the intrinsic parameters of the seeds undergo significant changes after soaking in terms of their physical properties, such as volume, weight, and density. These changes directly influence the fluidity and positioning accuracy of the seeds during the seeding process. Additionally, contact parameters, such as the coefficient of friction and the contact area between the seeds and the seeding apparatus, are altered by soaking. These parameters are crucial for designing efficient seeding devices. Therefore, it is necessary to measure the intrinsic parameters of soaked C. esculentus seeds and their contact parameters with the seeding apparatus to provide parameter support for the precision seeding analysis of pre-soaked C. esculentus. This study focuses on the calibration and experimental investigation of discrete element parameters for soaked C. esculentus seeds. Free-fall collision tests, static friction tests, and rolling friction tests were conducted to calibrate the contact parameters between soaked C. esculentus seeds and between the seeds and steel materials. Using Design-Expert, Plackett–Burman tests, steepest ascent tests, and Box–Behnken response surface tests were designed to obtain the optimal parameter combination for the C. esculentus contact model. The optimal parameters were validated through angle of repose simulation tests and physical experiments. The results indicate that the rolling friction coefficient (F) between seeds, the static friction coefficient (E) between seeds, and the rolling friction coefficient (J) between seeds and steel plates significantly affect the angle of repose. The optimal combination of discrete element parameters is as follows: the static friction coefficient (E) between seeds is 0.675, the rolling friction coefficient (F) between seeds is 0.421, and the rolling friction coefficient (J) between seeds and steel plates is 0.506. Using the calibrated parameters for simulation, the average angle of repose was 32.31°, with a relative error of 1.1% compared to the physical experiments. Full article
Show Figures

Figure 1

21 pages, 11089 KiB  
Article
Acoustoelectric Effect due to an In-Depth Inhomogeneous Conductivity Change in ZnO/Fused Silica Substrates
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Sensors 2024, 24(19), 6399; https://doi.org/10.3390/s24196399 - 2 Oct 2024
Viewed by 1040
Abstract
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at [...] Read more.
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at 200 °C. A surface acoustic wave (SAW) delay line was fabricated with two split-finger Al interdigital transducers (IDTs) photolithographically implemented onto the ZnO-free surface to excite and reveal the propagation of the fundamental Rayleigh wave and its third harmonic at about 39 and 104 MHz. A small area of a few square millimeters on the surface of the ZnO layer, in between the two IDTs, was illuminated by UV light at different light power values (from about 10 mW up to 1.2 W) through the back surface of the SiO2 substrate, which is optically transparent. The UV absorption caused a change of the ZnO electrical conductivity, which in turn affected the velocity and insertion loss (IL) of the two waves. It was experimentally observed that the phase velocity of the fundamental and third harmonic waves decreased with an increase in the UV power, while the IL vs. UV power behavior differed at large UV power values: the Rayleigh wave underwent a single peak in attenuation, while its third harmonic underwent a further peak. A two-dimensional finite element study was performed to simulate the waves IL and phase velocity vs. the ZnO electrical conductivity, under the assumption that the ZnO layer conductivity undergoes an in-depth inhomogeneous change according to an exponential decay law, with a penetration depth of 325 nm. The theoretical results predicted single- and double-peak IL behavior for the fundamental and harmonic wave due to volume conductivity changes, as opposed to the AE effect induced by surface conductivity changes for which a single-peak IL behavior is expected. The phenomena predicted by the theoretical models were confirmed by the experimental results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 3451 KiB  
Article
Surface Microstructure Study on Corona Discharge-Treated Polyethylene Using Positron Annihilation Spectroscopy
by Jingjing Li, Zhiwei Shen, Liuyang Tie, Tianyuan Long, Qiyue Zhong, Xi Chen, Chongshan Yin, Liguo Liufu, Xianhao Huang, Bangyun Xiong, Xibo Li, Chongxiong Duan and Chunqing He
Molecules 2024, 29(17), 4147; https://doi.org/10.3390/molecules29174147 - 31 Aug 2024
Cited by 1 | Viewed by 1760
Abstract
The microstructure and chemical properties of the corona discharge process could provide an effective method for predicting the performance of high-voltage cable insulation materials. In this work, the depth profile of the microstructure and chemical characteristics of corona discharge-treated PE were extensively investigated [...] Read more.
The microstructure and chemical properties of the corona discharge process could provide an effective method for predicting the performance of high-voltage cable insulation materials. In this work, the depth profile of the microstructure and chemical characteristics of corona discharge-treated PE were extensively investigated using Doppler broadening of position annihilation spectroscopy accompanied with positron annihilation lifetime spectroscopy, attenuated total reflectance Fourier transform infrared spectra, Raman spectra and contact angle measurement. By increasing corona discharge duration, the oxygen-containing polar groups, including hydroxyl, carbonyl and ester groups, strongly contribute to the deterioration of hydrophobicity and the enhancement of hydrophilicity. And the mean free volume size, with a broadening distribution, decreases slightly. The line shape S parameter decreases because of the decrease in free volume elements and the appearance of oxygen-containing groups. Also, the thickness of the degradation layer, determined from the S parameter with positron injection depth, increases and diffuses into the PE matrix. A linear S-W plot within the degradation layer of different corona treatment duration samples indicates the defect type does not change. The S parameter decreases and the W parameter increases with an increasing corona duration. Using a slow positron beam, the nondestructive probe can be used to profile the microstructure and chemical environment across the corona discharge damage depth, which is beneficial for investigating the surface and interfacial insulation materials. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry—2nd Edition)
Show Figures

