Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = sugarcane biotechnology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13882 KB  
Article
Drought-Driven Rhizosphere Microbiome and Metabolome Remodeling in Wild vs. Cultivated Saccharum arundinaceum
by Sijie Huang, Haibi Li, Jinju Wei, Hui Zhou, Yanhang Tang, Yiyun Gui and Kai Zhu
Plants 2025, 14(22), 3407; https://doi.org/10.3390/plants14223407 - 7 Nov 2025
Viewed by 347
Abstract
Sugarcane is highly sensitive to the variations in soil moisture content capacity, and upregulated water stress efficiency restricts its development and crop output. Rhizospheric microbes and metabolites play key roles to mitigate the adverse effects of abiotic stresses, i.e., drought stress. The drought-tolerant [...] Read more.
Sugarcane is highly sensitive to the variations in soil moisture content capacity, and upregulated water stress efficiency restricts its development and crop output. Rhizospheric microbes and metabolites play key roles to mitigate the adverse effects of abiotic stresses, i.e., drought stress. The drought-tolerant wild sugarcane relative, Saccharum arundinaceum Retz., remains poorly characterized with respect to its rhizosphere microbial community dynamics under water limitation. To address this, we analyzed drought-associated shifts in the rhizosphere microbiome and metabolome by comparing native plants from a long-term arid habitat in Guangxi, China, with plants from an irrigated cultivation environment. We analyzed the effects of agronomic traits, soil properties, enzyme activities, and 16S rRNA sequencing and untargeted metabolomics to characterize microbial communities and metabolites, with correlation analyses. Results demonstrated that wild plants possessed thicker stems, higher proline levels, and increased antioxidant enzyme activity. Their rhizospheres were enriched with Actinobacteria, Proteobacteria, and Chloroflexi, which exhibited upregulated urease and acid phosphatase activities. Metabolites linked to phosphotransferase systems and sugar metabolisms were also more abundant. Positive correlations between these microbes, metabolites, and drought traits reveal site-specific microbial–metabolic modules that confer drought resilience, providing valuable insights for sugarcane breeding programs. Full article
Show Figures

Figure 1

22 pages, 2001 KB  
Review
Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification
by Aradhna Kumari, Saurav Raj, Santosh Kumar Singh, Krishan K. Verma and Praveen Kumar Mishra
Water 2025, 17(20), 2947; https://doi.org/10.3390/w17202947 - 13 Oct 2025
Viewed by 601
Abstract
Constructed wetlands (CWs) are sustainable and cost-effective systems that utilise plant–microbe interactions and natural processes for wastewater treatment. Microbial communities play a pivotal role in pollutant removal by crucial processes like nitrogen transformations, phosphorus cycling, organic matter degradation and the breakdown of emerging [...] Read more.
Constructed wetlands (CWs) are sustainable and cost-effective systems that utilise plant–microbe interactions and natural processes for wastewater treatment. Microbial communities play a pivotal role in pollutant removal by crucial processes like nitrogen transformations, phosphorus cycling, organic matter degradation and the breakdown of emerging contaminants. Dominant phyla, such as Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes, collectively orchestrate these biogeochemical functions. Advances in molecular tools, including high-throughput sequencing and metagenomics, have revealed the diversity and functional potential of wetland microbiomes, while environmental factors, i.e., temperature, pH and hydraulic retention time, strongly influence their performance. Phosphorus removal efficiency is often lower than nitrogen, and large land requirements and long start-up times restrict broader application. Microplastic accumulation, the spread of antibiotic resistance genes and greenhouse gas emissions (methane, nitrous oxide) present additional challenges. The possible persistence of pathogenic microbes further complicates system safety. Future research should integrate engineered substrates, biochar amendments, optimised plant–microbe interactions and hybrid CW designs to enhance treatment performance and resilience in the era of climate change. By acknowledging the potential and constraints, CWs can be further developed as next-generation, nature-based solutions for sustainable water management in the years to come. Full article
(This article belongs to the Special Issue Application of Environmental Microbiology in Water Treatment)
Show Figures

