Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = superconducting magnetic levitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5502 KB  
Article
Levitation Characteristics of an Aged Superconducting Magnetic Bearing
by Tilo Espenhahn, Marcus Dietzel and Ruben Hühne
Appl. Sci. 2025, 15(23), 12563; https://doi.org/10.3390/app152312563 - 27 Nov 2025
Viewed by 219
Abstract
Superconducting magnetic bearings are friction-free devices and therefore in principle suitable for long-term operation, as no wear is observed. However, other degradation mechanisms can influence the operation. Up to now, it has not been clear to what extent degradation of either the bulk [...] Read more.
Superconducting magnetic bearings are friction-free devices and therefore in principle suitable for long-term operation, as no wear is observed. However, other degradation mechanisms can influence the operation. Up to now, it has not been clear to what extent degradation of either the bulk superconductors or the permanent magnets impacts the overall bearing performance on long timescales. Therefore, we studied the bearing properties of a 20-year-old rotational superconducting magnetic bearing, which was cooled down occasionally in an open liquid nitrogen bath for presentation. Otherwise, the bearing was stored under ambient conditions. To characterize the current status, we measured the bearing’s static and dynamic stiffness in radial and axial directions. Comparing our results to the values measured after the setup of the bearing revealed a stiffness degradation of up to 77%. This decrease is mainly attributed to the degradation of the bearing’s superconducting bulks and the permanent magnets. Analysis of both components showed clear signs of degradation. The permanent magnetic rotor’s magnetic field is around 19% smaller compared to the original state. The superconducting bulks now only inhomogeneously trap magnetic flux. Critical current calculation based on this data revealed a significant reduction compared to the original measurements. Nonetheless, the bearing allows for a stable levitation. Full article
(This article belongs to the Special Issue Applied Superconductivity: Material, Design, and Application)
Show Figures

Figure 1

10 pages, 3281 KB  
Article
Electromechanical Characteristics Analysis of Magnetic Shield on Superconducting Magnetic Levitation Train
by Mingyuan Hu, Lei Zhang, Ran Tao and Ping Wang
Micromachines 2025, 16(11), 1248; https://doi.org/10.3390/mi16111248 - 31 Oct 2025
Viewed by 480
Abstract
The guest room and aisle of electric high-speed maglev train must be shielded from leakage magnetic flux produced by superconducting strong magnetic field. To reduce magnetic leakage, the superconducting magnetic levitation system structure is obtained by extended lagrangian optimization method. The optimized superconducting [...] Read more.
The guest room and aisle of electric high-speed maglev train must be shielded from leakage magnetic flux produced by superconducting strong magnetic field. To reduce magnetic leakage, the superconducting magnetic levitation system structure is obtained by extended lagrangian optimization method. The optimized superconducting coil structure has the advantages of reducing magnetic leakage, improving magnetic field utilization, reducing the weight of the magnetic isolation plate and the weight of the maglev train, and enhancing the load-bearing capacity of the maglev train. Based on optimized superconducting coil parameters for high-speed maglev, the magnetic shielding effect at the aisle and the guest room, the magnetic flux density distribution at the magnetic shielding is calculated and analyzed through analytical calculation. The relevant conclusions indicate that the magnetic suspension structure has the advantages of reducing end coil leakage flux and the weight of the high-speed maglev train. Full article
Show Figures

