Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = sugarcane biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 (registering DOI) - 4 Aug 2025
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

30 pages, 2603 KiB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Viewed by 256
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

21 pages, 3238 KiB  
Article
Fingerprinting Agro-Industrial Waste: Using Polysaccharides from Cell Walls to Biomaterials
by Débora Pagliuso, Adriana Grandis, Amanda de Castro Juraski, Adriano Rodrigues Azzoni, Maria de Lourdes Teixeira de Morais Polizeli, Helio Henrique Villanueva, Guenther Carlos Krieger Filho and Marcos Silveira Buckeridge
Sustainability 2025, 17(14), 6362; https://doi.org/10.3390/su17146362 - 11 Jul 2025
Viewed by 314
Abstract
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as [...] Read more.
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as a primary carbon source for bioenergy and biorefinery processes. This structure contains a cellulose core, where lignin and hemicelluloses are crosslinked and embedded in a pectin matrix, forming diverse polysaccharide architectures across different species and tissues. Nineteen agro-industrial waste products were analyzed for their potential use in a circular economy. The analysis included cell wall composition, saccharification, and calorific potential. Thermal capacity and degradation were similar among the evaluated wastes. The feedstocks of corn cob, corn straw, soybean husk, and industry paper residue exhibited a higher saccharification capacity despite having lower lignin and uronic acid contents, with cell walls comprising 30% glucose and 60% xylose. Therefore, corn, soybeans, industrial paper residue, and sugarcane are more promising for bioethanol production. Additionally, duckweed, barley, sorghum, wheat, rice, bean, and coffee residues could serve as feedstocks for other by-products in green chemistry, generating valuable products. Our findings show that agro-industrial residues display a variety of polymers that are functional for various applications in different industry sectors. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 440
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

19 pages, 7364 KiB  
Article
Sustainable Sugarcane Bagasse-Derived Activated Carbon for High-Performance Symmetric Supercapacitor Devices Applications
by Perumal Rajivgandhi, Vediyappan Thirumal, Alagan Sekar and Jinho Kim
Nanomaterials 2025, 15(13), 1028; https://doi.org/10.3390/nano15131028 - 2 Jul 2025
Viewed by 388
Abstract
In this study, sugarcane bagasse (SCB), an abundant agricultural byproduct, was transformed into activated carbon via a controlled thermochemical pyrolysis route for high-performance energy storage applications. Herein, we utilized the activated carbon derived from pure sugarcane bagasse (SCB-AC) and further activated using KOH [...] Read more.
In this study, sugarcane bagasse (SCB), an abundant agricultural byproduct, was transformed into activated carbon via a controlled thermochemical pyrolysis route for high-performance energy storage applications. Herein, we utilized the activated carbon derived from pure sugarcane bagasse (SCB-AC) and further activated using KOH (SCB-KOH-AC) as an electrode material in aqueous symmetric supercapacitor configurations. The synthesized activated carbon was subjected to analysis using a range of characteristics including FT-Raman spectroscopy, which was employed to confirm the functional groups present in the carbon materials. The XPS analysis provided insights into the elemental composition and ionic states. The SEM analysis revealed that both activated carbon and KOH/activated carbon materials exhibited a layered or stacked, albeit slightly random, orientation. Electrochemical studies demonstrated that the synthesized carbon electrodes exhibited impressive specific capacitance values of (SCB) activated carbon (132.20 F/g) and KOH-activated, pure SCB AC (SCB-A) 253.41 F/g at 0.5 A/g. Furthermore, the SCB KOH-activated carbon (AC) electrode revealed a higher specific capacitance value and A//SCB-A symmetric devices delivered energy density reaching 17.91 Wh/kg and power density up to 2990 W/kg. The KOH-activated carbon electrode demonstrated remarkable cycling stability retaining 93.89%, even after 10,000 cycles. These results suggest that the sugarcane bagasse-derived activated carbon is a sustainable and low-cost candidate for next-generation supercapacitor electrodes. The results demonstrate enhanced capacitance, stability, and pore structure tailored for energy storage applications. The KOH-activated carbon SCB carbon symmetric device with symmetric electrodes exhibited a suitable bio-mass carbon for future energy storage applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