Figure 1

18 pages, 3914 KB  
Article
Viral Community and Novel Viral Genomes Associated with the Sugarcane Weevil, Sphenophorus levis (Coleoptera: Curculionidae) in Brazil
by Amanda Haisi, Márcia Furlan Nogueira, Fábio Sossai Possebon, João Pessoa Araújo Junior and Jeanne Scardini Marinho-Prado
Viruses 2025, 17(10), 1312; https://doi.org/10.3390/v17101312 - 28 Sep 2025
Viewed by 623
Abstract
Sphenophorus levis, commonly known as the sugarcane weevil, is one of the most important pests affecting Brazilian sugarcane crops. It has spread to all sugarcane-producing regions of Brazil, mainly through contaminated stalks. Effective control of this pest is difficult due to the [...] Read more.
Sphenophorus levis, commonly known as the sugarcane weevil, is one of the most important pests affecting Brazilian sugarcane crops. It has spread to all sugarcane-producing regions of Brazil, mainly through contaminated stalks. Effective control of this pest is difficult due to the protection conferred by the host plant during the larval stage. As a result, despite current control measures, S. levis populations continue to grow, and reports of new infestations remain frequent. Biotechnological control measures, such as the use of viruses, stands as a promising tool for pest control in agriculture. The aim of this study was to explore the RNA virome associated with S. levis using a viral metagenomic approach. Through the Read Annotation Tool (RAT) pipeline, we characterized, for the first time, the gut-associated viral community in adult weevils, identifying several novel viral genomes. Sphenophorus levis-associated virus (SLAV) had 12,414 nucleotides (nt); Sphenophorus levis tombus-like virus (SLTV) had 4085 nt; and the four genomic segments of Sphenophorus levis reo-like virus (SLRV) ranged from 2021 to 4386 nt. These genomes were assembled from 65,759 reads (SLAV), 114,441 reads (SLTV), and 270,384 reads (SLRV). Among the detected viral families, Partitiviridae was the most abundant. The identification of possible viral pathogens lays the foundation for future research into their potential use as biological control agents against S. levis. Full article
(This article belongs to the Special Issue Insect Viruses and Pest Management, the Third Edition)
Show Figures

Figure 1

22 pages, 2666 KB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 - 4 Aug 2025
Viewed by 693
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

30 pages, 2603 KB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Cited by 1 | Viewed by 3415
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

34 pages, 2470 KB  
Review
Biotechnology in Agro-Industry: Valorization of Agricultural Wastes, By-Products and Sustainable Practices
by Sandra de Oliveira Silva, Amanda Kelly Cristiano Mafra, Franciele Maria Pelissari, Leandro Rodrigues de Lemos and Gustavo Molina
Microorganisms 2025, 13(8), 1789; https://doi.org/10.3390/microorganisms13081789 - 31 Jul 2025
Cited by 1 | Viewed by 2431
Abstract
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline [...] Read more.
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline the critical need for further research and policy support to scale these solutions, advancing global sustainability goals through innovative resource management. In this perspective, this article reviews the utilization of key by-products, including coffee residues, sugarcane bagasse, whey, cassava wastewater (manipueira), and brewery waste, highlighting their transformation into high-value products such as biofuels, bioplastics, enzymes, bioactive compounds, and organic fertilizers. The discussion presented encompasses the challenges and opportunities in leveraging these residues, emphasizing the role of advanced technologies, intellectual property, and circular economy principles. Full article
Show Figures

