Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (591)

Search Parameters:
Keywords = surface depressions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 8847 KiB  
Article
From Pulp to Froth: Decoding the Role of Nanoparticle Colloidal Silica in Scheelite Flotation as a Calcite Depressant
by Borhane Ben Said, Suvarna Patil, Martin Rudolph, Daniel Goldmann and Lucas Pereira
Minerals 2025, 15(8), 834; https://doi.org/10.3390/min15080834 (registering DOI) - 6 Aug 2025
Abstract
Colloidal silica acts as a multifunctional reagent in the froth flotation process of semi-soluble salt-type minerals, enabling the selective depression of calcite. This study investigates its effect on four key minerals—calcite, scheelite, apatite, and fluorite—using a comprehensive suite of techniques to identify the [...] Read more.
Colloidal silica acts as a multifunctional reagent in the froth flotation process of semi-soluble salt-type minerals, enabling the selective depression of calcite. This study investigates its effect on four key minerals—calcite, scheelite, apatite, and fluorite—using a comprehensive suite of techniques to identify the flotation subprocesses modulated by colloidal silica. This work also aims to determine the specific flotation zones affected by colloidal silica, assessing the influence of its dosage, surface modification, and specific surface area on metallurgical outcomes. Atomic force microscopy revealed mineral-specific surface responses to colloidal silica conditioning: calcite exhibited localized nanoparticle adsorption, whereas apatite underwent a dissolution–reprecipitation mechanism. Scheelite and fluorite, in contrast, showed minimal surface modifications. These differences are attributed to variations in surface reactivity, hydration behavior, and crystallographic structure, with calcite offering a uniquely favorable environment for colloidal silica attachment. Mechanistic insights show that colloidal silica—especially the aluminate-modified type with high specific surface area—influences both the pulp and froth zones by producing small, stable bubbles, enhancing fine scheelite recovery, stabilizing froth, and effectively depressing calcite. In contrast, non-functionalized colloidal silica resulted in poor bubble control and unstable froth. These findings elucidate the subprocess-specific mechanisms by which colloidal silica operates and highlight its potential as a tunable, multifunctional reagent for improving selectivity in the flotation of semi-soluble salt-type minerals. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Mineral Processing)
Show Figures

Graphical abstract

19 pages, 2606 KiB  
Article
Influence of Monosodium Glutamate on Astroglia of Rat Habenula
by Aleksandra Krawczyk, Karol Rycerz, Jadwiga Jaworska-Adamu and Marcin B. Arciszewski
Biomolecules 2025, 15(8), 1111; https://doi.org/10.3390/biom15081111 - 1 Aug 2025
Viewed by 113
Abstract
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous [...] Read more.
The habenula (Hb) of the epithalamus is formed of the medial (MHb) and lateral (LHb) parts. The improper functioning of the Hb may lead to depression and anxiety. The glutamate excitotoxicity is accompanied by astroglia reactivity and leads to the damage of nervous system structures. The aim of the study was to assess the influence of monosodium glutamate (MSG) administrated subcutaneously to rats in doses of 2 g/kg b.w. (I) and 4 g/kg b.w. (II), on astroglia in the MHb and LHb. Based on immunohistochemical reactions, the morphology, number of astrocytes immunoreactive for glial fibrillary acidic protein (GFAP-IR) and S100β protein (S100β-IR), and their surface area, perimeter, number and length of processes, and cytoplasmic-nuclear immunostaining intensity for the studied proteins were assessed. In the MHb of animals receiving MSG, especially at a high dose, hypertrophy and an increase in the number of GFAP-IR and S100β-IR cells were demonstrated. In the LHb, only hypertrophy of processes in S100β-positive glia was observed. The immunostaining intensity increased in GFAP-IR glia and decreased in S100β-IR cells only in animals from group I. The results revealed that astroglia respond to MSG depending on its dose and the Hb part. This different behavior of glia may indicate their different sensitivity and resistance to damaging factors. Full article
Show Figures

