The Flotation Depression Mechanism of Fluorapatite and Dolomite Using Fulvic Acid as a Green Depressant in Weakly Acidic Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Micro-Flotation Experimental Method
2.3. Zeta Potential and Contact Angle Measurements
2.4. FTIR Detection
2.5. Molecular Dynamic Simulation
3. Results and Discussion
3.1. Mineral Composition Analysis
3.2. Micro-Flotation Experimental Results
3.3. Electrokinetics Behavior Analysis
3.4. Contact Angle Analysis
3.5. FTIR Analysis
3.6. MD Simulation Results
4. Implications
5. Conclusions
- (1)
- Single-mineral flotation tests revealed that under optimized conditions (25 ± 0.5 °C, pH 5.0), fluorapatite exhibited near-complete depression (negligible floatability) with 10 mg/L FA and 60 mg/L NaOl, whereas dolomite achieved a recovery of 74.26%. These results confirm FA’s selective inhibitory effect on fluorapatite.
- (2)
- Artificial mixed-ore flotation tests under identical conditions with 15 mg/L FA and 60 mg/L NaOl yielded final concentrate assaying 33.86% P2O5 with 92.36% metallurgical recovery. This demonstrated FA’s remarkable separation efficiency in selectively enriching dolomite while suppressing fluorapatite.
- (3)
- Zeta potential measurements indicated a pronounced negative shift for fluorapatite after FA treatment, confirming substantial FA adsorption on its surface. Wettability analysis revealed that fluorapatite’s hydrophobicity under NaOl activation remained significantly lower than that of dolomite. FTIR spectra confirmed chemisorption as the dominant FA–fluorapatite interaction mechanism. The greater negative adsorption energy magnitude signifies stronger FA–mineral interactions and preferential fluorapatite surface adherence.
- (4)
- In weakly acidic environments, FA selectively adsorbed onto fluorapatite surfaces via chemisorption, effectively suppressing its floatability while minimally interfering with dolomite’s natural response to NaOl. The observed adsorption selectivity enabled benchmark separation efficiency between fluorapatite and dolomite through interfacial engineering, establishing a novel paradigm for strategic mineral beneficiation. Future work will focus on kinetic adsorption analysis to elucidate the rate-controlling mechanisms of FA–mineral interactions and to improve the predictive modeling of adsorption dynamics under varying operational conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruan, Y.; He, D.; Chi, R. Review on beneficiation techniques and reagents used for phosphate ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; Hakkou, R.; Benzaazoua, M. Review of the main factors affecting the flotation of phosphate ores. Minerals 2020, 10, 1109. [Google Scholar] [CrossRef]
- Yu, L.; Yu, P.; Bai, S. A critical review on the flotation reagents for phosphate ore beneficiation. Minerals 2024, 14, 828. [Google Scholar] [CrossRef]
- Xie, S.; Yang, J.; Huang, R.; Lv, X.; Li, X.; He, X. A novel process for the separation and recovery of phosphorus and rare earth elements from associated rare earth phosphate ores. Sep. Purif. Technol. 2024, 340, 126687. [Google Scholar] [CrossRef]
- Lv, X.; Xiang, L.; Wang, T. Intensification of low-grade phosphate ore purification using a hydrocyclone with venturi-style inlet. J. Ind. Eng. Chem. 2024, 135, 257–269. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Q.; Chen, C.; Liu, H.; Yang, L. Separation of phosphoric acid and magnesium from wet process phosphoric acid by solvent extraction. Can. Metall. Q 2023, 62, 791–802. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, C.; Li, K.; Zhang, S.; Zhou, J.; Luo, W.; Liu, Z.; Qin, W.; Wang, H.; Hu, Y.; et al. Reverse flotation separation of quartz from phosphorite ore at low temperatures by using an emerging Gemini surfactant as the collector. Sep. Purif. Technol. 2020, 246, 116923. [Google Scholar] [CrossRef]