Figure 1

14 pages, 1633 KB  
Review
The Role of AP2/ERF Transcription Factors in Plant Responses to Biotic Stress
by Ze-Lin Su, Ao-Mei Li, Miao Wang, Cui-Xian Qin, You-Qiang Pan, Fen Liao, Zhong-Liang Chen, Bao-Qing Zhang, Wen-Guo Cai and Dong-Liang Huang
Int. J. Mol. Sci. 2025, 26(10), 4921; https://doi.org/10.3390/ijms26104921 - 21 May 2025
Cited by 3 | Viewed by 1953
Abstract
The APETALA2/ethylene response factor (AP2/ERF) family of transcription factors (TFs) is one of the largest and most important TF families in plants. This family plays a crucial role in regulating growth, development, and responses to both biotic and abiotic stresses. This study provides [...] Read more.
The APETALA2/ethylene response factor (AP2/ERF) family of transcription factors (TFs) is one of the largest and most important TF families in plants. This family plays a crucial role in regulating growth, development, and responses to both biotic and abiotic stresses. This study provides a comprehensive overview of the structure, classification, and distribution of AP2/ERF TFs in various plant species, with particular emphasis on their roles in responses to biotic stress. These findings provide valuable insights for future research on AP2/ERF TFs and their potential applications in crop improvement through molecular breeding. Full article
Show Figures

Figure 1

17 pages, 4307 KB  
Article
Indole-3-Butyric Acid Enhances Root Formation and Alleviates Low-Temperature Stress in Sugarcane: Molecular Insights and Identification of Candidate Genes
by Xiao-Qiu Zhang, Yong-Jian Liang, Xiu-Peng Song, Mei-Xin Yan, Li-Qiu Tang, Zhen-Qiang Qin, Yu-Xin Huang, De-Wei Li, Dong-Mei Huang, Ze-Sheng Shi, Bao-Qing Zhang and Dong-Liang Huang
Plants 2025, 14(10), 1502; https://doi.org/10.3390/plants14101502 - 16 May 2025
Cited by 1 | Viewed by 839
Abstract
Sugarcane (Saccharum officinarum L.) faces significant challenges in China, including labor-intensive cultivation, low yields, and environmental stresses. Enhancing root development and stress tolerance through phytohormones and molecular breeding is a promising approach to boosting productivity. Indole-3-butyric acid is a phytohormone known for [...] Read more.
Sugarcane (Saccharum officinarum L.) faces significant challenges in China, including labor-intensive cultivation, low yields, and environmental stresses. Enhancing root development and stress tolerance through phytohormones and molecular breeding is a promising approach to boosting productivity. Indole-3-butyric acid is a phytohormone known for promoting root development and stress resistance. However, its effects on sugarcane root development under low temperature remain poorly understood. This study demonstrated that IBA markedly promoted root initiation, elongation, and biomass under low temperature, and significantly increased the levels of phytohormones, including GA3, ABA, JA, IAA, and ZT, suggesting the activation of multiple signaling pathways. Transcriptome analysis revealed numerous differentially expressed genes related to metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and glutathione metabolism. Weighted gene co-expression network analysis identified core gene modules correlated with phytohormone activities, highlighting their role in the IBA-mediated stress response. Eleven core genes, including GSTU6, FAR1, and BCAT3, and nine hub genes, such as Ub-CEP52-1 and ACS1, were identified as critical components for IBA-induced root development and stress mitigation. These findings provide insights into the molecular mechanisms underlying IBA-induced root development and stress tolerance in sugarcane, offering candidate genes for breeding high-yield, stress-tolerant varieties and demonstrating IBA’s potential as a strategy to enhance productivity under challenging conditions. Full article
(This article belongs to the Special Issue Sugarcane Breeding and Biotechnology for Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 2206 KB  
Article
Identification and Characterization of SWEET Gene Family in Peanuts and the Role of AhSWEET50 in Sugar Accumulation
by Tiecheng Cai, Yijing Pan, Chong Zhang, Lang Chen, Biaojun Ji, Qiang Yang, Faqian Xiong and Weijian Zhuang
Agronomy 2025, 15(5), 1149; https://doi.org/10.3390/agronomy15051149 - 8 May 2025
Viewed by 802
Abstract
The SWEET (sugars will eventually be exported transporter) gene family represents a novel class of sugar transporters capable of bidirectionally transporting sugars along the concentration gradient. In this study, we identified 50 SWEET genes from the peanut cultivar Shitouqi, which were phylogenetically classified [...] Read more.
The SWEET (sugars will eventually be exported transporter) gene family represents a novel class of sugar transporters capable of bidirectionally transporting sugars along the concentration gradient. In this study, we identified 50 SWEET genes from the peanut cultivar Shitouqi, which were phylogenetically classified into four clades. Promoter analysis revealed that the AhSWEET genes contain multiple cis-acting elements associated with stress responses, growth regulation, and hormone signaling, suggesting their potential roles in plant development and adaptation to environmental challenges. Transcriptome profiling highlighted AhSWEET50 as the most highly expressed member during early seed development stages in both low- and high-sucrose peanut cultivars and also highly expressed at the mature stage. Subcellular localization confirmed the presence of AhSWEET50 in both the plasma membrane and cytoplasm, with predominant expression observed in embryos. The heterologous overexpression of AhSWEET50 in Arabidopsis significantly increased soluble sugar accumulation when compared to wild-type plants. These results validate the functional role of AhSWEET50 in sugar transport and provide a foundation for understanding the mechanisms of sugar allocation in peanuts, which has implications for improving seed quality through metabolic engineering. Full article
Show Figures