20 pages, 1185 KiB  
Article
Optimization of Fermentation Parameters for Enhanced Bioethanol Production by Multistress-Tolerant Saccharomycodes ludwigii APRE2 Using Undetoxified Sugarcane Bagasse Hydrolysate
by Preekamol Klanrit, Sudarat Thanonkeo, Warayutt Pilap, Jirawan Apiraksakorn, Khanittha Fiala, Ratanaporn Leesing, Mamoru Yamada and Pornthap Thanonkeo
Energies 2025, 18(13), 3428; https://doi.org/10.3390/en18133428 - 30 Jun 2025
Viewed by 296
Abstract
The presence of various inhibitory compounds in lignocellulosic hydrolysates poses a significant challenge for bioethanol production, requiring yeasts with exceptional multistress tolerance. This study introduces the novel application and demonstrates the robust performance of the nonconventional yeast Saccharomycodes ludwigii APRE2 for efficient bioethanol [...] Read more.
The presence of various inhibitory compounds in lignocellulosic hydrolysates poses a significant challenge for bioethanol production, requiring yeasts with exceptional multistress tolerance. This study introduces the novel application and demonstrates the robust performance of the nonconventional yeast Saccharomycodes ludwigii APRE2 for efficient bioethanol production directly from undetoxified sugarcane bagasse hydrolysate (SBH) at 37 °C. This approach critically eliminates the need for the costly detoxification pretreatments often required in industrial processes. Initial experiments confirmed S. ludwigii APRE2’s capability to ferment undetoxified SBH. To optimize fermentation efficiency, a central composite design (CCD) approach was implemented. This statistical method identified the following precise optimal parameters: sugar concentration (143.95 g/L), diammonium phosphate (4.99 g/L), pH (4.98), yeast extract (8.94 g/L), and magnesium sulfate (2.22 g/L). Under these optimized conditions, impressive results were achieved: a maximum ethanol concentration of 38.11 g/L, productivity of 1.59 g/L·h, and yield of 0.45 g/g. Notably, the ethanol productivity and theoretical yield achieved by S. ludwigii APRE2 using this inhibitor-rich, undetoxified SBH (containing acetic acid, formic acid, furfural, and 5-(hydroxymethyl)furfural) were superior to those previously reported for other ethanologenic yeasts under similar challenging conditions. This research establishes S. ludwigii APRE2 as a highly promising and industrially viable candidate for sustainable bioethanol production from lignocellulosic biomass, with its key novelty being its superior performance on undetoxified feedstocks, potentially reducing overall production costs. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Hydrodynamic Cavitation-Assisted Hydrothermal Separation: A Pathway for Valorizing Lignocellulosic Biomass into Biopolymers and Extractives
by Md. Bayazid Ahmed and Souman Rudra
Processes 2025, 13(7), 2041; https://doi.org/10.3390/pr13072041 - 27 Jun 2025
Viewed by 725
Abstract
Lignocellulosic biomass is a sustainable renewable resource for producing biopolymers, chemicals, and high-value compounds. This study proposes a biomass valorization concept that combines hydrodynamic cavitation (HC) and hydrothermal separation (HTS) to produce high-value products. Aspen Plus software was used in this study to [...] Read more.
Lignocellulosic biomass is a sustainable renewable resource for producing biopolymers, chemicals, and high-value compounds. This study proposes a biomass valorization concept that combines hydrodynamic cavitation (HC) and hydrothermal separation (HTS) to produce high-value products. Aspen Plus software was used in this study to develop the first simulation-driven integration of HC and HTS for biomass valorization in the biorefinery concept. The overall separation efficiency and component yield for standalone HC and HTS processes agreed with the experimental data. The findings from the simulation results indicate that the coupled processes yielded a significant enhancement in overall separation efficiency. This coupling resulted in a 24.5% increase compared to a single HC process and 16.75% higher efficiency than a single HTS process for sugarcane bagasse. The sensitivity analysis showed that incrementing HTS temperature and reaction time results in higher component yield and overall separation efficiency. The increase in the S/L ratio demonstrated a higher component yield in the process downstream, whereas the efficiency remained approximately the same. The effect of the HTS pressure was negligible on component yield and overall separation efficiency. Moreover, this study identified the optimal process parameters of the coupled process. At the optimal condition, quadratic models showed an overall separation efficiency of 79.41 ± 2.71% for the HC-HTS coupled process. This approach promises superior biomass utilization over traditional processes, minimizing waste and environmental impact while expanding the potential applications of biomass. Full article
(This article belongs to the Special Issue Process Intensification towards Sustainable Biorefineries)
Show Figures