Figure 1

16 pages, 3025 KB  
Article
A Permanent Magnet Hybrid Levitation Based on High-Temperature Superconducting Magnetic Levitation
by Tianyu Xing, Lingfeng Gao, Peiyu Yin, Can Peng and Zigang Deng
Actuators 2025, 14(6), 285; https://doi.org/10.3390/act14060285 - 10 Jun 2025
Viewed by 1310
Abstract
This paper proposes an A-shape hybrid levitation system combining high-temperature superconducting (HTS) maglev and permanent magnet levitation (PML) technologies to address the lateral instability of the PML system. By tilting the PM arrays and HTS bulks on both sides at a specific angle, [...] Read more.
This paper proposes an A-shape hybrid levitation system combining high-temperature superconducting (HTS) maglev and permanent magnet levitation (PML) technologies to address the lateral instability of the PML system. By tilting the PM arrays and HTS bulks on both sides at a specific angle, the system’s cross-section forms an “A” shape. This configuration offers dual advantages: the A-shape PML significantly mitigates unstable lateral deflection forces while preserving levitation capacity, whereas the A-shape HTS maglev enhances guidance force. Through systematic analysis, the effects of the tilt angle and the magnetization direction of the PM arrays on levitation performance are investigated and optimized. The simulation results demonstrate that, at the lateral movement of 5 mm, for the PML system, a tilt angle of 45° reduces lateral deflection force by 94.4%, and synergistic optimization of the tilt angle of 40° and magnetization direction of 38° achieves an 84.6% reduction. The HTS maglev system enhances guidance force, with a 45.3% improvement at a 60° tilt angle and a 30° magnetization direction. This study presents a promising solution for developing a stable, high-load-capacity hybrid levitation system. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

11 pages, 3722 KB  
Article
The Effect of Infiltration Temperature on the Microstructure and Magnetic Levitation Force of Single-Domain YBa2Cu3O7-x Bulk Superconductors Grown by a Modified Y+011 IG Method
by Nuerseman Maimaiti, Abulizi Abulaiti and Wanmin Yang
Nanomaterials 2025, 15(1), 21; https://doi.org/10.3390/nano15010021 - 27 Dec 2024
Viewed by 812
Abstract
During the preparation of single-domain (S-D) REBa2Cu3O7-x (RE-123) superconducting bulks, the seed crystals can serve as templates for crystal growth, guiding the newly formed crystals to grow in a specific direction, thereby ensuring the consistency of the crystal [...] Read more.
During the preparation of single-domain (S-D) REBa2Cu3O7-x (RE-123) superconducting bulks, the seed crystals can serve as templates for crystal growth, guiding the newly formed crystals to grow in a specific direction, thereby ensuring the consistency of the crystal orientation within the sample. However, the infiltration temperature is typically restricted to approximately 1050 °C when employing NdBa2Cu3O7-x (Nd-123) crystal seeds in the traditional top-seeded infiltration growth (TSIG) technique for producing single-domain Y-123 bulk superconductors. In the present study, to overcome the temperature limitations of the heat treatment process, the optimized Y2O3 +011 IG (011 refers to BaCuO2 powder) method was employed to fabricate a group of single-domain Y-123 bulks with a high-temperature infiltration (1000–1300 °C). The reason for the differences in the superconducting properties between the different samples was analyzed by studying the relationship between the microstructure of the infiltrated pellet and the final Y-123 sample. The research findings were as follows: (1) when the infiltration temperature exceeded 1150 °C, the successful preparation of single-domain YBa2Cu3O7-x (Y-123) bulks became unattainable due to the coarsening or melting decomposition of the Y2BaCuO5 (Y-211) phase according to the SEM–EDS analysis; (2) the content of the Y-211 phase within the Y-123 matrix was approximately 40.8%, 37.2%, 32.7%, 30.5%, and 46.4% for the different final samples; (3) with an increasing infiltration temperature, the magnetic levitation forces exhibited an initial increase followed by a subsequent decline. The maximum levitation force of 47.1 N at 77 K was reached in the sample S3 infiltrated at 1100 °C. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