Figure 1

17 pages, 1990 KB  
Article
Hydrotalcites as a Promising Adsorbent for Hemicellulose Hydrolysate Detoxification in Xylitol Production
by Débora D. V. da Silva, Kelly J. Dussán, Isabela A. L. Costa, Marcus B. S. Forte and Maria G. A. Felipe
Fermentation 2025, 11(5), 243; https://doi.org/10.3390/fermentation11050243 - 27 Apr 2025
Viewed by 1074
Abstract
The worldwide demand for sustainable bioprocesses is undeniable, as well as for research aimed at the biotechnological exploitation of lignocellulosic materials, especially their hemicellulosic fractions rich in xylose. Various bioproducts can be obtained from these fractions, although some bottlenecks still exist, such as [...] Read more.
The worldwide demand for sustainable bioprocesses is undeniable, as well as for research aimed at the biotechnological exploitation of lignocellulosic materials, especially their hemicellulosic fractions rich in xylose. Various bioproducts can be obtained from these fractions, although some bottlenecks still exist, such as the presence in hemicellulosic hydrolysates of compounds that are toxic for microorganisms, which requires a previous step of detoxification to reduce them to non-inhibitory levels. The present investigation proposes the use of hydrotalcites as a new detoxifying agent for the hemicellulosic hydrolysate of sugarcane straw to produce xylitol by Candida tropicalis, aiming at a greater removal of phenolics and less loss of sugars. The design of these experiments was used for factorial effect analysis in a simultaneous way; the influences of pH and temperature were evaluated, considering the detoxification process at different times for both uncalcined and calcined hydrotalcite adsorbents. While for the calcined hydrotalcite, the temperature was the significant factor, for the uncalcined, there was also an influence of pH and little effect on the factors of yield and productivity. The effectiveness of hydrotalcites as demonstrated in this research, mainly regarding the ability to reduce the content of phenolic compounds in hydrolysates with a low loss of sugar content, followed by fermentability to produce xylitol, is a strong requirement for the proposition of these new adsorbents in investigations of the development of sustainable technologies for obtaining bioproducts in a biorefinery context. Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
Show Figures

