Surface Microstructure Study on Corona Discharge-Treated Polyethylene Using Positron Annihilation Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Properties of Corona Discharge-Treated PE
2.2. Surface Hydrophilicity of Corona Discharge-Treated PE
2.3. Free Volumes Analysis of Corona Discharge-Treated PE
2.4. Microstructure Depth Profile of Corona Discharge-Treated PE
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, W. Failure mechanism of winding insulations in inverter-fed motors. IEEE Electr. Insul. Mag. 1997, 13, 18–23. [Google Scholar]
- Metzler, D.; Hake, J. The effect of mechanical deformation and wire size on the ozone erosion resistance of inverter-duty magnet wires. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference, Rosemont, IL, USA, 25–25 September 1997; pp. 389–395. [Google Scholar] [CrossRef]
- Bellomo, J.P.; Lebey, T.; Oraison, J.; Peltier, F. Electrical aging of stator insulation of low voltage rotating machines supplied by inverters. In Proceedings of the Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, QC, Canada, 16–19 June 1996; pp. 210–213. [Google Scholar] [CrossRef]
- Pascual, M.; Balart, R.; Sánchez, L.; Fenollar, O.; Calvo, O. Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. J. Mater. Sci. 2008, 43, 4901–4909. [Google Scholar] [CrossRef]
- Molinié, P. A review of mechanisms and models accounting for surface potential decay. IEEE Trans. Plasma Sci. 2012, 40, 167–176. [Google Scholar] [CrossRef]
- Kireche, N.; Rondot, S.; Bitam-Megherbi, F.; Jbara, O.; Gilliot, M.; Patat, J.M. Experimental study of polymethyl methacrylate damage under corona discharge. Eur. Phys. J. Appl. Phys. 2018, 82, 31301. [Google Scholar] [CrossRef]
- Li, Y.; Yasuda, M.; Takada, T. Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 188–195. [Google Scholar]
- Sharma, S.K.; Pujari, P.K. Role of free volume characteristics of polymer matrix in bulk physical properties of polymer nanocomposites: A review of positron annihilation lifetime studies. Prog. Polym. Sci. 2017, 75, 31–47. [Google Scholar] [CrossRef]
- Volfová, L.; Andrei Irimiciuc, S.; Chertopalov, S.; Hruška, P.; Čížek, J.; Vondráček, M.; Novotný, M.; Butterling, M.; Liedke, M.O.; Wagner, A.; et al. Tailoring pulsed laser deposition fabricated copper oxide film by controlling plasma parameters. Appl. Surf. Sci. 2023, 608, 155128. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Ping, Y.; Qian, L.; Li, J.; Liu, L.; Liu, Y.; Ito, K.; Wei, C.; He, C. Enhancement in photoelectric properties of ITO films by regulating defects and dopants with supercritical fluid treatment. Appl. Surf. Sci. 2021, 565, 150551. [Google Scholar] [CrossRef]
- Tsuji, K.; Nakaya, M.; Uedono, A.; Hotta, A. Enhancement of the gas barrier property of polypropylene by introducing plasma-treated silane coating with SiOx-modified top-surface. Surf. Coat. Tech. 2015, 284, 377–383. [Google Scholar] [CrossRef]
- Yang, L.; Qian, L.B.; Cao, D.W.; Li, X.; Guo, J.C.; Zhang, H.L.; Zhang, D.W.; He, C.Q. Surface collapse of fine powders ground from HKUST-1 big crystals investigated by positron annihilation lifetime spectroscopy. Appl. Surf. Sci. 2024, 646, 158937. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, K.; Zhang, T.; Zhou, J.; Liu, Y.; Zeng, M.; Ren, X.; Feng, R.; Yang, Z.; Zhang, P.; et al. TiO2-modified montmorillonite-supported porous carbon-immobilized Pd species nanocomposite as an efficient catalyst for sonogashira reactions. Molecules 2023, 28, 2399. [Google Scholar] [CrossRef] [PubMed]
- Eldrup, M.; Lightbody, D.; Sherwood, J.N. The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 1981, 63, 51–58. [Google Scholar] [CrossRef]
- Tao, S.J. Positronium Annihilation in Molecular Substances. J. Chem. Phys. 1972, 56, 5499–5510. [Google Scholar] [CrossRef]
- Mallon, P.E.; Greyling, C.J.; Vosloo, W.; Jean, Y.C. Positron annihilation spectroscopy study of high-voltage polydimethylsiloxane (PDMS) insulators. Radiat. Phys. Chem. 2003, 68, 453–456. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Y.; Zheng, F.; Zhang, N.; Yin, C.S.; Li, J.J.; He, C.Q.; Peng, X.Y.; Huang, Z.; Fang, P.F. Study on surface structure of plasma-treated polydimethylsiloxane (PDMS) elastomer by slow positron beam. Surf. Interface Anal. 2018, 50, 819–826. [Google Scholar] [CrossRef]
- Uedono, A.; Chen, Z.Q.; Suzuki, R.; Ohdaira, T.; Mikado, T.; Fukui, S.; Shiota, A.; Kimura, S. Nanoporous structure of methyl-silsesquioxane films using monoenergetic positron beams. J. Appl. Phys. 2001, 90, 2498–2503. [Google Scholar] [CrossRef]