13 pages, 4545 KB  
Article
Comparison of Levitation Properties between Bulk High-Temperature Superconductor Blocks and High-Temperature Superconductor Tape Stacks Prepared from Commercial Coated Conductors
by Anke Kirchner, Tilo Espenhahn, Sebastian Klug, Kornelius Nielsch and Ruben Hühne
Materials 2024, 17(18), 4516; https://doi.org/10.3390/ma17184516 - 14 Sep 2024
Cited by 2 | Viewed by 1535
Abstract
Bulk high-temperature superconductors (HTSs) such as REBa2Cu3O7−x (REBCO, RE = Y, Gd) are commonly used in rotationally symmetric superconducting magnetic bearings. However, such bulks have several disadvantages such as brittleness, limited availability and high costs [...] Read more.
Bulk high-temperature superconductors (HTSs) such as REBa2Cu3O7−x (REBCO, RE = Y, Gd) are commonly used in rotationally symmetric superconducting magnetic bearings. However, such bulks have several disadvantages such as brittleness, limited availability and high costs due to the time-consuming and energy-intensive fabrication process. Alternatively, tape stacks of HTS-coated conductors might be used for these devices promising an improved bearing efficiency due to a simplification of manufacturing processes for the required shapes, higher mechanical strength, improved thermal performance, higher availability and therefore potentially reduced costs. Hence, tape stacks with a base area of (12 × 12) mm2 and a height of up to 12 mm were prepared and compared to commercial bulks of the same size. The trapped field measurements at 77 K showed slightly higher values for the tape stacks if compared to bulks with the same size. Afterwards, the maximum levitation forces in zero field (ZFC) and field cooling (FC) modes were measured while approaching a permanent magnet, which allows the stiffness in the vertical and lateral directions to be determined. Similar levitation forces were measured in the vertical direction for bulk samples and tape stacks in ZFC and FC modes, whereas the lateral forces were almost zero for stacks with the REBCO films parallel to the magnet. A 90° rotation of the tape stacks with respect to the magnet results in the opposite behavior, i.e., a high lateral but negligible vertical stiffness. This anisotropy originates from the arrangement of decoupled superconducting layers in the tape stacks. Therefore, a combination of stacks with vertical and lateral alignment is required for stable levitation in a bearing. Full article
(This article belongs to the Special Issue Novel Superconducting Materials and Applications of Superconductivity)
Show Figures

Figure 1

17 pages, 8524 KB  
Article
Axial Stiffness Augmentation by Adding Superconductor Bulks or Limiting Permanent Magnet Rings to a Horizontal Axis Zero-Field Cooled High-Tc Radial Passive Superconducting Bearing
by António J. Arsénio Costa, João F. P. Fernandes and Paulo J. Costa Branco
Actuators 2024, 13(6), 196; https://doi.org/10.3390/act13060196 - 21 May 2024
Cited by 1 | Viewed by 1472
Abstract
This paper analyzes the viability of different solutions to passively augment the axial stiffness of a horizontal axis radial levitation passive magnetic bearing (PMB) with a previously studied topology. The zero-field cooling (ZFC) of high-temperature superconductor (HTS) bulks promotes higher magnetic impulsion and [...] Read more.
This paper analyzes the viability of different solutions to passively augment the axial stiffness of a horizontal axis radial levitation passive magnetic bearing (PMB) with a previously studied topology. The zero-field cooling (ZFC) of high-temperature superconductor (HTS) bulks promotes higher magnetic impulsion and levitation forces and lower electromagnetic losses than those with field-cooling (FC) but, on the other hand, the guiding stability is much lower than those with FC. Because of stability reasons, FC was adopted in most superconducting maglev systems. The trend of this research group has been to develop a horizontal axis HTS ZFC radial levitation PMB presenting notable levitation forces with reduced electromagnetic losses, defined by a topology that creates guiding stability. Previous work has shown that optimizing the bearing geometry to maximize magnetic guidance forces might not be enough to guarantee the axial stiffness required for many applications. First, the extent to which guidance forces are augmented by increasing the number of HTS bulks in the stator is evaluated. Then, the axial stiffness augmentation by passively adding two limiting permanent magnet (PM) rings is evaluated. The results show that the axial stiffness is highly augmented by adding limiting PM rings with no significant additional investment. This change enables the use of the studied ZFC superconducting PMB in high-precision axial stability applications, such as precision gyroscopes, horizontal axis propellers, and turbines. Full article
(This article belongs to the Special Issue Advances in High-Precision Magnetic Levitation Actuators)
Show Figures