Figure 1

20 pages, 7035 KiB  
Article
Biochemical and Microbiological Properties of the Cotton–Copper Composite Material Obtained via Sputter Deposition
by Małgorzata Świerczyńska, Zdzisława Mrozińska, Michał Juszczak, Katarzyna Woźniak and Marcin H. Kudzin
Coatings 2024, 14(7), 900; https://doi.org/10.3390/coatings14070900 - 18 Jul 2024
Viewed by 2057
Abstract
This study investigated the biochemical and microbiological properties of Cotton–Copper composite materials obtained using magnetron sputtering technology. Copper particles were precisely distributed on the fabric surface, ensuring free airflow without the need to create additional layers. The Cotton–Copper composite materials were subjected to [...] Read more.
This study investigated the biochemical and microbiological properties of Cotton–Copper composite materials obtained using magnetron sputtering technology. Copper particles were precisely distributed on the fabric surface, ensuring free airflow without the need to create additional layers. The Cotton–Copper composite materials were subjected to physiochemical and biological investigations. The physiochemical analysis included the elemental analysis of composites (C, N, O, S, Cu) and analyses of their microscopic and surface properties (specific surface area and total pore volume). The biological investigations consisted of microbiological and biochemical–hematological tests, including evaluation of the activated partial thromboplastin time and prothrombin time. Experiments showed significant effectiveness of the antibacterial material against representative strains of fungi and bacterial species. We also demonstrated the ability of the cotton–copper material to interact directly with the plasmid DNA. Full article
(This article belongs to the Special Issue Advances in Functional Bio-Coatings)
Show Figures

Figure 1

19 pages, 29254 KiB  
Article
Biochemical Evaluation and Structural Characteristics of Copper Coating Cellulose Nonwovens Prepared by Magnetron Sputtering Technology
by Małgorzata Świerczyńska, Zdzisława Mrozińska, Agnieszka Lisiak-Kucińska, Anetta Walawska and Marcin H. Kudzin
Coatings 2024, 14(7), 843; https://doi.org/10.3390/coatings14070843 - 5 Jul 2024
Cited by 2 | Viewed by 1279
Abstract
The research aimed to enhance the aqua-jet/spunlace cellulose nonwoven fabric by deposition of copper coating by magnetron sputtering technology. Plasma technology facilitated the efficient distribution of copper particles on the surface of the cellulose nonwoven fabric, while maintaining free airflow and eliminating the [...] Read more.
The research aimed to enhance the aqua-jet/spunlace cellulose nonwoven fabric by deposition of copper coating by magnetron sputtering technology. Plasma technology facilitated the efficient distribution of copper particles on the surface of the cellulose nonwoven fabric, while maintaining free airflow and eliminating the need for additional layers. New cellulose-copper composites exhibit potential in biomedical applications, while minimizing their impact on biological processes such as blood plasma coagulation. Consequently, they can be utilized in the production of dressings, bandages, and other medical products requiring effective protection against bacterial infections. The cellulose-copper composite material was subjected to the physiochemical and biological investigations. The physiochemical analysis included the elemental analysis of composites, their microscopic analysis and the surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of biochemical-hematological tests including the evaluation of the activated partial thromboplastin time and pro-thrombin time. Biodegradable materials based on cellulose nonwoven fabrics with the addition of copper offer a promising alternative to conventional materials. Their innovative properties, coupled with environmental friendliness and minimal impact on biological processes, offer vast application possibilities in healthcare and the production of hygiene products. Full article
(This article belongs to the Special Issue Advances in Functional Bio-Coatings)
Show Figures