Figure 1

16 pages, 1212 KiB  
Article
Harnessing Mixed Fatty Acid Synergy for Selective Flotation of Apatite from Calcite and Quartz with Sodium Alginate
by Imane Aarab, Khalid El Amari, Abdelrani Yaacoubi, Abdelaziz Baçaoui and Abderahman Etahiri
Minerals 2025, 15(8), 822; https://doi.org/10.3390/min15080822 (registering DOI) - 1 Aug 2025
Viewed by 85
Abstract
Maximizing the efficient utilization of critical apatite resources through flotation necessitates the exploration of effective and innovative collectors. This study investigates the potential of a fatty acid mixture (FAM) synthesized from saturated palmitic and stearic acids, monounsaturated oleic and palmitoleic acids, and polyunsaturated [...] Read more.
Maximizing the efficient utilization of critical apatite resources through flotation necessitates the exploration of effective and innovative collectors. This study investigates the potential of a fatty acid mixture (FAM) synthesized from saturated palmitic and stearic acids, monounsaturated oleic and palmitoleic acids, and polyunsaturated linoleic acid. The saponified collector FAM and the depressant sodium alginate (NaAl) achieved a direct flotation of apatite from calcite and quartz (97% apatite, 10% calcite, and 7% quartz). The flotation performance with the tested combination exhibited a highly effective enrichment of apatite, mainly from calcite, which aligns with the surface chemistry assessments. Adsorption tests and zeta potential measurements confirmed the micro-flotation results. They provided compelling evidence of a chemisorption interaction between Ca2+ sites on calcite and the carboxyl and hydroxyl groups of NaAl. FTIR analyses suggested a reaction between the apatite surface and the carboxyl groups of saturated and unsaturated acid groups in FAM, even those conditioned with NaAl before, facilitating the complex formation. Remarkably, the synergistic effect of the functional groups demonstrates dual functionality, serving as both a hydrophilic entity for calcite and a hydrophobic entity for apatite flotation. The universal mechanism unveils substantial potential for the extensive application of FAM within apatite flotation. Full article
(This article belongs to the Special Issue Surface Chemistry and Reagents in Flotation)
Show Figures

Figure 1

25 pages, 14992 KiB  
Article
Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy
by Elisabetta Rosina and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(15), 8542; https://doi.org/10.3390/app15158542 (registering DOI) - 31 Jul 2025
Viewed by 121
Abstract
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates [...] Read more.
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates the relationship between indoor microclimate fluctuations and surface moisture dynamics across 13 historical sites in Northern Italy (Lake Como, Valtellina, Valposchiavo), encompassing diverse masonry typologies and environmental conditions. High-resolution sensors recorded temperature and relative humidity for a minimum of 13 months, and eight indicators—including dew point depression, critical temperature–humidity zones, and damp effect indices—were analyzed to assess the moisture risks. The results demonstrate that multivariate microclimate data could effectively predict humidity accumulation. The key findings reveal the impact of seasonal ventilation, thermal inertia, and localized air stagnation on moisture distribution, with unheated alpine sites showing the highest condensation risk. The study highlights the need for integrated monitoring approaches, combining dew point analysis, mixing ratio stability, and buffering performance, to enable early risk detection and targeted conservation strategies. These insights bridge the gap between environmental monitoring and surface moisture diagnostics in porous heritage materials. Full article
(This article belongs to the Special Issue Advanced Study on Diagnostics for Surfaces of Historical Buildings)
Show Figures

Figure 1

28 pages, 146959 KiB  
Article
An Integrated Remote Sensing and Near-Surface Geophysical Approach to Detect and Characterize Active and Capable Faults in the Urban Area of Florence (Italy)
by Luigi Piccardi, Antonello D’Alessandro, Eutizio Vittori, Vittorio D’Intinosante and Massimo Baglione
Remote Sens. 2025, 17(15), 2644; https://doi.org/10.3390/rs17152644 - 30 Jul 2025
Viewed by 217
Abstract
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of [...] Read more.
The NW–SE-trending Firenze-Pistoia Basin (FPB) is an intermontane tectonic depression in the Northern Apennines (Italy) bounded to the northeast by a SW-dipping normal fault system. Although it has moderate historical seismicity (maximum estimated Mw 5.5 in 1895), the FPB lacks detailed characterization of its recent tectonic structures, unlike those of nearby basins that have produced Mw > 6 events. This study focuses on the southeastern sector of the basin, including the urban area of Florence, using tectonic geomorphology derived from remote sensing, in particular LiDAR data, field verification, and high-resolution geophysical surveys such as electrical resistivity tomography and seismic reflection profiles. The integration of these techniques enabled interpretation of the subdued and anthropogenically masked tectonic structures, allowing the identification of Holocene activity and significant, although limited, surface vertical offset for three NE–SW-striking normal faults, the Peretola, Scandicci, and Maiano faults. The Scandicci and Maiano faults appear to segment the southeasternmost strand of the master fault of the FPB, the Fiesole Fault, which now shows activity only along isolated segments and cannot be considered a continuous active fault. From empirical relationships, the Scandicci Fault, the most relevant among the three active faults, ~9 km long within the basin and with an approximate Late Quaternary slip rate of ~0.2 mm/year, might source Mw > 5.5 earthquakes. These findings highlight the need to reassess the local seismic hazard for more informed urban planning and for better preservation of the cultural and architectural heritage of Florence and the other artistic towns located in the FPB. Full article
Show Figures