Figure 1

11 pages, 2027 KB  
Communication
Optimal Control for a Superconducting Hybrid MagLev Transport System with Multirate Multisensors in a Smart Factory
by Changhyun Kim
Sensors 2024, 24(2), 671; https://doi.org/10.3390/s24020671 - 21 Jan 2024
Cited by 2 | Viewed by 1767
Abstract
Recently, magnetic levitation systems have been applied and studied in various industrial fields. In particular, in-tracktype magnetic levitation conveyor systems are actively studied since they can effectively minimize electromagnetic effects in processes that require a highly clean environment. In this type of system, [...] Read more.
Recently, magnetic levitation systems have been applied and studied in various industrial fields. In particular, in-tracktype magnetic levitation conveyor systems are actively studied since they can effectively minimize electromagnetic effects in processes that require a highly clean environment. In this type of system, diverse and multiple sensors are structurally required so that the control performance of an integrated system is primarily governed by the slowest measuring sensor. This paper proposes a multisensor fusion compensator to integrate the outputs obtained from various sensors into one output with the single fastest time rate. Since the state of the system is estimated at a fast time rate, the optimal controller also guarantees fast performance and stability. The computation of electromagnetic fields and the control performance of the considered superconducting hybrid system were analyzed using a computer simulation based on finite element methods. Full article
Show Figures

Figure 1

11 pages, 1308 KB  
Article
Numerical Simulations of Space Charge Waves Amplification Using Negative Differential Conductance in Strained Si/SiGe at 4.2 K
by Abel Garcia-Barrientos, Natalia Nikolova, Lado Filipovic, Edmundo A. Gutierrez-D., Victoria Serrano, Sharon Macias-Velasquez and Sarai Zarate-Galvez
Crystals 2023, 13(9), 1398; https://doi.org/10.3390/cryst13091398 - 20 Sep 2023
Viewed by 1789
Abstract
This paper introduces a two-dimensional (2D) numerical simulation of the amplification of space charge waves using negative differential conductance in a typical MOS silicon–germanium (SiGe)-based field-effect transistors (FET) and complementary metal oxide semiconductor (CMOS) technology at 4.2 K. The hydrodynamic model of electron [...] Read more.
This paper introduces a two-dimensional (2D) numerical simulation of the amplification of space charge waves using negative differential conductance in a typical MOS silicon–germanium (SiGe)-based field-effect transistors (FET) and complementary metal oxide semiconductor (CMOS) technology at 4.2 K. The hydrodynamic model of electron transport was applied to describe the amplification of space charge waves in this nonlinear medium (i.e., the negative differential conductance). This phenomenon shows up in GaAs thin films at room temperature. However, this can be also observed in a strained Si/SiGe heterostructure at very low temperatures (T < 77 K) and at high electric fields (E > 10 KV/cm). The results show the amplification and non-linear interaction of space charge waves in a strained Si/SiGe heterostructure occurs for frequencies up to approximately 60 GHz at T = 1.3 K, 47 GHz at T = 4.2 K, and 40 GHz at T = 77 K. The variation of concentration and electric field in the Z and Y directions are calculated at 4.2 K. The electric field in the Z direction is greater than in the Y direction. This is due to the fact that this is the direction of electron motion. In addition to deep space applications, these types of devices have potential uses in terrestrial applications which include magnetic levitation transportation systems, medical diagnostics, cryogenic instrumentation, and superconducting magnetic energy storage systems. Full article
(This article belongs to the Special Issue Semiconductor Materials and Devices)
Show Figures

Figure 1

14 pages, 7156 KB  
Article
Mechanical Analysis and Testing of Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application
by Liyuan Liu, Wei Chen, Huimin Zhuang, Fei Chi, Gang Wang, Gexiang Zhang, Jing Jiang, Xinsheng Yang and Yong Zhao
Crystals 2023, 13(7), 1117; https://doi.org/10.3390/cryst13071117 - 17 Jul 2023
Viewed by 2830
Abstract
High-temperature superconductors have great potential for various engineering applications such as a flywheel energy storage system. The levitation force of bulk YBCO superconductors can be drastically increased by increasing the strength of the external field. Therefore, a 6T conduction-cooled superconducting magnet has been [...] Read more.
High-temperature superconductors have great potential for various engineering applications such as a flywheel energy storage system. The levitation force of bulk YBCO superconductors can be drastically increased by increasing the strength of the external field. Therefore, a 6T conduction-cooled superconducting magnet has been developed for levitation force measurement application. Firstly, to protect the magnet from mechanical damage, reliable stress analysis inside the coil is paramount before the magnet is built and tested. Therefore, a 1/4 two-dimensional (2D) axisymmetric model of the magnet was established, and the mechanical stress in the whole process of winding, cooling down and energizing of the magnet was calculated. Then, the charging, discharging, and preliminary levitation force performance tests were performed to validate the operating stability of the magnet. According to the simulation results, the peak stresses of all coil models are within the allowable value and the winding maintains excellent mechanical stability in the superconducting magnet. The test results show that the superconducting magnet can be charged to its desired current of 150 A without quenching and maintain stable operation during the charging and discharging process. What is more, the superconducting magnet can meet the requirements for the levitation force measurement of both low magnetic field and high magnetic field. Full article
(This article belongs to the Special Issue Research on High-Temperature Superconducting Materials)
Show Figures