Figure 1

14 pages, 1323 KB  
Article
Optimizing Selenium Application for Enhanced Quality and Nutritional Value of Spring Tea (Camellia sinensis)
by Qing Liao, Pan-Xia Liang, Ying Xing, Zhuo-Fan Yao, Jin-Ping Chen, Li-Ping Pan, Yao-Qiu Deng, Yong-Xian Liu and Dong-Liang Huang
Horticulturae 2025, 11(4), 423; https://doi.org/10.3390/horticulturae11040423 - 16 Apr 2025
Cited by 8 | Viewed by 1026
Abstract
Tea (Camellia sinensis) is a globally cherished beverage, valued for its flavor and health benefits, largely attributed to bioactive compounds like polyphenols and amino acids. Selenium (Se), an essential trace element for humans and animals, plays a dual role in promoting [...] Read more.
Tea (Camellia sinensis) is a globally cherished beverage, valued for its flavor and health benefits, largely attributed to bioactive compounds like polyphenols and amino acids. Selenium (Se), an essential trace element for humans and animals, plays a dual role in promoting plant growth and enhancing human health, yet its impact on tea quality remains underexplored. In this work, the effects of selenium application rate (with 0, 150, 225, and 300 g·ha−1 of Se) on soil selenium availability, enzyme activity, and the biochemical composition of spring tea, including chlorophyll, polyphenols, free amino acids, and polysaccharides, were studied. Results show that selenium application significantly increased soil selenium availability, with higher rates promoting its conversion into bioavailable forms. Soil enzyme activities, such as sucrase and urease, were notably influenced by selenium. In tea leaves, selenium content and glutathione peroxidase activity increased, while chlorophyll content initially rose but declined at higher application rates, with the Se225 treatment (225 g·ha−1 of Se) yielding optimal results. Selenium reduced polyphenol content, increased free amino acids, and lowered the phenol-to-amino acid ratio, improving tea sensory quality. Polysaccharide content also peaked at the Se225 treatment. These findings highlight the potential of selenium-enriched tea as a functional food and provide a scientific basis for optimizing selenium application in tea cultivation. Full article
Show Figures

Figure 1

15 pages, 1873 KB  
Article
Purification and Functional Characterization of a New Endoglucanase from Pleurotus djamor PLO13 Produced by Solid-State Fermentation of Agro-Industrial Waste
by Monizy da Costa Silva, Ricardo Bezerra Costa, Marta Maria Oliveira dos Santos Gomes, Josiel Santos do Nascimento, Andreza Heloiza da Silva Gonçalves, Jéssica Alves Nunes, Marta Angelo dos Santos, Francis Soares Gomes, José Maria Rodrigues da Luz, Luciano Aparecido Meireles Grillo and Hugo Juarez Vieira Pereira
Fermentation 2025, 11(4), 182; https://doi.org/10.3390/fermentation11040182 - 1 Apr 2025
Viewed by 1080
Abstract
The increasing generation of agro-industrial waste and its improper disposal have raised significant environmental concerns, highlighting the urgent need for sustainable alternatives which would repurpose these materials. In this context, enzymes such as endoglucanase play a critical role in degrading lignin–cellulose biomass by [...] Read more.
The increasing generation of agro-industrial waste and its improper disposal have raised significant environmental concerns, highlighting the urgent need for sustainable alternatives which would repurpose these materials. In this context, enzymes such as endoglucanase play a critical role in degrading lignin–cellulose biomass by catalyzing the breakdown of β-1,4-glycosidic bonds in cellulose, thereby converting it into fermentable sugars with diverse industrial applications. This study aimed to investigate the production, purification, and characterization of an endoglucanase produced by the fungus Pleurotus djamor PLO13, using coconut fiber, sugarcane bagasse, wheat bran, and pineapple crown as substrates. Endoglucanase activity was measured by the Miller method (1959), using 2% (w/v) carboxymethyl cellulose (CMC) as substrate. Solid-state fermentation (SSF) was found to be highly efficient for enzyme synthesis, with wheat bran emerging as the most effective substrate, yielding an enzyme production of 7.19 U after 120 h of cultivation. The endoglucanase was purified through ethanol precipitation and ion-exchange chromatography using DEAE-Sepharose, achieving a recovery rate of 110%, possibly due to removal of inhibitors present in the crude extract. The purified enzyme exhibited stability across a broad pH range and thermostability, with optimal activity at pH 5.0 and 50 °C. Furthermore, the enzyme was activated by EDTA, Mn2+, and Ca2+, while being inhibited by Mg2+. Notably, the enzyme demonstrated halotolerance, with activity increasing by 60% upon the addition of 3 M NaCl. Kinetic analysis revealed that the purified enzyme showed affinity to the CMC substrate at the analyzed parameters (pH 5.0 and 50 °C), with Km and Vmax values of 0.0997 mg/mL and 112.2 µg/min/mL, respectively. These findings suggest that the endoglucanase from P. djamor PLO13 has promising potential for biotechnological applications, underscoring the feasibility of the use of lignocellulosic waste as sustainable substrates in industrial processes. Full article
(This article belongs to the Special Issue Application and Research of Solid State Fermentation)
Show Figures