Figure 1

14 pages, 2552 KiB  
Article
Selective Oxidation Depression of Copper-Activated Sphalerite by H2O2 During Chalcopyrite Flotation
by Peiqiang Fan, Xiong Tong, Xian Xie, Qiang Song, Yuanlin Ma, Bin Han, Haitao Fu and Zhiming Lu
Metals 2025, 15(7), 813; https://doi.org/10.3390/met15070813 - 21 Jul 2025
Viewed by 267
Abstract
Using hydrogen peroxide (H2O2), a simple and easily accessible reagent, as a selective depressant, flotation separation experiments of chalcopyrite and copper-activated sphalerite were conducted. The micro-flotation tests of single minerals indicated that H2O2 selectively depresses copper-activated [...] Read more.
Using hydrogen peroxide (H2O2), a simple and easily accessible reagent, as a selective depressant, flotation separation experiments of chalcopyrite and copper-activated sphalerite were conducted. The micro-flotation tests of single minerals indicated that H2O2 selectively depresses copper-activated sphalerite and exerted almost no depressant effect on chalcopyrite. In the flotation tests of artificially mixed minerals, a copper concentrate with a grade of 29.95% and a recovery of 87.30% was obtained, while the zinc content was only 5.76%, demonstrating a significant separation effect. The results of contact angle measurement, Zeta potential measurement, surface adsorption analysis, and XPS analysis suggested that H2O2 had a stronger oxidation capacity on the surface of copper-activated sphalerite than chalcopyrite, generating hydrophilic hydroxyl groups on the surface of sphalerite and preventing further adsorption of the collector Z-200 on the surface of sphalerite. Full article
(This article belongs to the Special Issue Advances in Sustainable Utilization of Metals: Recovery and Recycling)
Show Figures