Figure 1

29 pages, 12485 KB  
Article
Simulation Analysis and Online Monitoring of Suspension Frame of Maglev Train
by Yi Wang and Hongli Gao
Machines 2023, 11(6), 607; https://doi.org/10.3390/machines11060607 - 2 Jun 2023
Cited by 3 | Viewed by 2069
Abstract
A maglev train is a new type of high-speed railway transportation. A high-temperature superconducting (HTS) maglev system is one of the typical representatives in the field of maglev trains. In order to research the levitation characteristics of an HTS maglev train, the force [...] Read more.
A maglev train is a new type of high-speed railway transportation. A high-temperature superconducting (HTS) maglev system is one of the typical representatives in the field of maglev trains. In order to research the levitation characteristics of an HTS maglev train, the force characteristics and operation performance of the train were researched. However, at present, there is still no research that simulates the real load situation of a running maglev train while analyzing the suspension frame. Regarding this issue, in this paper, the suspension frame is simulated and analyzed to simulate the real load situation of a maglev train. The results show that the suspension frame of an HTS maglev train can bear corresponding loads under different working conditions, and its strength and stiffness meet the requirements of use, safety, and reliability. Random irregularity in the permanent magnet track of an HTS maglev train route is inevitable, which will make the suspension frame produce a vibration response under different running speeds of the train. Vibration of the suspension frame of the train is inevitable. For the electromagnetic levitation (EMS) train, researchers considered monitoring the train status. However, at present, there is no suspension frame condition monitoring device for an HTS maglev train. In addition, the levitation height of the suspension frame affects the suspension performance and traction performance of the vehicle, and the vibration of the suspension frame during running affects the dynamic performance and safety of the suspension frame and the vehicle. Regarding the issue above, through a suspension frame monitoring system, the lateral and vertical vibration acceleration and levitation height of the suspension frame are monitored at different train speeds. The maximum value of vibration acceleration and the fluctuation range of levitation height are within the safe range. It is verified that the simulation analysis of the suspension frame of an HTS maglev train is correct, the suspension frame is safe, and the train can run safely. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

22 pages, 2399 KB  
Article
Electrical Circuits Simulator in Null-Flux Electrodynamic Suspension Analysis
by Thaís N. França, Hengda Li, Hanlin Zhu, Hongfu Shi, Le Liang and Zigang Deng
Appl. Sci. 2023, 13(11), 6666; https://doi.org/10.3390/app13116666 - 30 May 2023
Viewed by 2437
Abstract
This paper employed an electrical circuit simulator to investigate an electrodynamic suspension system (EDS) for passenger rail transport applications. Focusing on a null-flux suspension system utilizing figure-eight-shaped coils (8-shaped coils), the aim was to characterize the three primary electromagnetic forces generated in an [...] Read more.
This paper employed an electrical circuit simulator to investigate an electrodynamic suspension system (EDS) for passenger rail transport applications. Focusing on a null-flux suspension system utilizing figure-eight-shaped coils (8-shaped coils), the aim was to characterize the three primary electromagnetic forces generated in an EDS and to compare the findings with existing literatures. The dynamic circuit theory (DCT) approach was utilized to model the system as an electrical circuit with lumped parameters, and mutual inductance values between the superconducting (SC) coil and the upper and lower loops of the 8-shaped coil were calculated and inputted into the simulator. The results were compared with experimental data obtained from the Yamanashi test track. The comparison demonstrated close alignment between the theoretical expectations and the obtained experimental curves, validating the accuracy of the proposed model. The study highlights the advantages of this new approach, including faster computation times and efficient implementation of modifications. Overall, this work contributes to the ongoing development and optimization of null-flux suspension Maglev systems. Full article
Show Figures