Figure 1

17 pages, 1485 KiB  
Article
Eliminating Effect of Moisture Content in Prediction of Lower Heating Value and Ash Content in Sugarcane Leaves Biomass
by Kanvisit Maraphum, Kantisa Phoomwarin, Nirattisak Khongthon and Jetsada Posom
Energies 2025, 18(13), 3352; https://doi.org/10.3390/en18133352 - 26 Jun 2025
Viewed by 349
Abstract
Accurate assessment of biomass fuel properties is essential for quality control and fair market pricing, particularly when dealing with variable moisture content (MC) in agricultural residues. This study investigates the use of near-infrared (NIR) spectroscopy to predict the lower heating value (LHV) and [...] Read more.
Accurate assessment of biomass fuel properties is essential for quality control and fair market pricing, particularly when dealing with variable moisture content (MC) in agricultural residues. This study investigates the use of near-infrared (NIR) spectroscopy to predict the lower heating value (LHV) and ash content of sugarcane leaf pellets while minimizing the interference caused by moisture variability. Sixty-two samples were scanned using an NIR spectrometer over three week-long storage periods to get different MCs with the same sample. Additionally, variable selection methods such as a genetic algorithm (GA) and moisture-related wavelength exclusion were explored. The optimal model for LHV prediction was developed using GA-PLS regression (Method II), provided a coefficient of determination (R2) of 0.80, a root mean square error of calibration (RMSEc) of 595.80 J/g, and a ratio of performance to deviation (RPD) of 1.74, indicating fair predictive performance. The ash content model showed moderate accuracy, with a maximum R2 of 0.61 and an RPD of 1.40. These findings suggest that the variables selected via GA in Method II were not relevant to MC; as Method II provided the best result, this indicates a low impact of MC, which may influence model construction in the future. Moreover, the findings also highlight the potential of NIR spectroscopy, combined with appropriate spectral preprocessing and wavelength optimization, as a rapid, non-destructive tool for evaluating biomass quality, enabling more precise control in bioenergy production and biomass trading. Full article
Show Figures

Figure 1

22 pages, 1506 KiB  
Article
Potential of Sugarcane Biomass-Derived Biochars for the Controlled Release of Sulfentrazone in Soil Solutions
by Marcos R. F. da Silva, Maria Eliana L. R. Queiroz, Antônio A. Neves, Antônio A. da Silva, André F. de Oliveira, Liany D. L. Miranda, Ricardo A. R. Souza, Alessandra A. Z. Rodrigues and Janilson G. da Rocha
Processes 2025, 13(7), 1965; https://doi.org/10.3390/pr13071965 - 21 Jun 2025
Viewed by 1022
Abstract
Sugarcane bagasse-derived biochars, produced at 350 °C (B350) and 600 °C (B600), were evaluated for their capacity to modify the sorption behavior of the herbicide sulfentrazone (SFZ) in Red–Yellow Latosol (RYL) and to serve as carriers for its controlled release. Batch sorption experiments [...] Read more.
Sugarcane bagasse-derived biochars, produced at 350 °C (B350) and 600 °C (B600), were evaluated for their capacity to modify the sorption behavior of the herbicide sulfentrazone (SFZ) in Red–Yellow Latosol (RYL) and to serve as carriers for its controlled release. Batch sorption experiments indicated that SFZ exhibits low affinity for soil and undergoes sorption–desorption hysteresis. Adding B350 biochar (up to 0.30%) did not significantly affect the herbicide sorption, whereas B600 enhanced its retention. Sequential desorption assays were conducted by incorporating SFZ either directly into the soil or into the biochars, which were subsequently blended into the soil (at 0.15% w/w). The SFZ desorbed more rapidly from the soil than from the biochars, suggesting that the pyrogenic material has potential for modulating herbicide release. Phytotoxicity assessments using Sorghum bicolor confirmed that only SFZ incorporated into B350 (at 0.15% w/w) retained herbicidal efficacy comparable to its direct application in soil. These findings underscore the potential of B350 biochar as a controlled-release carrier for SFZ without compromising its weed control effectiveness. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Graphical abstract