Figure 1

10 pages, 404 KiB  
Article
Flotation Separation of Chalcopyrite and Molybdenite by Eco-Friendly Microorganism Depressant Bacillus tropicus
by Guanghua Ai, Guosheng Xiao and Bo Feng
Minerals 2025, 15(7), 762; https://doi.org/10.3390/min15070762 - 21 Jul 2025
Viewed by 252
Abstract
In this study, Bacillus tropicus (BT), a non-toxic and eco-friendly microorganism, was employed to substitute traditional inorganic depressants in the flotation separation of copper-molybdenum sulfides. Single mineral flotation tests were performed to examine BT’s impact on the flotation behavior of molybdenite and chalcopyrite. [...] Read more.
In this study, Bacillus tropicus (BT), a non-toxic and eco-friendly microorganism, was employed to substitute traditional inorganic depressants in the flotation separation of copper-molybdenum sulfides. Single mineral flotation tests were performed to examine BT’s impact on the flotation behavior of molybdenite and chalcopyrite. The results indicated that excessive BT inhibited the flotation of both minerals, reducing their recoveries below 40%. At a BT dosage of 2.5 kg/t and pH 9.0, chalcopyrite recovery was 74.10%, while molybdenite recovery was 20.47%, achieving an effective separation of the two minerals. BT’s adsorption mechanism on molybdenite and chalcopyrite was analyzed through contact angle tests, thermogravimetric analysis, and Fourier transform infrared spectroscopy. These analyses revealed that increased BT absorption on molybdenite enhanced its surface hydrophilicity. This research offers a novel perspective on utilizing microorganisms as efficient flotation reagents. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 1677 KiB  
Review
Froth Flotation of Lepidolite—A Review
by Xusheng Yang, Bo Feng and Longxia Jiang
Minerals 2025, 15(7), 750; https://doi.org/10.3390/min15070750 - 17 Jul 2025
Viewed by 222
Abstract
As one of the important lithium resource sources, lepidolite has become a new energy strategic resource research hot spot. The efficient flotation of lepidolite directly affects the recovery and economic value of lithium resources. This paper systematically reviews the flotation research progress of [...] Read more.
As one of the important lithium resource sources, lepidolite has become a new energy strategic resource research hot spot. The efficient flotation of lepidolite directly affects the recovery and economic value of lithium resources. This paper systematically reviews the flotation research progress of lepidolite, focusing on the influence of the type of capture agent and process parameters (pH, activator, and depressant) on flotation. In view of the separation problems caused by the similarity of the surface properties of lepidolite and its associated gangue minerals (albite, feldspar, and quartz), the strategies for regulating the crystal structure of the minerals and their surface properties are analyzed. In addition, the lepidolite flotation process and its challenges are summarized, including poor selectivity of chemicals, fine mineral embedded size, easy to form sludge, and insufficient environmental friendliness, etc. The future development direction of lepidolite flotation technology is also prospected, which provides theoretical support and reference for the efficient recovery of lepidolite. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 4860 KiB  
Article
Effects of Micro-Topography on Soil Nutrients and Plant Diversity of Artificial Shrub Forest in the Mu Us Sandy Land
by Kai Zhao, Long Hai, Fucang Qin, Lei Liu, Guangyu Hong, Zihao Li, Long Li, Yongjie Yue, Xiaoyu Dong, Rong He and Dongming Shi
Plants 2025, 14(14), 2163; https://doi.org/10.3390/plants14142163 - 14 Jul 2025
Viewed by 322
Abstract
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and [...] Read more.
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and vegetation degradation, demanding precise vegetation configuration for ecological rehabilitation. This study analyzed soil nutrients, plant diversity, and their correlations under various micro-topographic conditions across different types of artificial shrub plantations in the Mu Us Sandy Land. Employing one-way and two-way ANOVA, we compared the significant differences in soil nutrients and plant diversity indices among different micro-topographic conditions and shrub species. Additionally, redundancy analysis (RDA) was conducted to explore the direct and indirect relationships between micro-topography, shrub species, soil nutrients, and plant diversity. The results show the following: 1. The interdune depressions have the highest plant diversity and optimal soil nutrients, with relatively suitable pH values; the windward slopes and slope tops, due to severe wind erosion, have poor soil nutrients, high pH values, and the lowest plant diversity. Both micro-topography and vegetation can significantly affect soil nutrients and plant diversity (p < 0.05), and vegetation has a greater impact on soil nutrients. 2. The correlation between surface soil nutrients and plant diversity is the strongest, and the correlation weakens with increasing soil depth; under different micro-topographic conditions, the influence of soil nutrients on plant diversity varies. 3. In sandy land ecological restoration, a “vegetation type + terrain matching” strategy should be implemented, combining the characteristics of micro-topography and the ecological functions of shrubs for precise configuration, such as planting Corethrodendron fruticosum on windward slopes and slope tops to rapidly replenish nutrients, promoting Salix psammophila and mixed plantation in interdune depressions and leeward slopes to accumulate organic matter, and prioritizing Amorpha fruticosa in areas requiring soil pH adjustment. This study provides a scientific basis and management insights for the ecological restoration and vegetation configuration of the Mu Us Sandy Land. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

16 pages, 3149 KiB  
Article
Electrochemical Sensing of Dopamine Neurotransmitter by Deep Eutectic Solvent–Carbon Black–Crosslinked Chitosan Films: Charge Transfer Kinetic Studies and Biological Sample Analysis
by Alencastro Gabriel Ribeiro Lopes, Rafael Matias Silva, Orlando Fatibello-Filho and Tiago Almeida Silva
Chemosensors 2025, 13(7), 254; https://doi.org/10.3390/chemosensors13070254 - 12 Jul 2025
Viewed by 394
Abstract
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely [...] Read more.
Dopamine (DA) is a neurotransmitter responsible for important functions in mammals’ bodies, including mood, movement and motivation. High or low dopamine levels are associated mainly with mental illnesses such as schizophrenia and depression. Therefore, contributing to the development of electrochemical devices to precisely determine the DA levels in urine samples, a simple and low-cost sensor is proposed in this work. The proposed sensor design is based on crosslinked chitosan films combining carbon black (CB) and deep eutectic solvents (DESs), incorporated onto the surface of a glassy carbon electrode (GCE). Fourier Transform Infrared Spectroscopy (FT-IR) was applied to characterize the produced DESs and their precursors, while the films were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor modified with CB and DES–ethaline (DES (ETHA)-CB/GCE) showed a significantly enhanced analytical signal for DA using differential pulse voltammetry under the optimized working conditions. Moreover, a better heterogeneous electron transfer rate constant (k0) was obtained, about 45 times higher than that of the bare GCE. The proposed sensor achieved a linear response range of 0.498 to 26.8 µmol L−1 and limits of detection and quantification of 80.7 and 269 nmol L−1, respectively. Moreover, the sensor was successfully applied in the quantification of DA in the synthetic urine samples, with recovery results close to 100%. Furthermore, the sensor presented good precision, as shown from the repeatability tests. The presented method to electrochemically detect DA has proven to be efficient and simple compared to the conventional methods commonly reported. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