- Yu, R.S.; Ito, K.; Hirata, K.; Zheng, W.; Kobayashi, Y. Effects of coexistent pores and paramagnetic defects on positron annihilation in silicon oxide thin films. J. Appl. Phys. 2003, 93, 3340–3344. [Google Scholar] [CrossRef]
- He, C.; Hamada, E.; Suzuki, T.; Kobayashi, H.; Kondo, K.; Shantarovich, V.P.; Ito, Y. Characterization of polymer sub-surface using slow positron beam. J. Radioanal. Nucl. Ch. 2003, 255, 431–435. [Google Scholar] [CrossRef]
- Peng, X.Y.; Wang, Z.; Lin, H.S.; Fang, P.F.; Huang, Z. Surface structure of aged composite insulator studied by slow positron beam. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 1008–1012. [Google Scholar] [CrossRef]
- Schultz, P.J.; Lynn, K.G. Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 1988, 60, 701. [Google Scholar] [CrossRef]
- Seyhan, A.; Gunaydin, B.N.; Polat, Y.; Kilic, A.; Demir, A.; Avci, H. Improvement of polyethylene fiber wettability and mechanical properties through an environmentally sustainable spinning process. Int. J. Adhes. Adhes. 2022, 119, 103250. [Google Scholar] [CrossRef]
- Mirabedini, S.M.; Rahimi, H.; Hamedifar, S.; Mohsen Mohseni, S. Microwave irradiation of polypropylene surface: A study on wettability and adhesion. Int. J. Adhes. Adhes. 2004, 24, 163–170. [Google Scholar] [CrossRef]
- Park, S.J.; Jin, J.S. Effect of corona discharge treatment on the dyeability of low-density polyethylene film. J. Colloid. Inter. Sci. 2001, 236, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Xiong, B.Y.; Yin, C.S.; Zhang, X.W.; Zhou, Y.W.; Wang, Z.; Fang, P.F.; He, C.Q. Free volume characteristics on water permeation and salt rejection of polyamide reverse osmosis membranes investigated by a pulsed slow positron beam. J. Mater. Sci. 2018, 53, 16132–16145. [Google Scholar] [CrossRef]
- Suzuki, T.; He, C.; Shantarovich, V.; Kondo, K.; Hamada, E.; Matso, M.; Ma, L.; Ito, Y. The influence of radiation and light on Ps formation in PMMA and PE studied by coincidence Doppler-broadening spectroscopy. Radiat. Phys. Chem. 2003, 66, 161–166. [Google Scholar] [CrossRef]
- Ghasemifard, M.; Ghamari, M. Characterization of polar groups in polyvinyl chloride-ethyl vinyl acetate blends using coincidence Doppler broadening spectroscopy. J. Appl. Polym. Sci. 2023, 141, e54985. [Google Scholar] [CrossRef]
- Xiong, B.; Mao, W.; Tang, X.; He, C. Positron annihilation characteristics in mesostructural silica films with various porosities. J. Appl. Phys. 2014, 115, 094303. [Google Scholar] [CrossRef]
- Xiong, B.Y.; Mao, W.F.; Yue, J.; Xu, X.S.; He, C.Q. Mesoporosity in silica films studied by a slow positron beam and ellipsometry. Phys. Lett. A 2014, 378, 249–253. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.J.; Zhou, Y.M.; Zhang, N.; He, C.Q.; Peng, X.Y.; Huang, Z.; Cao, X.Z.; Wang, B.Y.; Fang, P.F. Investigation of the surface microstructure evolution of silicone rubber during corona discharge via slow positron beam and electrochemical impedance spectroscopy. Plasma Process Polym. 2019, 16, 1900057. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Peng, X.Y.; Huang, Z.; Fang, P.F. Influence of crosslinking extent on free volumes of silicone rubber and water diffusion after corona discharge. Materials 2022, 15, 6833. [Google Scholar] [CrossRef]
- Kansy, J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 1996, 374, 235–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shen, Z.; Tie, L.; Long, T.; Zhong, Q.; Chen, X.; Yin, C.; Liufu, L.; Huang, X.; Xiong, B.; et al. Surface Microstructure Study on Corona Discharge-Treated Polyethylene Using Positron Annihilation Spectroscopy. Molecules 2024, 29, 4147. https://doi.org/10.3390/molecules29174147
Li J, Shen Z, Tie L, Long T, Zhong Q, Chen X, Yin C, Liufu L, Huang X, Xiong B, et al. Surface Microstructure Study on Corona Discharge-Treated Polyethylene Using Positron Annihilation Spectroscopy. Molecules. 2024; 29(17):4147. https://doi.org/10.3390/molecules29174147
Chicago/Turabian StyleLi, Jingjing, Zhiwei Shen, Liuyang Tie, Tianyuan Long, Qiyue Zhong, Xi Chen, Chongshan Yin, Liguo Liufu, Xianhao Huang, Bangyun Xiong, and et al. 2024. "Surface Microstructure Study on Corona Discharge-Treated Polyethylene Using Positron Annihilation Spectroscopy" Molecules 29, no. 17: 4147. https://doi.org/10.3390/molecules29174147
APA StyleLi, J., Shen, Z., Tie, L., Long, T., Zhong, Q., Chen, X., Yin, C., Liufu, L., Huang, X., Xiong, B., Li, X., Duan, C., & He, C. (2024). Surface Microstructure Study on Corona Discharge-Treated Polyethylene Using Positron Annihilation Spectroscopy. Molecules, 29(17), 4147. https://doi.org/10.3390/molecules29174147