Figure 1

13 pages, 3149 KB  
Article
Study on Electromagnetic Radiation Characteristics Based on HTS Maglev Levitation Test Line
by Hu Zhang, Jianqiong Zhang, Zigang Deng, Qingfeng Wang, Xiangqiang Li, Xianfeng Tang and Weihua Zhang
Electronics 2023, 12(8), 1776; https://doi.org/10.3390/electronics12081776 - 9 Apr 2023
Cited by 7 | Viewed by 3680
Abstract
As a new type of magnetic levitation train with the characteristics of self-stabilization and self-suspension, high-temperature superconducting magnetic levitation has developed to the test line research stage. In order to promote the rapid development of high-temperature superconducting magnetic levitation train engineering, and the [...] Read more.
As a new type of magnetic levitation train with the characteristics of self-stabilization and self-suspension, high-temperature superconducting magnetic levitation has developed to the test line research stage. In order to promote the rapid development of high-temperature superconducting magnetic levitation train engineering, and the main electromagnetic radiation sources are clarified by analyzing their working principles and structures. Then Ansoft Maxwell EM was used to build a 3D magnetic levitation train electromagnetic environment simulation model to simulate and predict the electromagnetic radiation characteristics of the magnetic levitation train system. Finally, a field EMF test was carried out to verify and assess the impact on the EM environment in the system. The results show that the permanent magnet track on the ground and the synchronous linear motor are the primary electromagnetic radiation sources, and the generated fields are mainly low-frequency fields and static magnetic fields. The low-frequency magnetic field inside the train decreases with the increase of frequency and is partially shielded by the carriage; The static magnetic field cannot be weakened by the carriage, and the static magnetic field inside the car decreases with the increase of height. All types of electromagnetic fields are far below the requirements of the relevant electromagnetic environmental standard limits, and have no effect on the electromagnetic radiation safety of the personnel inside the train and the surrounding environment; In considering of the special people who have pacemakers, static magnetic field suppression measures are studied, and the results show that the trains with high magnetic permeability permalloy as the shielding layer at the bottom of the vehicle greatly lower the static magnetic field within the train. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 6271 KB  
Article
Study on Beat Vibration of a High Temperature Superconducting EDS Maglev Vehicle at Low Speed
by Qing-Song Yu, Min Wang, Guo-Feng Yao, Shi-Xuan Zhang, Jing Yang and Nan Shao
Appl. Sci. 2023, 13(5), 3131; https://doi.org/10.3390/app13053131 - 28 Feb 2023
Cited by 6 | Viewed by 2446
Abstract
Vertical displacement acceleration and the pitch angle record produce the phenomenon of beat vibration when testing a 200 m electro-dynamic suspension (EDS) magnetic levitation (maglev) test vehicle with high-temperature superconducting (HTS) at the CRRC Changchun Railway Vehicles Co., Ltd., where the vehicle is [...] Read more.
Vertical displacement acceleration and the pitch angle record produce the phenomenon of beat vibration when testing a 200 m electro-dynamic suspension (EDS) magnetic levitation (maglev) test vehicle with high-temperature superconducting (HTS) at the CRRC Changchun Railway Vehicles Co., Ltd., where the vehicle is clamped and in planar motion. First, to examine this phenomenon, this paper establishes dynamic equations of the vehicle with three degrees of freedom (DOF), and the levitation force on each superconducting magnet (SCM) is calculated by dynamic circuit theory. Second, the theory vertical equilibrium point is obtained from the average of the levitation force for a different velocity and the magneto-motive force (MMF) of the SCM. Third, this paper decouples SCM levitation forces from each other using MATLAB/SIMULINK, and a multi-body dynamic model with six DOF is developed in SIMPACK. All vertical displacements and acceleration responses, as well as the pitch angle and acceleration response from the simulation, appear to show the phenomenon of beat vibration since there are two closing natural frequencies of approximately 2 Hz and 2.4 Hz. Finally, based on the traversing method considering the influence of the velocity, initial vertical displacement, and the MMF of the SCM, the multi-body dynamic model is frequently utilized to study the response of the mean and amplitude of vertical displacement and that of the pitch angle. The results show that increasing the MMF or velocity could decrease the vertical displacement and pitch angle; the mean vertical displacement is a little larger than the theory equilibrium point; and the amplitude of vertical displacement is small when the initial vertical displacement is near the theory equilibrium point. Both the numerical and experimental results verify the validity of the dynamic circuit model and mechanical model in this paper. Full article
Show Figures