19 pages, 5673 KiB  
Article
Transcription Factor Protein (TFP)-Trait Relationships During Sugarcane Internode Development
by Frederik C. Botha and Annelie Marquardt
Agronomy 2025, 15(6), 1475; https://doi.org/10.3390/agronomy15061475 - 17 Jun 2025
Viewed by 285
Abstract
Understanding how transcription factors regulate biomass accumulation and sucrose storage is essential for improving sugarcane productivity. In this study, we quantified transcription factor protein (TFP) abundance in sugarcane internodes across developmental stages and growth rates. These profiles were correlated with key biochemical traits, [...] Read more.
Understanding how transcription factors regulate biomass accumulation and sucrose storage is essential for improving sugarcane productivity. In this study, we quantified transcription factor protein (TFP) abundance in sugarcane internodes across developmental stages and growth rates. These profiles were correlated with key biochemical traits, including lignin, glucan, hemicellulose, and sucrose content. From 7333 identified proteins, 205 were annotated as transcription factors spanning 22 families. By applying Pearson correlation followed by Partial Correlation with Information Theory (PCIT), we identified 46 high-confidence TFP-trait associations. Key regulators, such as ScMYB113, ScMADS15, and ScbZIP85, exhibited trait-specific roles, influencing sucrose storage and cell wall biosynthesis. Network topology revealed distinct transcriptional modules linked to biomass production, polysaccharide deposition, and intermediary metabolism. Notably, sucrose and lignin accumulation intensified after internode elongation ceased, highlighting shifts in transcriptional control during maturation. This study delivers the first protein-level regulatory map linking transcription factors to metabolic traits in sugarcane and provides a framework for targeting candidate regulators to enhance biomass quality and yield in bioenergy crops such as sugarcane. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 48587 KiB  
Article
Characterization of Briquettes from Potato Stalk Residues for Sustainable Solid Biofuel Production
by Marlon Andrés Piarpuezán Enríquez, Daniel Roberto Zapata Hidalgo and Fernando Pantoja-Suárez
Processes 2025, 13(6), 1851; https://doi.org/10.3390/pr13061851 - 12 Jun 2025
Viewed by 615
Abstract
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential [...] Read more.
The development of biofuels aligned with the circular economy has gained increasing attention as a sustainable alternative to non-renewable energy sources. This study aims to evaluate the physical and thermal properties of biomass briquettes derived from potato stalk residues to assess their potential as biofuels. For this, dried potato stalk residues were subjected to pyrolysis for carbonization, followed by grinding and mixing with potato and achira binders in proportions of 10% and 20%, respectively. The briquetting process was performed at a pressure of 10 MPa with compaction times of 30 and 60 s. Scanning electron microscopy (SEM) revealed a porous structure with uniform binder distribution, while Raman spectroscopy confirmed the presence of D and G bands, indicative of amorphous carbon structures with graphite-like imperfections. Thermogravimetric analysis (TGA) determined a moisture content of 10%, which ensures stability. Non-carbonized briquettes exhibited higher compressive strength, withstanding forces in excess of 400 N at 20% deformation. The average calorific value of both briquette types was 15 MJ/kg, comparable to biofuels derived from sugarcane bagasse and rice hulls, with samples exceeding the 12 MJ/kg threshold for biomass fuel classification. These results indicate that potato stalk briquettes could be a viable biofuel alternative to support renewable energy diversification. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

36 pages, 667 KiB  
Article
Transition to a Circular Bioeconomy in the Sugar Agro-Industry: Predictive Modeling to Estimate the Energy Potential of By-Products
by Yoisdel Castillo Alvarez, Reinier Jiménez Borges, Gendry Alfonso-Francia, Berlan Rodríguez Pérez, Carlos Diego Patiño Vidal, Luis Angel Iturralde Carrera and Juvenal Rodríguez-Reséndiz
Technologies 2025, 13(6), 238; https://doi.org/10.3390/technologies13060238 - 10 Jun 2025
Viewed by 777
Abstract
The linear economy model in the sugar agroindustry has generated multiple impacts due to the underutilization of by-products and reliance on fossil fuels. Through predictive modeling and anaerobic digestion, the circular bioeconomy of sugarcane biomass enables the generation of biogas and electricity in [...] Read more.
The linear economy model in the sugar agroindustry has generated multiple impacts due to the underutilization of by-products and reliance on fossil fuels. Through predictive modeling and anaerobic digestion, the circular bioeconomy of sugarcane biomass enables the generation of biogas and electricity in an environmentally sustainable manner. This theoretical-applied research proposes a predictive model to estimate the energy potential of by-products such as bagasse, vinasse, molasses, and filter cake, based on historical production data and validated technical coefficients. The model uses milled sugarcane as a baseline and projects its energy conversion under three scenarios through 2030. In its most favorable configuration, the model estimates energy production of up to 15.5 billion Nm3 of biogas in Cuba and 9.9 billion in Peru. The model’s architecture includes four residual biomass flows and bioenergy conversion factors applicable to electricity generation. It is validated using national statistical series from 2000 to 2018 and presents relative errors below 5%. Cuba, with a peak of over 13,000 GWh of electricity from bagasse, and Peru, with a stable output between 6500 and 7500 GWh, reflect the highest and lowest projected energy utilization, respectively. Bagasse accounts for over 60% of the total estimated energy contribution. This modeling tool is fundamental for advancing a transition toward a circular economy, as it helps mitigate environmental impacts, improve agroindustrial waste management, and guide sustainable policies in sugarcane-based contexts. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Graphical abstract