Figure 1

18 pages, 5334 KiB  
Article
Synthesis of Fe-Loaded Biochar Obtained from Rape Straw for Enhanced Degradation of Emerging Contaminant Antibiotic Metronidazole
by Dongyuan Zhang, Lin Shi, Edwin Hena Dawolo, Bingfa Chen, Ning Ding and Hong Liu
Water 2024, 16(13), 1822; https://doi.org/10.3390/w16131822 - 26 Jun 2024
Cited by 2 | Viewed by 1620
Abstract
In this study, magnetic (Fe)-loaded biochar was successfully prepared by a simple impregnation pyrolysis method. Meanwhile, its degradation capability and mechanism for typical antibiotic metronidazole (MNZ) were systematically investigated under different conditions. The characterization of the synthesized material showed that the specific surface [...] Read more.
In this study, magnetic (Fe)-loaded biochar was successfully prepared by a simple impregnation pyrolysis method. Meanwhile, its degradation capability and mechanism for typical antibiotic metronidazole (MNZ) were systematically investigated under different conditions. The characterization of the synthesized material showed that the specific surface area, pore diameter, and pore volume changed significantly. Also, functional groups and metal element Fe were introduced on the surface of the biochar, leading to its better capability to activate peroxymonosulfate (PMS). The degradation experiments showed that the removal of MNZ in the Fe-BC/PMS system can reach up to 95.3% in 60 min under optimal conditions. Free-radical capture experiments showed that there were several active species of •OH, SO4, •O2, and 1O2 present in the catalyst to synergistically degrade MNZ, among which SO4 played a major role; it was also found that the material can be easily recycled and was still effective after several uses. Further, the main degradation pathways of MNZ include nitrohydroxylation, hydroxyethyl functional group deletion, carboxylation of the amino functional group of •OH, demethylation, oxidation, and carboxylation. It is obvious that the synthesized magnetic-loaded biochar, Fe-BC, generated from waste rape straw crops, shows high catalytic performance in pollutant degradation, providing an insight into the recycling potential of waste biomass in the catalytic field for pollutant removal. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants)
Show Figures