Figure 1

14 pages, 3920 KB  
Article
Simulation of the Braking Effects of Permanent Magnet Eddy Current Brake and Its Effects on Levitation Characteristics of HTS Maglev Vehicles
by Gaowei Zhang, Jianmei Zhu, Yan Li, Yuhang Yuan, Yuqing Xiang, Peng Lin, Li Wang, Jianxin Liu, Le Liang and Zigang Deng
Actuators 2022, 11(10), 295; https://doi.org/10.3390/act11100295 - 13 Oct 2022
Cited by 9 | Viewed by 4181
Abstract
High-temperature superconducting (HTS) magnetic levitation (maglev) trains for designed high speed need a non-contact braking method that can produce stable and sufficient braking forces to ensure the safety of the train during emergency braking. In order to study the braking effects of permanent [...] Read more.
High-temperature superconducting (HTS) magnetic levitation (maglev) trains for designed high speed need a non-contact braking method that can produce stable and sufficient braking forces to ensure the safety of the train during emergency braking. In order to study the braking effects of permanent magnet eddy current braking (PMECB) used in HTS maglev vehicles and its effects on the levitation performance of HTS maglev vehicles, an equivalent two-dimensional simulation model of PMECB for a HTS maglev test vehicle under different working air gaps of 5 mm, 10 mm, 15 mm and 20 mm was established in Maxwell software. Then, a 6 degree of freedom dynamic model of the vehicle was established in Universal Mechanism software. In the dynamic simulation, the normal force of PMECB was not considered, and only the detent force of PMECB was taken as the excitation of the vehicle. The simulation results show that PMECBs can reduce the vehicle to relatively low speed in a few seconds. During the operation of PMECBs, the levitation height and levitation force of the maglev Dewar will be affected, and maximum variations in levitation heights and levitation forces occur on the Dewars at both ends of the vehicle. These help us to understand the braking and levitation performance of HTS maglev vehicles under the action of PMECBs and enrich the design idea of braking and levitation systems of HTS maglev vehicles equipped with PMECBs. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

11 pages, 2850 KB  
Article
Characterization of LCR Parallel-Type Electromagnetic Shunt Damper for Superconducting Magnetic Levitation
by Kentaro Fujita and Toshihiko Sugiura
Actuators 2022, 11(8), 216; https://doi.org/10.3390/act11080216 - 2 Aug 2022
Cited by 2 | Viewed by 2923
Abstract
This study investigated the effect of electromagnetic shunt dampers on the resonance amplitude reduction in a superconducting magnetic levitation system. There are two types of electromagnetic shunt dampers, series type and parallel type, depending on the configuration of the electric circuit, and their [...] Read more.
This study investigated the effect of electromagnetic shunt dampers on the resonance amplitude reduction in a superconducting magnetic levitation system. There are two types of electromagnetic shunt dampers, series type and parallel type, depending on the configuration of the electric circuit, and their damping characteristics may differ depending on the external resistance value in the circuit. In this study, after discussing the vibration-suppression effects of both types according to the governing equations, vibration experiments were conducted using both dampers with different resistance values. As a result, it was confirmed that, for the larger resistance value, the amplitude reduction effect is smaller in the series-type damper, while it remained high in the parallel type. We also performed numerical integrations, including the nonlinearity of magnetic force in the superconducting magnetic levitation system. As a result, it was numerically confirmed that the parallel-type damper can also be expected to reduce amplitude at a resonance caused by nonlinearity. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

Back to TopTop