13 pages, 7492 KiB  
Article
Hydrothermal Extraction of Cellulose from Sugarcane Bagasse for Production of Biodegradable Food Containers
by Adisak Jaturapiree, Thanunya Saowapark, Kanjarat Sukrat and Ekrachan Chaichana
Recycling 2025, 10(3), 110; https://doi.org/10.3390/recycling10030110 - 1 Jun 2025
Viewed by 943
Abstract
Sugarcane bagasse (SCB), an organic waste generated during sugar and ethanol production, is a potential biomass source with a high cellulose content. In this study, cellulose was extracted from SCB using a hydrothermal method with various types of solvents, following which the extracted [...] Read more.
Sugarcane bagasse (SCB), an organic waste generated during sugar and ethanol production, is a potential biomass source with a high cellulose content. In this study, cellulose was extracted from SCB using a hydrothermal method with various types of solvents, following which the extracted materials were used for food container production. An alkali solvent—sodium hydroxide (NaOH)—and organic acids—citric acid and formic acid—were included as extractive solvents at two different concentrations (0.25 M and 2.0 M). Hydrothermal extraction with the alkali solvent demonstrated higher cellulose extraction abilities (67.7–74.0%) than those with the acids (52.5–57.3%). Using a low alkali concentration in the hydrothermal extraction (H-NaOH_low) demonstrated a cellulose extraction ability near that when using a high alkali concentration in the conventional boiling method (B-NaOH_high): 67.7% and 70.5%, respectively. Moreover, cellulose extracted with H-NaOH_low had better mechanical properties than that from B-NaOH_high, likely due to fewer defective fibers in the former. A high alkali concentration led to vigorous reactions that damaged the cellulose fibers. Thus, hydrothermal extraction has the benefit of using fewer chemicals, leading to a lower environmental impact. In addition, H-NaOH_low fibers were employed for food container production, and it was found that the obtained product has excellent properties, comparable to those of commercial containers. Full article
Show Figures