Figure 1

14 pages, 9079 KiB  
Article
Glass-Forming Ability, Mechanical Properties, and Energetic Characteristics of ZrCuNiAlNbHfY Bulk Metallic Glasses
by Xin Yu, Jianbin Li, Kaichuang Zhang, Huijie Zhang, Hao Wang, Yuanhang Fang, Yusong Ma, Zhenxiong Wang, Xinggao Zhang and Xiqiang Gai
Materials 2024, 17(13), 3136; https://doi.org/10.3390/ma17133136 - 26 Jun 2024
Cited by 1 | Viewed by 2020
Abstract
The effects of partially substituting Al for Cu in Zr59.62Cu18.4-xNi12Al6+xNb3Hf0.78Y0.2 (x = 0, 2, 4, 6, 8 at.%) bulk metallic glasses (BMGs) on their glass-forming ability (GFA), [...] Read more.
The effects of partially substituting Al for Cu in Zr59.62Cu18.4-xNi12Al6+xNb3Hf0.78Y0.2 (x = 0, 2, 4, 6, 8 at.%) bulk metallic glasses (BMGs) on their glass-forming ability (GFA), quasi-static and dynamic mechanical properties, and energy characteristics were investigated. The results showed that an appropriate substitution of Al for Cu can improve GFA and reach a critical casting size up to 10 mm. Additionally, with Al replacement of Cu, the change in the distribution and content of free volume inside the BMGs was the main reason for the quasi-static compression plasticity. In contrast, the BMGs exhibited no plasticity during dynamic compression and high-speed impact, owing to the short loading time and thermal softening effect. In terms of energy characteristics, all alloys have a high combustion enthalpy. And on the surface of the fragments collected from impact, the active elements Zr, Al, and Nb reacted because of the adiabatic temperature rise. Further, x = 4 at.% Zr-based BMG with its superior overall performance could penetrate a 6 mm Q235 plate at a speed of 1038 m/s, combining excellent mechanical properties and energy characteristics. This study contributes to the development of Zr-based BMGs as novel energetic structural materials. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 4266 KiB  
Article
Crosslinked Polydiallyldimethylammonium Chloride Adsorbent for the Selective Separation of Rhenium Ions from Pregnant Leach Solutions
by Mohammadbagher Fathi, Mehdi Mahmoudian, Richard Diaz Alorro and Mostafa Chegini
Materials 2024, 17(11), 2737; https://doi.org/10.3390/ma17112737 - 4 Jun 2024
Viewed by 1380
Abstract
The depletion of valuable mineral reserves has rendered effluents generated from mining and industrial processing activities a promising resource for the production of precious elements. The synthesis and improvement of new adsorbents to extract valuable compounds from industrial wastes and pregnant leach solutions, [...] Read more.
The depletion of valuable mineral reserves has rendered effluents generated from mining and industrial processing activities a promising resource for the production of precious elements. The synthesis and improvement of new adsorbents to extract valuable compounds from industrial wastes and pregnant leach solutions, besides increasing wealth, can play a significant role in reducing environmental concerns. In this work, a new and low-cost adsorbent for the selective extraction of rhenium (perrhenate ions, ReO4) was synthesized by the free-radical polymerization (FRP) of a diallyl dimethylammonium chloride monomer (quaternary amine) in the presence of a crosslinker. Various methods were employed to characterize the polymeric adsorbent. The results revealed that the designed polymeric adsorbent had a high surface area and pores with nano-metric dimensions and a pore volume of 6.4 × 10−3 cm3/g. Four environments—single, binary, multicomponent, and real solutions—were applied to evaluate the adsorbent’s performance in the selective separation of Re. Additionally, these environments were used to understand the behavior of molybdenum ions, the primary competitors of perrhenate ions in the ion exchange process. In competitive conditions, using variations in qe,mix/qe, an antagonism phenomenon (qe,mix/qe < 1) occurred due to the inhibitory effect of surface-adsorbed molybdenum ions on the binding of the perrhenate ions. However, across all conditions, the separation values for Re were higher than those for the other studied elements (Mo, Cu, Fe). Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications)
Show Figures

Figure 1

18 pages, 8693 KiB  
Article
Infusion Simulation of Graphene-Enhanced Resin in LCM for Thermal and Chemo-Rheological Analysis
by Hatim Alotaibi, Chamil Abeykoon, Constantinos Soutis and Masoud Jabbari
Materials 2024, 17(4), 806; https://doi.org/10.3390/ma17040806 - 7 Feb 2024
Cited by 2 | Viewed by 2127
Abstract
The present numerical study proposes a framework to determine the heat flow parameters—specific heat and thermal conductivity—of resin–graphene nanoplatelets (GNPs) (modified) as well as non-modified resin (with no GNPs). This is performed by evaluating the exothermic reaction which occurs during both the filling [...] Read more.
The present numerical study proposes a framework to determine the heat flow parameters—specific heat and thermal conductivity—of resin–graphene nanoplatelets (GNPs) (modified) as well as non-modified resin (with no GNPs). This is performed by evaluating the exothermic reaction which occurs during both the filling and post-filling stages of Liquid Composite Moulding (LCM). The proposed model uses ANSYS Fluent to solve the Stokes–Brinkman (momentum and mass), energy, and chemical species conservation equations to a describe nano-filled resin infusion, chemo-rheological changes, and heat release/transfer simultaneously on a Representative Volume Element (RVE). The transient Volume-of-Fluid (VOF) method is employed to track free-surface propagation (resin–air interface) throughout the computational domain. A User-Defined Function (UDF) is developed together with a User-Defined Scaler (UDS) to incorporate the heat generation (polymerisation), which is added as an extra source term into the energy equation. A separate UDF is used to capture intra-tow (microscopic) flow by adding a source term into the momentum equation. The numerical findings indicate that the incorporation of GNPs can accelerate the curing of the resin system due to the high thermal conductivity of the nanofiller. Furthermore, the model proves its capability in predicting the specific heat and thermal conductivity of the modified and non-modified resin systems utilising the computed heat of reaction data. The analysis shows an increase of ∼15% in the specific heat and thermal conductivity due to different mould temperatures applied (110–170 °C). This, furthermore, stresses the fact that the addition of GNPs (0.2 wt.%) improves the resin-specific heat by 3.68% and thermal conductivity by 58% in comparison to the non-modified thermoset resin. The numerical findings show a satisfactory agreement with and in the range of experimental data available in the literature. Full article
(This article belongs to the Special Issue Advances in Bio-Polymer and Polymer Composites)
Show Figures