13 pages, 4310 KiB  
Technical Note
Framework for Mapping Sublimation Features on Mars’ South Polar Cap Using Object-Based Image Analysis
by Racine D. Cleveland, Vincent F. Chevrier and Jason A. Tullis
Remote Sens. 2025, 17(14), 2372; https://doi.org/10.3390/rs17142372 - 10 Jul 2025
Viewed by 970
Abstract
Mars’ south polar cap hosts dynamic landforms known as Swiss cheese features (SCFs), which form through the sublimation of carbon dioxide (CO2) ice driven by the planet’s extreme seasonal and diurnal solar insolation cycles. These shallow, rounded depressions—first identified by Mars [...] Read more.
Mars’ south polar cap hosts dynamic landforms known as Swiss cheese features (SCFs), which form through the sublimation of carbon dioxide (CO2) ice driven by the planet’s extreme seasonal and diurnal solar insolation cycles. These shallow, rounded depressions—first identified by Mars Global Surveyor in 1999 and later monitored by the Mars Reconnaissance Orbiter (MRO)—have been observed to increase in size over time. However, large-scale analysis of SCF formation and growth has been limited by the slow and labor-intensive nature of manual mapping techniques. This study applies object-based image analysis (OBIA) to automate the detection and measurement of SCFs using High-Resolution Imaging Science Experiment (HiRISE) images spanning five Martian years. Results show that SCFs exhibit a near-linear increase in area, suggesting that summer sublimation consistently outpaces winter CO2 deposition. Validation against manual digitization shows discrepancies of less than 1%, confirming the reliability of the OBIA method. Regression-based extrapolation of growth trends indicates that the current generation of SCFs likely began forming between Martian years 7 and 16, approximately corresponding to Earth years 1976 to 1998. These findings provide a quantitative assessment of SCF evolution and contribute to our understanding of recent climate-driven surface changes on Mars. HiRISE images were processed using the eCognition software to detect, classify, and measure SCFs, demonstrating that OBIA is a scalable and effective tool for analyzing dynamic planetary landforms. Full article
Show Figures

Graphical abstract

19 pages, 13316 KiB  
Article
Mapping of Closed Depressions in Karst Terrains: A GIS-Based Delineation of Endorheic Catchments in the Alburni Massif (Southern Apennine, Italy)
by Libera Esposito, Guido Leone, Michele Ginolfi, Saman Abbasi Chenari and Francesco Fiorillo
Hydrology 2025, 12(7), 186; https://doi.org/10.3390/hydrology12070186 - 10 Jul 2025
Viewed by 419
Abstract
A deep interaction between groundwater and surface hydrology characterizes karst environments. These settings feature closed depressions, whose hydrological role varies depending on whether they have genetic and hydraulic relationships with overland–subsurface flow (epigenic) or deep groundwater circulation (hypogenic). Epigenic dolines and poljes are [...] Read more.
A deep interaction between groundwater and surface hydrology characterizes karst environments. These settings feature closed depressions, whose hydrological role varies depending on whether they have genetic and hydraulic relationships with overland–subsurface flow (epigenic) or deep groundwater circulation (hypogenic). Epigenic dolines and poljes are among the diagnostic landforms of karst terrains. In this study, we applied a hydrological criterion to map closed depressions—including dolines—across the Alburni karst massif, in southern Italy. A GIS-based, semi-automatic approach was employed, combining the sink-filling method (applied to a 5 m DEM) with the visual interpretation of various informative layers. This process produced a raster representing the location and depth of karst closed depressions. This raster was then used to automatically delineate endorheic areas using classic GIS tools. The resulting map reveals a thousand dolines and hundreds of adjacent endorheic areas. Endorheic areas form a complex mosaic across the massif, a feature that had been poorly emphasized in previous works. The main morphometric features of the dolines and endorheic areas were statistically analyzed and compared with the structural characteristics of the massif. The results of the proposed mapping approach provide valuable insights for groundwater management, karst area protection, recharge modeling, and tracer test planning. Full article
Show Figures