- Sajid, M.; Bary, G.; Asim, M.; Ahmad, R.; Ahamad, M.I.; Alotaibi, H.; Rehman, A.; Khan, I.; Yin, G. Synoptic view on P ore beneficiation techniques. Alex. Eng. J. 2022, 61, 3069–3092. [Google Scholar] [CrossRef]
- Lehr, J.R.; Frazier, A.W.; Smith, J.P. Phosphoric acid impurities, precipitated impurities in wet-process phosphoric acid. J. Agric. Food. Chem. 1966, 14, 27–33. [Google Scholar] [CrossRef]
- Aarab, I.; Derqaoui, M.; El Amari, K.; Yaacoubi, A.; Abidi, A.; Etahiri, A.; Baçaoui, A. Influence of surface dissolution on reagents’ adsorption on low-grade phosphate ore and its flotation selectivity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127700. [Google Scholar] [CrossRef]
- Amankonah, J.O.; Somasundaran, P. Effects of dissolved mineral species on the electrokinetic behavior of calcite and apatite. Colloids Surf. 1985, 15, 335–353. [Google Scholar] [CrossRef]
- Amirech, A.; Bouhenguel, M.; Kouachi, S. Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors. Arab. J. Geosci. 2018, 11, 593. [Google Scholar] [CrossRef]
- Guimarães, R.C.; Araujo, A.D.; Peres, A.E.C. Reagents in igneous phosphate ores flotation. Miner. Eng. 2005, 18, 199–204. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Q.; Jiao, F.; Qin, W. Utilization of polyepoxysuccinic acid as the green selective depressant for the clean flotation of phosphate ores. J. Clean. Prod. 2021, 282, 124532. [Google Scholar] [CrossRef]
- Feng, B.; Zhong, C.; Zhang, L.; Guo, Y.; Wang, T.; Huang, Z. Effect of surface oxidation on the depression of sphalerite by locust bean gum. Miner. Eng. 2020, 146, 106142. [Google Scholar] [CrossRef]
- Aarab, I.; Derqaoui, M.; Abidi, A.; Yaacoubi, A.; El Amari, K.; Etahiri, A.; Baçaoui, A. Direct flotation of low-grade Moroccan phosphate ores: A preliminary micro-flotation study to develop new beneficiation routes. Arab. J. Geosci. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Tao, L.; Xiang, G.; Miao, Z.; Wang, J.; Wu, W.; Tian, M.; Jia, W.; Gao, Z. Method and mechanism of reverse flotation for dephosphorization of spodumene concentrate using sodium alginate as a depressant. J. Clean. Prod. 2024, 451, 142171. [Google Scholar] [CrossRef]
- Zhong, C.; Feng, B.; Zhang, L.; Zhang, W.; Wang, H.; Gao, Z. Flotation separation of apatite and calcite using gum arabic as a depressant. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127723. [Google Scholar] [CrossRef]
- El-Bahi, A.; Taha, Y.; Ait-Khouia, Y.; Hakkou, R.; Benzaazoua, M. Advancing phosphate ore minerals separation with sustainable flotation reagents: An investigation into highly selective biobased depressants. Adv. Colloid. Interface Sci. 2023, 317, 102921. [Google Scholar] [CrossRef]
- Liu, X.; Ruan, Y.; Li, C.; Cheng, R. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system. Int. J. Miner. Process. 2017, 167, 95–102. [Google Scholar] [CrossRef]
- Zheng, X.; Smith, R.W. Dolomite depressants in the flotation of apatite and collophane from dolomite. Miner. Eng. 1997, 10, 537–545. [Google Scholar] [CrossRef]
- Li, B.; Liu, D.; Shi, Q.; Zhang, G.; Zheng, H. Application of hydroxyethylidene diphosphonic acid as a depressant for efficient pyrite separation from serpentine: A performance and mechanistic study. Miner. Eng. 2023, 204, 108381. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, L.; Fu, W.; Chi, R.; Li, H.; Yang, S. Investigations of amino trimethylene phosphonic acid as a green and efficient depressant for the flotation separation of apatite from calcite. Miner. Eng. 2022, 181, 107552. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, C.; Chen, Q.; Li, Q.; He, D.; Li, Z.; Fu, Y. Effect of a novel environmental-friendly chelating depressant DTPMP on the flotation separation of magnesite and dolomite. Appl. Surf. Sci. 2025, 690, 162650. [Google Scholar] [CrossRef]