Figure 1

13 pages, 6013 KiB  
Article
The Effect of Crude Oil Stripped by Surfactant Action and Fluid Free Motion Characteristics in Porous Medium
by Qingchao Cheng, Guangsheng Cao, Yujie Bai and Ying Liu
Molecules 2024, 29(2), 288; https://doi.org/10.3390/molecules29020288 - 5 Jan 2024
Cited by 3 | Viewed by 1406
Abstract
The surfactant solution is crucial in facilitating the spontaneous imbibition process for the recovery of oil in tight reservoirs. Further investigation is required to examine the fluid flow in porous mediums and the process of crude oil stripping by a surfactant solution during [...] Read more.
The surfactant solution is crucial in facilitating the spontaneous imbibition process for the recovery of oil in tight reservoirs. Further investigation is required to examine the fluid flow in porous mediums and the process of crude oil stripping by a surfactant solution during spontaneous imbibition. Hence, this study aims to determine the free motion properties of oil and water in porous mediums using the finite-element approach to solve the multiphase flow differential equation, taking into account the capillary pressure. An investigation was conducted to examine the impact of oil viscosity and interfacial tension on the mean liquid flow rate and oil volume fraction. An experimental study was conducted to investigate the impact of surface tension, interfacial tension, and wetting angle on crude-oil-stripping efficiency. The findings indicate that the stripped crude oil migrated through porous mediums as individual oil droplets, exhibiting a degree of stochasticity in its motion. When the interfacial tension is reduced, the average velocity of the fluid in the system decreases. The crude oil exhibited a low viscosity, high flow capacity, and a high average flow rate within the system. Once the concentration of the surfactant solution surpasses a specific threshold, it binds with the oil to create colloidal aggregates, resulting in the formation of micelles and influencing the efficiency of the stripping process. As the temperature rises, the oil-stripping efficiency also increases. Simultaneously, an optimal range of wetting angle, surface tension, and interfacial tension could enhance the effectiveness of removing oil using surfactant solutions. The research results of this paper enrich the enhanced oil recovery mechanism of surfactant and are of great significance to the development of tight reservoirs. Full article
(This article belongs to the Special Issue Research Progress of Surfactants)
Show Figures

Graphical abstract

22 pages, 14119 KiB  
Article
Acoustic Field Radiation Prediction and Verification of Underwater Vehicles under a Free Surface
by Yung-Wei Chen, Cheng-Cheng Pan, Yi-Hsien Lin, Chao-Feng Shih, Jian-Hong Shen and Chun-Ming Chang
J. Mar. Sci. Eng. 2023, 11(10), 1940; https://doi.org/10.3390/jmse11101940 - 8 Oct 2023
Cited by 3 | Viewed by 1847
Abstract
This study aimed to examine the acoustic field radiated by propellers and underwater vehicles. For the verification of sound radiation in underwater vehicles, numerical methods are widely used in addition to experiments and propeller blade frequencies for calculation and validation. Numerical convergence and [...] Read more.
This study aimed to examine the acoustic field radiated by propellers and underwater vehicles. For the verification of sound radiation in underwater vehicles, numerical methods are widely used in addition to experiments and propeller blade frequencies for calculation and validation. Numerical convergence and accuracy are more important for near-field and far-field problems. This paper uses the boundary element method (BEM) to assess the convergence of the finite volume method (FVM). In this study, the FVM, including the Reynolds-averaged Navier–Stokes method and the Ffowcs Williams–Hawkings (FW-H) acoustic model, is used to investigate the influence of various geometric inflows on the hydrodynamic and noise performance of the propeller. Then, the sound radiation of the FVM is compared with the BEM at the far field to determine the number of meshed elements. Furthermore, spectral analysis is being conducted to examine the noise generated by the underwater vehicle and propeller. The objective is to investigate the influence of the free surface on propeller efficiency. After verifying the numerical simulation, the results indicate that a relationship can be established between water pressure and propeller thrust under specific conditions. This relationship can be used to estimate the magnitude of propeller thrust at different water depths. The simulated results of propeller thrust, torque coefficient, propulsion efficiency, and sound radiation in this study are consistent with experimental values. This demonstrates the accuracy and practicality of the findings of numerical procedures in engineering applications. Full article
Show Figures