Figure 1

21 pages, 7866 KiB  
Article
Asteroid and Meteorite Impacts as a Cause of Large Sedimentary Basins: A Case Study of the Transylvanian Depression
by Dumitru Ioane, Irina Stanciu and Mihaela Scradeanu
Geosciences 2025, 15(7), 267; https://doi.org/10.3390/geosciences15070267 - 9 Jul 2025
Viewed by 695
Abstract
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events [...] Read more.
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events due to active plate tectonics, sedimentation, and volcanism, with these geological processes destroying and burying their impact geomorphological signatures. To enlarge the Earth’s impacts database, new concepts and research methods are necessary, as well as the reinterpretation of old geological and geophysical models. Geomorphological, Geological, and Geophysical (3G) signatures in concealed impacted areas are discussed in this paper; the first offers the target characteristics, while the others give means for detecting their unseen remnants. The 3G signatures have been applied to the Transylvanian Depression, a fascinating geological structure, with difficulties in explaining the direct overlapping of regionally developed thick tuff and thick salt layers, and undecided interpretation of the regional magnetic anomaly. Large and deep sedimentary basins, such as the Precaspian, Alexandria and Transylvanian depressions, are interpreted to have started as impacted areas during the Permian or the Lower Neogene. Geophysical and geological existing information have been reinterpreted, offering a new way in understanding deeply located geological structures. Full article
Show Figures

Figure 1

22 pages, 2022 KiB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 621
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

14 pages, 1912 KiB  
Article
The Flotation Depression Mechanism of Fluorapatite and Dolomite Using Fulvic Acid as a Green Depressant in Weakly Acidic Conditions
by Yuan Tang, Qianqian Li, Hui Fang, Menglai Wang, Dongsheng He, Wenquan Yang, Yanhong Fu and Zhili Li
Processes 2025, 13(7), 2089; https://doi.org/10.3390/pr13072089 - 1 Jul 2025
Viewed by 314
Abstract
Natural phosphate ores frequently contain calcium–magnesium carbonate minerals as gangue components. Their separation from target phosphate minerals poses significant challenges due to analogous surface characteristics. The flotation differentiation between fluorapatite and dolomite remains a key research focus in mineral processing. In conventional collector [...] Read more.
Natural phosphate ores frequently contain calcium–magnesium carbonate minerals as gangue components. Their separation from target phosphate minerals poses significant challenges due to analogous surface characteristics. The flotation differentiation between fluorapatite and dolomite remains a key research focus in mineral processing. In conventional collector systems, selective depressants critically govern separation efficiency, as their interfacial specificity directly determines beneficiation outcomes. The selective depression behavior of fulvic acid (FA) in modulating fluorapatite–dolomite separation efficiency within oleate-dominated flotation systems was elucidated through micro-flotation experiments, complemented by zeta potential measurements, contact angle analysis, Fourier-transform infrared spectroscopy (FTIR), and molecular dynamics (MD) simulations. The findings revealed that fluorapatite and dolomite both exhibit high floatability under NaOl-mediated collector systems in the absence of depressant additives, leading to negligible selectivity in the differential separation of the mineral pair. However, the float of fluorapatite particles in weakly acidic conditions was strongly depressed when a small amount of FA was added as a depressant, while exerting minimal impact on dolomite’s floatability. In binary artificial mixed-mineral flotation systems, under optimized flotation conditions (pH 5.0, 60 mg/L NaOl, and 15 mg/L FA), the concentrate achieved a P2O5 grade of 33.86% with a fluorapatite recovery rate of 92.36%, demonstrating significant selective separation of fluorapatite from dolomite. Subsequent analysis revealed that FA competitively chemisorbs with NaOl on fluorapatite surfaces, selectively reducing the hydrophobicity of the fluorapatite surface and suppressing fluorapatite floatability, thereby enabling effective differential liberation of the mineral pair. Full article
(This article belongs to the Special Issue Molecular Simulation in Mineral Flotation Processes)
Show Figures

Figure 1

Back to TopTop