Figure 1

21 pages, 5887 KiB  
Article
Meta-Features Extracted from Use of kNN Regressor to Improve Sugarcane Crop Yield Prediction
by Luiz Antonio Falaguasta Barbosa, Ivan Rizzo Guilherme, Daniel Carlos Guimarães Pedronette and Bruno Tisseyre
Remote Sens. 2025, 17(11), 1846; https://doi.org/10.3390/rs17111846 - 25 May 2025
Viewed by 537
Abstract
Accurate crop yield prediction is essential for sugarcane growers, as it enables them to predict harvested biomass, guiding critical decisions regarding acquiring agricultural inputs such as fertilizers and pesticides, the timing and execution of harvest operations, and cane field renewal strategies. This study [...] Read more.
Accurate crop yield prediction is essential for sugarcane growers, as it enables them to predict harvested biomass, guiding critical decisions regarding acquiring agricultural inputs such as fertilizers and pesticides, the timing and execution of harvest operations, and cane field renewal strategies. This study is based on an experiment conducted by researchers from the Commonwealth Scientific and Industrial Research Organisation (CSIRO), who employed a UAV-mounted LiDAR and multispectral imaging sensors to monitor two sugarcane field trials subjected to varying nitrogen (N) fertilization regimes in the Wet Tropics region of Australia. The predictive performance of models utilizing multispectral features, LiDAR-derived features, and a fusion of both modalities was evaluated against a benchmark model based on the Normalized Difference Vegetation Index (NDVI). This work utilizes the dataset produced by this experiment, incorporating other regressors and features derived from those collected in the field. Typically, crop yield prediction relies on features derived from direct field observations, either gathered through sensor measurements or manual data collection. However, enhancing prediction models by incorporating new features extracted through regressions executed on the original dataset features can potentially improve predictive outcomes. These extracted features, nominated in this work as meta-features (MFs), extracted through regressions with different regressors on original features, and incorporated into the dataset as new feature predictors, can be utilized in further regression analyses to optimize crop yield prediction. This study investigates the potential of generating MFs as an innovation to enhance sugarcane crop yield predictions. MFs were generated based on the values obtained by different regressors applied to the features collected in the field, allowing for evaluating which approaches offered superior predictive performance within the dataset. The kNN meta-regressor outperforms other regressors because it takes advantage of the proximity of MFs, which was checked through a projection where the dispersion of points can be measured. A comparative analysis is presented with a projection based on the Uniform Manifold Approximation and Projection (UMAP) algorithm, showing that MFs had more proximity than the original features when projected, which demonstrates that MFs revealed a clear formation of well-defined clusters, with most points within each group sharing the same color, suggesting greater uniformity in the predicted values. Incorporating these MFs into subsequent regression models demonstrated improved performance, with R¯2 values higher than 0.9 for MF Grad Boost M3, MF GradientBoost M5, and all kNN MFs and reduced error margins compared to field-measured yield values. The R¯2 values obtained in this work ranged above 0.98 for the AdaBoost meta-regressor applied to MFs, which were obtained from kNN regression on five models created by the researchers of CSIRO, and around 0.99 for the kNN meta-regressor applied to MFs obtained from kNN regression on these five models. Full article
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
Azospirillum brasilense in the Planting Furrow of Sugarcane to Minimize the Use of N Fertilizer
by José Augusto Liberato de Souza, Lucas dos Santos Teixeira, Gabriela da Silva Freitas, Lucas da Silva Alves, Maurício Bruno Prado da Silva, Juliana Françoso da Silva, Fernando Shintate Galindo, Carolina dos Santos Batista Bonini, Clayton Luís Baravelli de Oliveira and Reges Heinrichs
Plants 2025, 14(11), 1599; https://doi.org/10.3390/plants14111599 - 24 May 2025
Viewed by 728
Abstract
Sugarcane (Saccharum spp.) stands out in the context of sustainable agricultural production due to its versatility and energy potential. However, management challenges, such as nitrogen (N) fertilization associated with microbiological action, require improvement. In this context, the use of the bacterium Azospirillum [...] Read more.
Sugarcane (Saccharum spp.) stands out in the context of sustainable agricultural production due to its versatility and energy potential. However, management challenges, such as nitrogen (N) fertilization associated with microbiological action, require improvement. In this context, the use of the bacterium Azospirillum brasilense has been studied as an alternative to reducing the use of mineral fertilizers. The objective of this study was to evaluate the application of Azospirillum brasilense in the planting furrow of sugarcane in terms of leaf diagnosis, nutrient uptake, yield and technological quality of the stalks, and total fresh and dry biomass of the aerial parts of the plants. The experiment was conducted under field conditions at two locations during the 2022/2023 growing season. The soils in Areas 1 and 2 were classified as medium-textured oxisol and sandy-textured oxisol, respectively. The experimental design was a randomized block design with four replications. The treatments were as follows: (T1) 28 kg ha−1 of N; (T2) 14 kg ha−1 of N; (T3) T2 + 0.2 L ha−1 of inoculant; (T4) T2 + 0.4 L ha−1 of inoculant; (T5) T2 + 0.6 L ha−1 of inoculant; (T6) T2 + 0.8 L ha−1 of inoculant. In Area 1, treatment T5 showed a total fresh biomass yield of the aerial parts that was 34% higher than T2. Total dry biomass, tillering, stalk yield, and technological parameters did not differ significantly between treatments in either area. In terms of nutrient uptake, treatment T5 consistently ranked among those with the highest averages for P, K, Ca, Mg, S, Fe, Mn, and Zn in both experimental areas. The dendrogram showed similar results between treatments T1 and T5. The application of 0.6 L ha−1 of the solution containing Azospirillum brasilense, combined with 50% of the recommended N dose, increased total fresh biomass production. Total dry biomass, stalk yield, tillering, and technological variables of the crop were not affected by the presence of the bacterium. Full article
Show Figures

Figure 1

Back to TopTop