Figure 1

17 pages, 19021 KiB  
Article
Atomistic Construction of Silicon Nitride Ceramic Fiber Molecular Model and Investigation of Its Mechanical Properties Based on Molecular Dynamics Simulations
by Yiqiang Hong, Yu Zhu, Youpei Du, Zhe Che, Guoxin Qu, Qiaosheng Li, Tingting Yuan, Wei Yang, Zhen Dai, Weijian Han and Qingsong Ma
Materials 2023, 16(18), 6082; https://doi.org/10.3390/ma16186082 - 5 Sep 2023
Cited by 5 | Viewed by 1771
Abstract
Molecular simulations are currently receiving significant attention for their ability to offer a microscopic perspective that explains macroscopic phenomena. An essential aspect is the accurate characterization of molecular structural parameters and the development of realistic numerical models. This study investigates the surface morphology [...] Read more.
Molecular simulations are currently receiving significant attention for their ability to offer a microscopic perspective that explains macroscopic phenomena. An essential aspect is the accurate characterization of molecular structural parameters and the development of realistic numerical models. This study investigates the surface morphology and elemental distribution of silicon nitride fibers through TEM and EDS, and SEM and EDS analyses. Utilizing a customized molecular dynamics approach, molecular models of amorphous and multi-interface silicon nitride fibers with complex structures were constructed. Tensile simulations were conducted to explore correlations between performance and molecular structural composition. The results demonstrate successful construction of molecular models with amorphous, amorphous–crystalline interface, and mixed crystalline structures. Mechanical property characterization reveal the following findings: (1) The nonuniform and irregular amorphous structure causes stress concentration and crack formation under applied stress. Increased density enhances material strength but leads to higher crack sensitivity. (2) Incorporating a crystalline reinforcement phase without interfacial crosslinking increases free volume and relative tensile strength, improving toughness and reducing crack susceptibility. (3) Crosslinked interfaces effectively enhance load transfer in transitional regions, strengthening the material’s tensile strength, while increased density simultaneously reduces crack propagation. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 13214 KiB  
Article
A Dimension-Reduced Line Element Method for 3D Transient Free Surface Flow in Porous Media
by Yuting Chen, Qianfeng Yuan, Zuyang Ye and Zonghuan Peng
Water 2023, 15(17), 3072; https://doi.org/10.3390/w15173072 - 28 Aug 2023
Cited by 3 | Viewed by 2467
Abstract
In order to reduce the numerical difficulty of the 3D transient free surface flow problems in porous media, a line element method is proposed by dimension reduction. Different from the classical continuum-based methods, homogeneous permeable pores in the control volume are conceptualized by [...] Read more.
In order to reduce the numerical difficulty of the 3D transient free surface flow problems in porous media, a line element method is proposed by dimension reduction. Different from the classical continuum-based methods, homogeneous permeable pores in the control volume are conceptualized by a 3D orthogonal network of tubes. To obtain the same hydraulic solution with the continuum model, the equivalent formulas of flow velocity, continuity equation and transient free surface boundary are derivable from the principle of flow balance. In the solution space of transient free surface flow, the 3D problem is transformed into 1D condition, and then a finite element algorithm is simply deduced. The greatest advantage of the line element method is line integration instead of volume/surface integration, which has dramatically decreased the integration difficulty across the jump free surface. Through the analysis of transient free surface flow in the unconfined aquifer, trapezoidal dam, sand flume and wells, the transient free surface locations predicted from the proposed line element method generally agree well with the analytical, experimental and other numerical data in the available literatures, the numerical efficiency can also be well guaranteed. Furthermore, the hydraulic anisotropy has significant effect on the evolution of free surface locations and the shape of depression cones in spatial. The line element method can be expanded to model the 3D unsaturated seepage flow, two-phase flow and thermos problems in porous media because of the similarity between the similarity of Darcy’s law, Buckingham Law and Fourier’s law. Full article
Show Figures

Figure 1

Back to TopTop