Figure 1

18 pages, 5637 KB  
Article
Identification of Reactive Oxygen Species Genes Mediating Resistance to Fusarium verticillioides in the Peroxisomes of Sugarcane
by Xiang Li, Yijing Gao, Cuifang Yang, Hairong Huang, Yijie Li, Shengfeng Long, Hai Yang, Lu Liu, Yaoyang Shen and Zeping Wang
Agronomy 2024, 14(11), 2640; https://doi.org/10.3390/agronomy14112640 - 8 Nov 2024
Cited by 1 | Viewed by 1114
Abstract
Pokkah boeng disease (PBD), which is caused by Fusarium verticillioides, is a major sugarcane disease in Southeast Asian countries. Breeding varieties to become resistant to F. verticillioides is the most effective approach for minimizing the damage caused by PBD, and identifying genes [...] Read more.
Pokkah boeng disease (PBD), which is caused by Fusarium verticillioides, is a major sugarcane disease in Southeast Asian countries. Breeding varieties to become resistant to F. verticillioides is the most effective approach for minimizing the damage caused by PBD, and identifying genes mediating resistance to PBD via molecular techniques is essential. The production of reactive oxygen species (ROSs) is one of a cell’s first responses to pathogenic infections. Plant peroxisomes play roles in several metabolic processes involving ROSs. In this study, seedlings of YT94/128 and GT37 inoculated with F. verticillioides were used to identify PBD resistance genes. The cells showed a high degree of morphological variation, and the cell walls became increasingly degraded as the duration of the infection increased. There was significant variation in H2O2 accumulation over time. Catalase, superoxide dismutase, and peroxidase activities increased in both seedlings. Analysis of differentially expressed genes (DEGs) revealed that peroxidase-metabolism-related genes are mainly involved in matrix protein import and receptor recycling, adenine nucleotide transport, peroxisome division, ROS metabolism, and processes related to peroxisomal membrane proteins. The expression levels of SoCATA1 and SoSOD2A2 gradually decreased after sugarcane infection. F. verticillioides inhibited the expressions of C5YVR0 and C5Z4S4. Sugarcane infection by F. verticillioides disrupts the balance of intracellular ROSs and increases the cell membrane’s lipid peroxidation rate. Defense-related enzymes play a key regulatory role in maintaining a low, healthy level of ROSs. The results of this study enhance our understanding of the mechanism through which peroxisomes mediate the resistance of sugarcane to PBD and provide candidate genes that could be used to breed varieties with improved traits via molecular breeding. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 5558 KB  
Article
Spatiotemporal Dynamic Relationship of Meteorological Factors and Sugar Content of Sugarcane by Vector Autoregression Model
by Guojun Zheng, Shengfeng Long, Guanghu Zhu, Qinlong Wang, Ting Luo, Hairong Huang, Lu Liu, Hui Fang, Pengcheng Ma, Yaoyang Shen and Zeping Wang
Agriculture 2024, 14(11), 1945; https://doi.org/10.3390/agriculture14111945 - 31 Oct 2024
Viewed by 1130
Abstract
Sugarcane is a globally significant economic crop, and sugar content is a key determinant of its financial and industrial value. This study utilized sugar content information from spring-planted and ratoon sugarcane in six research regions across Guangxi, China from 2008 to 2023 along [...] Read more.