- Lan, S.; Shen, P.; Zheng, Q.; Qiao, L.; Dong, L.; Liu, D. Effective flotation separation of apatite from dolomite using a new eco-friendly depressant gallic acid. Green. Chem. 2024, 26, 1627–1636. [Google Scholar] [CrossRef]
- Tang, W.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Zhang, C.; Huang, B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468, 1014–1027. [Google Scholar] [CrossRef]
- Saar, R.A.; Weber, J.H. Fulvic acid: Modifier of metal-ion chemistry. Environ. Sci. Technol. 1982, 16, 510A–517A. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Angove, M.J. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Sep. Purif. Technol. 2020, 247, 116949. [Google Scholar] [CrossRef]
- Shen, Z.; Wen, S.; Hao, J.; Feng, Q. Flotation separation of chalcopyrite from pyrite using mineral fulvic acid as a selective depressant under weakly alkaline conditions. Trans. Nonferrous Met. Soc. China 2025, 35, 313–325. [Google Scholar] [CrossRef]
- Lan, S.; Dong, L.; Shen, P.; Su, H.; Mao, Y.; Shen, Z.; Liu, D. Application of waste gypsum as novel selective depressant in the flotation separation of apatite from dolomite. Chem. Eng. J. 2024, 498, 155567. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, W.; Kelebek, S. Selective flotation of magnesite from calcite using potassium cetyl phosphate as a collector in the presence of sodium silicate. Miner. Eng. 2020, 146, 106154. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Z.; Khoso, S.A.; Sun, W.; Hu, Y. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations. Miner. Eng. 2019, 143, 106006. [Google Scholar] [CrossRef]
- BIOVIA Materials Studio 2017 (17.1.0.48). Available online: https://www.3ds.com/products/biovia/materials-studio (accessed on 12 May 2025).
- Hu, Y.H.; Gao, Z.Y.; Sun, W.; Liu, X.W. Anisotropic surface energies and adsorption behaviors of scheelite crystal. Colloids Surf. A Physicochem. Eng. Asp. 2021, 415, 439–448. [Google Scholar] [CrossRef]
- Rai, B. Design of tailor-made surfactants for industrial applications using a molecular modelling approach. Colloids Surf. A Physicochem. Eng. Asp. 2002, 205, 139–148. [Google Scholar]
- Tang, Y.; Yin, W.Z.; Kelebek, S. Molecular dynamics simulation of magnesite and dolomite in relation to flotation with cetyl phosphate. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125928. [Google Scholar] [CrossRef]
- Jing, L.; Xue, K.; Tian, J.; Zhang, X.; Wang, D.; Guo, W.; Ma, Z.; Xu, L. Separation mechanism of apatite and dolomite with flotation depressant konjac glucomannan. Miner. Eng. 2024, 216, 108844. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Y.; Lu, L.; Hu, X.; Li, S. Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector. Int. J. Min. Sci. Technol. 2023, 33, 783–791. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Q.; Wang, X. New insights on depressive mechanism of citric acid in the selective flotation of dolomite from apatite. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130075. [Google Scholar] [CrossRef]
- Zeng, M.; Li, K.; Huang, L.; Bao, S.; Liu, C.; Yang, S. Interaction mechanism of interfacial nano-micro bubbles with collectors and its effects on the fine apatite flotation. Appl. Surf. Sci. 2025, 682, 161736. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, W.; Ren, Q.; Tu, R.; Qiu, F.; Gao, Z.; Xu, S.; Sun, W.; Tian, M. Innovating an amphoteric collector derived from dodecylamine molecular structure: Facilitating the selective flotation separation of apatite from quartz and dolomite. Miner. Eng. 2024, 215, 108819. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Zhang, H.; Huang, L.; Zhu, Y.; Li, F. Flotation separation of magnesite from dolomite with gellan gum as depressant and its depression mechanism. Miner. Eng. 2024, 212, 108718. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; El-Bahi, A.; Ait-Khouia, Y.; Benzaazoua, M.; Hakkou, R. Selective flotation of calcite and dolomite from apatite using bio-based alternatives to conventional collectors: Castor and mustard oils. Miner. Eng. 2024, 208, 108597. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Y.; Ding, Z.; Yu, A.; Zhang, Y.; Wen, S.; Bai, S. Influence and mechanism of new environmentally friendly depressant carboxymethyl-β-cyclodextrin on the flotation separation of chalcopyrite and pyrite. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134576. [Google Scholar] [CrossRef]
- Kaba, O.B.; Filippov, L.O.; Filippova, I.V.; Badawi, M. Interaction between fine particles of fluorapatite and phosphoric acid unraveled by surface spectroscopies. Powder Technol. 2021, 382, 368–377. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Y.; Wang, X.; Yu, F.; Miller, J.D. States of coadsorption for oleate and dodecylamine at selected spodumene surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 313–321. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 2006, 37, 892–899. [Google Scholar] [CrossRef]
- Ince, D.E.; Johnston, C.T.; Moudgil, B.M. Fourier transform infrared spectroscopic study of adsorption of oleic acid/oleate on surfaces of apatite and dolomite. Langmuir 1991, 7, 1453–1457. [Google Scholar] [CrossRef]
- Liu, W.; Mao, Y.; Zheng, J.; Wang, Z.; Shang, C.; Liu, W.; Zhao, Q.; Zhao, S.; Shen, Y. Enhancing the flotation separation of magnesite and dolomite by introducing a phosphonic acid depressant during grinding. Sep. Purif. Technol. 2025, 361, 131412. [Google Scholar] [CrossRef]
- Chen, A.; Wang, X.; Zhang, Q. Interaction and inhibition mechanism of sulfuric acid with fluorapatite (001) surface and dolomite (104) surface: Flotation experiments and molecular dynamics simulations. Minerals 2023, 13, 1517. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Mao, S.; Li, L.; Ke, B.; Zhang, Q. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (001) surface: A first-principles calculations. Appl. Surf. Sci. 2018, 444, 699–709. [Google Scholar] [CrossRef]
Samples | Main Elements (wt%) | ||||
---|---|---|---|---|---|
P2O5 | CaO | MgO | Fe2O3 | Al2O3 | |
Fluorapatite | 40.26 | 53.21 | 0.07 | 0.12 | 0.09 |
Dolomite | 0.02 | 52.64 | 45.60 | 0.10 | 0.04 |
FA (mg/L) | P2O5 Grade in Concentrate (%) | Fluorapatite Recovery in Concentrate (%) |
---|---|---|
5 | 19.50 | 41.51 |
10 | 32.01 | 89.01 |
15 | 33.86 | 92.36 |
20 | 25.85 | 97.09 |
Mineral Surface | Adsorption Energy |
---|---|
ΔEads, kcal/mol | |
Fluorapatite (001) | −454.65 |
Dolomite (104) | −152.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Li, Q.; Fang, H.; Wang, M.; He, D.; Yang, W.; Fu, Y.; Li, Z. The Flotation Depression Mechanism of Fluorapatite and Dolomite Using Fulvic Acid as a Green Depressant in Weakly Acidic Conditions. Processes 2025, 13, 2089. https://doi.org/10.3390/pr13072089
Tang Y, Li Q, Fang H, Wang M, He D, Yang W, Fu Y, Li Z. The Flotation Depression Mechanism of Fluorapatite and Dolomite Using Fulvic Acid as a Green Depressant in Weakly Acidic Conditions. Processes. 2025; 13(7):2089. https://doi.org/10.3390/pr13072089
Chicago/Turabian StyleTang, Yuan, Qianqian Li, Hui Fang, Menglai Wang, Dongsheng He, Wenquan Yang, Yanhong Fu, and Zhili Li. 2025. "The Flotation Depression Mechanism of Fluorapatite and Dolomite Using Fulvic Acid as a Green Depressant in Weakly Acidic Conditions" Processes 13, no. 7: 2089. https://doi.org/10.3390/pr13072089
APA StyleTang, Y., Li, Q., Fang, H., Wang, M., He, D., Yang, W., Fu, Y., & Li, Z. (2025). The Flotation Depression Mechanism of Fluorapatite and Dolomite Using Fulvic Acid as a Green Depressant in Weakly Acidic Conditions. Processes, 13(7), 2089. https://doi.org/10.3390/pr13072089