Sugarcane is a globally significant economic crop, and sugar content is a key determinant of its financial and industrial value. This study utilized sugar content information from spring-planted and ratoon sugarcane in six research regions across Guangxi, China from 2008 to 2023 along with concurrent meteorological data. By conducting statistical tests, the critical meteorological factors influencing the sugar content of sugarcane (effective cumulative temperature and rainfall) were identified. These factors were then used as independent variables to construct a vector autoregression (VAR) model, which was employed to analyze the spatiotemporal dynamic relationships between sugar content and meteorological variables across different planting periods. The empirical results demonstrated that the influence of effective cumulative temperature on sugar content across various regions and planting periods shifted from positive to negative in the short-term, eventually reverting to a positive effect after a period of alternating influences. The impact of rainfall mirrored effective cumulative temperature, though it was relatively less pronounced. The sugarcane in Nanning and Baise was less influenced by effective cumulative temperature and rainfall, with the short-term impact changing from positive to negative and diminishing over time. Our findings provide scientific insights for guiding the ecosystem management of sugarcane in China. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 1745 KB  
Article
Comparative Analysis of Pretreatment Methods for Fruit Waste Valorization in Euglena gracilis Cultivation: Impacts on Biomass, β-1,3-Glucan Production, and Photosynthetic Efficiency
by Jiangyu Zhu, Xinyue Guo, Kaile Zhao, Xinyu Chen, Xinxin Zhao, Zhengfei Yang, Yongqi Yin, Minato Wakisaka and Weiming Fang
Foods 2024, 13(21), 3439; https://doi.org/10.3390/foods13213439 - 28 Oct 2024
Cited by 7 | Viewed by 2608
Abstract
This study explored the sustainable valorization of fruit waste extracts from sugarcane bagasse (SB), banana peel (BP), and watermelon rind (WR) for Euglena gracilis biomass and β-1,3-glucan production. The extracts were prepared using water extraction (WE), high-temperature and pressure treatment (HTP), and dilute [...] Read more.
This study explored the sustainable valorization of fruit waste extracts from sugarcane bagasse (SB), banana peel (BP), and watermelon rind (WR) for Euglena gracilis biomass and β-1,3-glucan production. The extracts were prepared using water extraction (WE), high-temperature and pressure treatment (HTP), and dilute sulfuric acid treatment (DSA). The DSA-treated extracts consistently yielded the best results. E. gracilis cultured in SB-DSA showed the highest cell density with a 2.08-fold increase compared to the commercial HUT medium, followed by BP-DSA (1.35-fold) and WR-DSA (1.70-fold). Photosynthetic pigment production increased significantly, with chlorophyll a yield being highest in SB-DSA (1.90-fold increase). The chlorophyll a/b ratio and total carotenoid content also improved, indicating enhanced light-harvesting capacity and photoprotection. Photosynthetic efficiency, measured by chlorophyll fluorescence, notably improved. The maximum quantum yield of PSII (Fv/Fm) increased by up to 25.88% in SB-DSA, suggesting reduced stress and improved overall photosynthetic health. The potential photochemical efficiency (Fv/F0) showed even greater improvements: up to 40.53% in SB-DSA. Cell morphology analysis revealed larger cell aspect ratios, implying a more active cellular physiological state. β-1,3-glucan yield also increased by 23.99%, 12.92%, and 23.38% in SB-DSA, BP-DSA, and WR-DSA, respectively. This study demonstrates the potential of pretreated fruit waste as a cost-effective and sustainable medium for E. gracilis cultivation, offering the dual benefits of waste valorization and high-value compound production. These findings contribute to the development of more efficient biorefinery processes and align with the circular economy principles in food biotechnology. Full article
(This article belongs to the Special Issue Microalgae in Food Systems: From Cultivation to Application)
Show Figures

Figure 1

Back to TopTop